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ABSTRACT. Geometrical representations of certain classical num-
ber tables modulo a given prime power (binomials, Gaussian
g-binomials and Stirling numbers of 1st and 2nd kind) generate
patterns with self-similarity features. Moreover, these patterns
appear to be strongly related for all number tables under con-
sideration, when a prime power is fixed.

These experimental observations are made precise by inter-
preting the recursively defined number tables as the output of
certain cellular automata (CA). For a broad class of CA it has
been proven [11] that the long time evolution can generate frac-
tal sets, whose properties can be understood by means of hier-
archical iterated function systems. We use these results to show
that the mentioned number tables (modp”) induce fractal sets
which are homeomorphic to a universal fractal set denoted by
Spv which we call Sierpinski triangle (mod p”).

1 Introduction

The non-zero entries of some classical number tables, binomial coefficients,
Gaussian g-binomials, Stirling numbers of first and second kind, and the
Eulerian numbers, modulo a given natural number all generate fractal pat-
terns (cf. [4], [9], [14], [18], [19], [22], [23], [25], [28]), which have rather
intricate self-similarity features. For example, the non-zero binomial coeffi-
cients (mod 2) represented in a plane lattice generate a self-similar pattern
which resembles the Sierpinski triangle.

The problem of describing the self-similar features of these number ta-
bles was considered by many authors. In particular M. Sved and J. Pitman
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introduced a “hierarchical” terminology to obtain an exact description by
which they were able to prove adopted versions of Lucas’ theorem for the
Gaussian g-binomials and the Stirling numbers of first and second kind. In
[9] pattern formation within the binomial coefficients modulo prime powers
was studied from the point of view of hierarchical iterated function sys-
tems. It turned out that a combination of ideas from dynamical systems
theory and elementary number theory due to E.E. Kummer [15] allowed a
rather complete discussion of the hierarchical self-similarity features within
the binomials. As a geometrical model for the pattern formation within
the binomials a generalization of the Sierpinski triangle was introduced.
This is the Sierpinski triangle modulo a prime power. Figure 1 shows the
examples for 2 where v = 1,2, 3. Experiments with Gaussian and Stirling
number tables modulo prime powers have shown that patterns arise which
are identical with or strongly related to the Sierpinski triangle modulo a
prime power. Figure 2 shows a geometrical representation of the non-zero
entries in the Gaussian and Stirling number tables modulo 22, as a typical
example.

Figure 2. From left to right - graphical representation of the Gaussian
3-binomials and Stirling numbers of 1st and 2nd kind modulo 22.
In each case we plotted about 1100 rows from bottom to top.



Our goal is to develop a language which is suitable for a mathematical
discussion of the pattern formation in these number tables and to establish
a theory through which it will become transparent why the binomial, the
Gaussian and Stirling number tables generate essentially the same fractal
structures.

Our approach will be guided by [11]. It will be crucial that we consider
the number tables as output of appropriate cellular automata. A cellular
automaton (CA) evolves in discrete time steps in a discrete space according
to a local transformation rule (recursion formula) (cf. [29]) which generate
for each spatial location one of finitely many states. Fractal aspects (rescal-
ing, limits, Hausdorff dimension, self-similarity features) in the evolution of
CA have been studied in [26], [27], [10}, and [11]. Building on these ideas we
will prove that properly rescaled geometrical representations of the Gaus-
sian g-binomials and Stirling numbers of first kind modulo a prime power
p” have limits and that these limits are homeomorphic to the Sierpinski
triangle modulo p¥, denoted by Sp». Corresponding patterns of the Stirling
numbers of second kind modulo a prime p turn out to be homeomorphic
to Sp. In fact this characterization should extend to the case of a prime
power, but we have no result for this more general case at this point yet.

2 Preliminaries

Let N be the set of natural numbers including zero, Z be the set of integers
and R be the field of real numbers. Let R denote a commutative finite ring
with 1 # 0 and R[X] the ring of all polynomials with coefficients in R. For
a natural number m let Z,, be the ring of all residue classes (modm). The
ring of all polynomials with coefficients in Z is denoted by Z[X].

Let A : R[X] — R[X] be a map and a(X) € R[X]. Then A(a)(X) =
>_;a; X7 is a polynomial and we define for i € Z

A()(X); = a;,

if 1 is negative or exceeds the degree of A(a)(X) we define a; to be zero.

Let doo be the maximum-metric on R2, and let || - || denote the induced
norm on R2. For every subset A C R? and ¢ > 0 we define the set (A4)¢ :=
{z € R? | Ja € A with dw(a,z) < €}. The set of all non-empty compact
subsets of R? equipped with the Hausdorff metric h is denoted by H(R?)
where for A, B € H(R?)

h(A, B) :=inf{e >0 | AC (B)c and B C (A)¢}.

(H(IR?), k) is a complete metric space (cf. [16], [7]).

In this note we consider several recursively defined number sequences.
First we present their definitions and then will represent them as linear
cellular automata.



The binomials are given by the well-known recursion formula

(g)=1’ and (2) = 0for k#0
() =(2 )+ (@) o

The Gaussian g-binomials are an extension of the ordinary binomials (cf.
(3], p- 140). They are explicitly defined by

[, = @Dt b i o
kliq (¢F - 1)(¢*1 —1) +(g-1)
with k,n € N and ¢ > 1. If q is a prime power, the Gaussian ¢g-binomial
[z]q provides the number of k-dimensional subspaces of a n-dimensional
vector space over the Galois field GF(q) of order g (cf. [3], p. 128). These
numbers can also be recursively generated (cf. [3], p. 161):

(2.2)

["] —lforallneN, and |0| = 0fork#0
0lg kl,

[nzl]q [k 1] [k] (2.3)

The Stirling numbers of 1st kind s(n, k) are given by (cf. [3], p. 159)
8(0,0) =1, and s(0,k) =0 for k#0
s(n+1,k) = s(n, k- 1) — ns(n, k). (24)
They are also uniquely determined by the equations (cf. [3], p. 165)

n

[Xln = s(n, k)X*, (2.5)
k=0
where [X]; := X(X —1)-.... (X =i+ 1) € Z[X], here n is a positive

integer and i > 0. These numbers are in some sense dual to the Stirling
numbers of 2nd kind S(n, k) (cf. [3], p. 165), whereby the coefficient S(n, k)
provides the number of possible partitions of a set N with n elements into
k non-empty sets. They are produced by the recursion formula (cf. [3], p.
156)
5(0,0) =1, and S(0,k) =0 for k#0
S(n+1,k) = S(n, k= 1)+ kS(n, k). (2.6)

For all n € N we have (cf. [3], p. 165)

=Y S(n, DX, (27)
k=0



3 Fractal Rescaled Evolution Patterns of CA

When one considers a certain recursively defined table {F(n, k)}n,x of nat-
ural numbers like one of the above, and all numbers {F(no, k)}« are known
for a row, say no, then by means of the recursion all numbers of the next
row {F(no + 1,k)}x can be computed. Of course this can also be done
for the sequence of remainders {F(n, k) (modm)}, x where m is a natural
number. By interpreting n as time and the number F(n, k) (modm) as
the state of the ”cell” located at the site (k,n) in a square lattice we have
essentially described a cellular automaton. A cellular automaton evolves in
discrete time steps (row by row in dimension one) and proceeds by a local
transition rule, which is the recursion formula of {F(n, k) (modm)}n i here
(cf. [29]). Let us be more precise. We define

Definition 3.1 Let r(X) € R[X] be a non-trivial polynomial. Then a
linear cellular automaton (LCA) with states in R is a map A = A(r) :
R[X] — R[X) which is defined by a(X) +— 7(X)-a(X) for any a(X) € R[X].

If A = A(r) is a LCA, then the polynomial r(X) € R[X] is called the
local transition rule of the LCA.

Example 3.1 To produce the binomials (modm) by a CA A = A(r) we
consider the polynomial r(X) = 1+ X € Zn[X]. Let A be the identity
map on Zm[X] and At = A(A*) the (1+1)st-composite of A. Then for
everyt € N the polynomial AX(6) = Xk_o ek X*, where §(X) =1 € Zn[X],
it is ax = (}) (modm).

Now we fix a geometrical representation for our number tables. We define
a graphical representation for polynomials in R[X].

Definition 3.2 Let a(X) = Y0 & X* € R[X] be a polynomial and ¢ :
Z — Z a mapping. The map Gy : R[X] — H(R%) U {0} defined by

Go(a) = |J IG.4()
a;#0
is called ¢-graphical representation of R[X], where I(k,n) := {(z,y) € R? |
k<z<k+landn<y<n+1}.

Now it is possible to represent the geometrical structure of each set of
the orbit {A(6)}en, 6(X) = 1 € R[X], as an infinitely growing pattern
("black-and-white image”).

Definition 3.3 Let A = A(r) be an LCA with states in R and §(X)=1¢€
R[X]. Purthermore, let ¢ : Z — Z be a map and let p€ N, p > 0 be a



constant. The set

p—1
X(Apd,p) = |JGCs(A8) +(0,pt)

t=0

is called p-th orbit representation of A (w.r.t. ¢ and p).

A way to obtain an "overview” of this growing pattern is by applying
certain rescalings at appropriate horizontal lines. S. J. Willson first intro-
duced this idea (cf. [26], [27]). For x = p', p a prime number, he rescaled
the set X (A, ', ¢, p) with ¢ = 0 and p = 1, by the factor p—* which yields a
convergent sequence {p~' X(4,p', $, p)}ien in H(R2). We need a more gen-
eral result and that is why we introduced the parameters ¢ and p. Using
the terminology from [11] we define

Definition 3.4 An m-Fermat LCA is o LCA A = A(r) with states in R
satisfying the property A™(6)(X) = A(6)(X™) for allt € N.

Remark 3.1 Let p be a prime number, and v a natural number, and r1(X),
r2(X) € Z[X]. Purthermore, let r1(X) = ro(X) (modp¥). Then it follows
that r1(X)P = r2(X)P (modp*+!) (cf. [27]). As a consequence we obtain
for 7(X) € Zyw[X)] the equation r(X)*" 7Pt = r(XP)*" ™" for all t € N.
Thus A(s) with s(X) = r(X)?"™" is p-Fermat.

Theorem 3.1 Let A = A(r) be an m-Fermat LCA with states in R. Let d
be the degree of 7(X). Furthermore, letp €N, p > 0 a constant and ¢ : Z —
Z be a map such that there is a constant C with | ¢(ml + j) — m¢(l) |< C
forallle Z and 0 < j < (m —1)d. Then the sequence

1
{mxam.snl

converges in H(R?).
To prove theorem 3.1 we need the following lemma.

Lemma 3.1 Let A = A(r) be a LCA with states in R and let d be the
degree of (X). Let pe Nwithp>2 andlet $: Z - Z be a map. If j € Z
and 1 <t <m -1, such that I(j,9(5) + pt) C X(A, i, 9, p), then there is
an i, such that —d < i <0 and

I(G +4,8(7 +14) + p(t — 1)) C X (A, m, ¢, p),
where I(n, k) is defined as in definition 3.2.



Proof: Note that A®(j) # 0. Now it is obvious that there must be an ¢
with —d < i < 0 and A*~1(i + j) # 0. Otherwise A*(j) would be zero.
Proof: (Theorem 3.1) Let X, := X(A,m¥, ¢,p). For the existence of
lim X, it is sufficient to show that

h (X“, %Xﬂ*_l) < const

for all 4 € N.

Choose a 1 € N. Let I(l,¢() + pt) C X, withl € Z and t € N,
0 <t < m* —1. Then A™(6)(X) = A*(8)(X™) provides I(ml, ¢(ml) +
pmt) C Xuy1. Since especially |1 ¢(ml) — ¢(1)] < C it follows

10, 80) + pt) C (%I(mz, $(eml) + pmt>) .

Therefore X, C (75 Xu+1) gy r-

Now let I(ml + 7, ¢(ml + 7) + p(mt + q)) C Xu41, where l € Z, j €
{0,...,m—1},teN,0<t<m*—1landqe {0,..., m —1}. We apply
lemma 3.1 ¢ times and obtain the existence of an i’ with —¢gd < ¢’ < 0, such
that

I(ml+j + i, ¢(ml +j + ) + pmt) C Xpp1.
Because of A™(6)(X) = A%(6)(X™) there exists an i € Z with mi =ml +
j + 1. Now we have I(mi, ¢(mi) + pmt) C X, 4, and I(, ¢(3) + pt) C X,.
We use the estimate for ¢ and get

 I(ml+ 3, $(ml + ) + p(mt + ) C (16, 8(3) + )z

where C := max{d, C 4+ p(m — 1)} + 1. Finally, this leads to

1 1
mk mt) e

This means that lim, . X, exists.

Remark 3.2 i) The limit of the above sequence is denoted by Xoo(A, @, p)
and is called the rescaled evolution pattern of the LCA A (w.r.t ¢ and p).
1) Xoo(A, ¢, p) is in general a fractal set (cf. [10], [11]).

i2) If =0 and p = 1, we denote the limit simply by X (A).

i) If ¢ is bounded, we have Xoo(A, 6, p) = Xoo(A).

We will now see that related LCA possess related rescaled evolution pat-
terns, i.e. limits in (RR?) which are the same up to affine homeomorphisms.
We first specify what kind of relationships will be considered (cf. [11], p.
24).



Definition 3.5 Let A = A(r) and B = B(s) be LCA with states in R, and
a €N, a > 2. We say that A is the a-th inner power of B if r(X) = s(X®)
holds. We say that A is the a-th (outer) power of B if r(X) = s(X)* holds.

Our first result compares the rescaled evolution patterns of CA which
are related as inner powers.

Proposition 3.1 Let the m-Fermat LCA A = A(r) be the a-th inner
power of the m-Fermat LCA B = B(s) both with states in R. Further-

more, let ¢ : Z — Z a bounded map and p €N, p > 0 a constant. Then we
have

Xw(Aj ¢, P) = FQ(XOO(B’ d’ap))s
where Fy : R?2 = R?, (z,t) - (az,t).

Proof: Because of theorem 3.1 both limits Xoo(A, ¢, p) and X (B, ¢, p)
exist. The assumption

AY(8)(X) = B*(8)(X*)

yields the equation G4 A*(8)(X) = G4B(8)(X*).
It is easy to see that for all a(X) € R[X]

h(Gga(X?*), FaGya(X)) <2C+
where [¢(i)| < C for all i € Z. Therefore,
h(G4A(5), FaG4B(6)) = h(GyB*(5)(X =), FaGsB(8)(X)) < 2 + c.

Finally h(X (A, m*, f, 0), Fa X (B, m*, f,0)) <2C +a for all u € N.
A similar result holds for CA which are related as (outer) powers.

Proposition 3.2 Let the m-Fermat LCA A = A(r) be the a-th (outer)
power of the m-Fermat LCA B = B(s) both with states in R. Furthermore,

let $ :Z — Z be a bounded map and let p € N, p > 0 be a constant. Then
we have

lim ——X(B,am* ¢,p) = Fa-r(XoolA, b)),

p—oo amb

where F,-1 : R? = R?, (z,t) — (o 'z,t).

Proof: Let X, := X(A, m*, ¢,p) and X u = X(B,am*, ¢, p). We have to
show that

h (éf(,‘,Faq (X,,)) < const.

10



Furthermore, let C be a constant such that |¢(z)] < C for all 7. Let
I(L, (1) + pt) C X, where l€ Z, t =na+qmitn €N, 0 <n<m* -1
andgeN,0<g<a-1.

We apply lemma 3.1 q times. This yields an i € Z with —¢d <i <0
such that I(l + i,é(l + i) + pna) C X,. Since r(X) = s(X)*, we have
I +4,¢(l+13)+ pn) C X,. Then

10,60 + plna+0) € (Fy Q45,604+ +pm)

where C := max{d, pa + 2C} + 1. From this it follows that
1-
pRES (F %(X"))(:v

Conversely, let I(l, $(1) + pt) C X,.. Then I(l, $(1) + pat) C X,., because
A is the a-th (outer) power of B. As a consequence we get

1 ~
F-‘-(Xu) c ("‘Xu) ’
- o 20+1

and finally the assertion.

Another important tool for our analysis of the “geometrical structure” of
the considered number sequences is the next proposition which deals with
the situation that one LCA is the shifted version of another.

Proposition 3.3 Let A = A(r) be an m-Fermat LCA with states in R
and degree d. For k € Z let re(X) := X*r(X) € R[X] and Ax := A(rs).
Furthermore, let ¢ : Z — Z be a bounded map and let p e N, p > 0. Then

Xoo(Ak) ¢: P) = Fk,P(XOO(A: ¢' p)))
where Fi, :R? = R, (z,t) — (z + Lk, ¢).

Proof: The automaton Ay is m-Fermat, too. This means that it induces
a rescaled evolution pattern as well. Now it suffices to show that

h(X(Ak,m“,¢) p)! Fk,p (X(A’m“r¢a P))) S const

for all u e N.

We have the equation A%(8)(X); = AL(6)(X)i+ke- Hence I) == I(l,¢(!)+
pt) is a subset of X (A, m#, ¢, p) if and only if I := I(l + kt, (1 + kt) + pt)
is a subset of X (Ax, m*, @, p). Therefore

1 -
h(Fio(lh), I2) < max{—plle, 2C}+C,

11



where |¢(i)] < C for all i € Z and € := max{||z]|e | € Fi ,(I(0))} + 1.
This yields the assertion.

At the beginning of this paragraph a first example has shown the connec-
tions between LCA and the binomials modm. To extend these connections
to other number sequences we introduce new types of CA, time- and place-
dependent CA.

Definition 3.6 Letro(X),...,7a—1(X) € R[X] be polynomials. Let (A% )en
be a sequence of LCA with states in R, given in the following way. For any
a(X) € R[X] and t € N we define

a—1 n
Ab(a)(X) = (H 'r,,(X)) ro(X) - ... -rg_1(X) a(X),

r=0
where t = na+ B withn € N and 0 < 8 < a. It shall be denoted by

Ar(ro,... ,Ta-1) and we call Ay = Ar(ro,... ,Ta—1) the time-dependent
cellular automaton induced by A(rg), ..., A(ra-1).

A time-dependent automaton applies periodically the local transition
rules ro(X) up to ro—1(X). Which local rule is used in a particular time
step depends on the actual time itself. Time-dependent automata also gen-
erate fractal rescaled evolution patterns. We use the analog definition of
the u~th orbit representation for the time-dependent automata

#—1
X(Ar, 1 8,0) = | Go(AL(8) +(8(2), pt).
t=0
Proposition 3.4 Letro(X),... ,74-1(X) € R[X] be polynomials such that
A(r) is m-Fermat where r(X) := [122a ro(X). Let Ar = Az(ro,... ,Ta1)

v=0

be a time-dependent automaton. Furthermore, let ¢ : Z — Z be a bounded
map, and let p €N, p > 0 be a constant. Then we have

lim —— X(Ar,am®,¢,p) = Fa1(Xeo(A(), $:0)),

u—oco amt

where Fy-1 : R? = R?, (z,t) — (o~ lz,t).

Proof: The LCA A(r) can be interpreted as the o-th power of Ar. Then
the assertion follows from proposition 3.2.

The next new class of CA are the place-dependent automata.

Definition 3.7 Let ro(X),... ,ra—1(X) € R[X] be polynomials. The map
Ap = Ap(ro,...,Ta-1) : R[X] = R[X] defined fori € Z by

Ap(a)(X)i = Ayup(a)(X)i,

12



where v(i) € {0,...,a — 1} and v(i) = i(moda), is called the place-
dependent automaton induced by A(ro),. .. , A(ra—1)-

Place-dependent automata apply periodically « local rules depending on
the location of the cells. For this class we have no general statement about
the existence of corresponding limits in (R2?), but we will see that we can
solve this problem for special cases.

4 TFractal Patterns of Classical Number Tables

We will now study the number tables modulo a prime power p¥ and will
define an appropriate graphical representation by

p—1
Xpr({F(n, )} ) = | J{I(k,m) | F(n, k) # 0(modp)}.

n=0

We have seen that the ordinary LCA A = A(r) induced by r(X) =
X +1 € Z,-[X] produces the binomials (modp”). Remark 3.1 yields that
the LCA B = B(s) with s(X) :=r(X )**™" is p-Fermat and therefore, with
theorem 3.1 the existence of a rescaled evolution pattern X (B) is guaran-
teed. In fact the fractal and self-similarity features of these patterns were
studied in [9} using hierarchical iterated function systems and elementary
number theoretical results due to E.E. Kummer from 1852. We will denote
the rescaled evolution pattern by Sp» and call it the Sierpinski triangle
(modp”). We will demonstrate that this fractal set Sp» is in some sense
universal for all considered number tables when they are considered modulo
prime powers.

4.1 Gaussian ¢-Binomials

Let us start with the Gaussian g-binomials. The following proposition can
be easily verified by induction.

Proposition 4.1 For i € N and ¢ € N\{0,1} let r;(X) = X + ¢*. Then
we have for alln € N

n n+1
[Inx) = i["“] ") xE,
i=0 k=0 kg

From proposition 4.1 it follows that the Gaussian g-binomials (modp*)
can be computed up to certain factors by a time-dependent automaton with
local rules r3(X) = X + ¢* € Zp-[X] provided that p does not divide q.

13



Theorem 4.1 Let p be a prime and let v € N, v > 0. Let ¢ € N with
g = B(modp¥) for B > 2 and such that p does not divide q. Furthermore,
let o be the smallest natural number with ¢* = 1(modp”). Then

3 1 n “ 1 —
JL”JOWXP" ({[k]q}’ ap ) = Fpi-o(Sp),
where Fpu-. : R? — R? is defined by (z,t) - (p' "z, t).

Proof: Let ri(X) := X + ¢* € Zw[X] for i =0,..., and let Ar be the
induced time-dependent cellular automaton Az(ro, ... ,7a—1). Let 7(X) :=
1%, r+(X) and #(X) := r(X)?""". If o/ is the smallest natural number
Witl'l ¢® =1(modp), it is clear that o’ divides & and it follows for s,(X) :=
[T ma(X)

r(X) = s1(X)+ (modp).

. - o ’
Claim: p divides % | for0 <k <.
q

p divides (¢* — 1) where o’ is minimal. Therefore, p does not divide any
term in the denominator of

K, T @@ -0 @D

This proves our claim.
From this it follows that s;(X) = s2(X) (modp) where s3(X) := X' +
q(';) € Zy [X]. Then remark 3.1 provides the congruence

1

A(X) =r(X)""" = (X" (modp).
Let s3(X) := s2(X)?"~". We now show
Claim: & =p'foraleN.

v—1

Note that ¢ =1 (modp). We apply remark 3.1 and get ¢*'P
1 (modp¥). Moreover, o divides a’p”~!, therefore there is an ng € N
such that a’p¥~! = nga and p*~! = no Z. Since every natural number
possesses a unique factorization as a product of prime powers, there exists
an l € N with & =p'.

Now A(s3) is p-Fermat, and thus we get by means of our second claim:

#(X) = (X*+ g2 () (modp”).

Since p does not divide g, A(7) is the a-th inner power of A(s), whereas
s(X)=(X+ 1)1””_1 € Zp-[X]. Now proposition 3.1 yields Xoo(A(7)) =

14



Fo(Spr). Furthermore, we apply proposition 3.4 and get

. 1 v .
“lergo W X(AT, apm-l' 1, é, P) = Fap:—l (XOO(A(T)))

where ¢ =0 and p = 1. Altogether we have

. 1 n v—1 -
e ({1 ) =

and this is what we had to show.

4.2 Stirling numbers of first kind

The Stirling numbers of 1st kind can be modelled by means of a time-
dependent automaton, too. For them we get the next theorem:

Theorem 4.2 Let p be a prime number and v €N, v > 0. Then
1
i _— v o = v
Jim o Xpo ({s(n, K)},2*) F(Sp),

where F : R?2 — R? is defined by (z,t) — (p~V(p — 1)z +p~1¢,¢).

Proof: Let o := p” and o := p. Let riy(X) := X +i € Zp.[X] for i =
0,...,a and Ay = Ar(A(r0),... ,A(ra-1)) the induced time-dependent
automaton. Then we have with §(X) :=1 € Zp» [X]

AF()(X)k = 8(n, k) (modp”).

Furthermore, let 7(X) := [];-, r:(X) and s1(X) := Hf';l 7¢(X). We have
$1(X) = [X]p (modp) and also r(X) = 51(X)>" (modp).

If p > 2, then p divides the Stirling numbers of 2nd kind S(p, k) for 1 <
k < p (cf. [22]) and with equation 1 we get X? = X + [X], (modp). This
means s1(X) = s2(X) (modp) where s2(X) = X' + (p — 1)X € Zp[X].
This is also true in case of p = 2.

Let #(X) :=r(X)P""", then remark 3.1 provides

2(»—1)

32(X)P
sz(u—l)

#(X) (modp")

»—1

- s3(X)P

1

with s3(X) = (X*~1 4+ (p — 1))~
Fermat,because of remark 3.1, and thus s4(X) := s3(X)?P
Now we have

€ Zp[X]. Note that A(ss) is p-
»—1 - 33(Xpu~l).

pﬂ(v-l)

FX)=X sa(X). (4.8)
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»=1

Let s(X) := (X +1)?"" € Zp[X). Then A(s4) is the (o’ —1)p”~*-th inner
power of A(s), and we get by means of proposition 3.1

Xoo(A(84)) = For—1)pr-1(Spr).

For the rescaled evolution pattern of A(7) we have

Xoo(A(F)) = F'(Xoo(A(s4)))
because of 4.2 and proposition 3.3, where F’ : R? — R?, (z,t) — (z +
P21, o).
Furthermore, A(f) is the ap¥~1-th power of Ar. This yields

m+v—1 — ~
“ll.rgo ap“.*.,,_ X(AT! ’ ¢s P) = F#l’ (XOO(A(T)))'
where ¢ =0 and p = 1. Altogether we have

1
“l_l{lolo pﬂ'l‘?” 1X(AT P“+2" ! » b, P) = F(SP")’

where F is defined as in the statement of the theorem.

4.3 Stirling numbers of second kind

The Stirling numbers of 2nd kind S(n, k) modulo a prime power p¥ are
much more difficult, because they are generated by a place-dependent au-
tomaton, for which we have no general result concerning the existence of
rescaled evolution patterns. Furthermore, we only consider the case of
S(n, k) modulo a prime (i.e. v =1).

It is necessary to introduce a new graphical representation for the Stirling
numbers of 2nd kind, because we do not rescale them at horizontal but
diagonal lines. Now for u € N let

u(p—1)
X, (S Rhw) = | ((kn+ [’;j]) | S(n+ [g] k) # 0(modp)},

n=0

where for a € R the expression [a] is the integer part of a. If we call the

sequence .
s+ ] 0},

a staircase-line at n, then X,,(S(n, k), p) represents all staircase-lines at 0
up to u(p — 1). We have the result
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Theorem 4.3 Let p > 2 a prime number. Then
N u
Jim = Xp((S(uR)he*) = F(S,),
where F : R? — R? is defined by (z,t) — (pz,z + (p — 1)t).

For the proof of theorem 4.3 we need a result from M. Sved (cf. [22])
from which we deduce a corollary about particular staircase-lines.

Theorem 4.4 (M. Sved) Let p > 2 a prime number and S(n, k) a Stirling
number of 2nd kind. Further let

k
, [P" -[4] - 1}
n=|————
p-—1
and n' = Zt:o a,p¥, k = Z:::o b,p¥ the p-adic expansion of n' resp. k,
where ap, # 0. Then we have

S(n, k) = (g:) S(ao, bo) (modp),

if p does not divide k. If p divides k, then p divides also S(n, k), except for
n’ = —1(modp'), where p* is the greatest power of p which divides k. In
this case is

= (an)(an-1) (a1 a
S(n, k) = (bh) (bh—l) et (bl+l) (b, _ 1) (modp).
Now we consider certain staircase-lines of {S(n, k) (modp)}n -

Corollary 4.1 Let p > 2 a prime number. Then one has for i,j € N the
congruence

SGe-10+1+ ||k = (7) (modp),
P 1
ifk=ip+1,1<k<jp+1 and
S(ip—~1)+1+ [g] k) =0 (modp)

otherwise.

17



Proof: For j € Nlet i := j(p—1)+1 and additionally let k := ip+ s with
0<s<p-1land1<k<jp+1. We want to calculate the remainders of

S(n, k) (modp) where n :=# + [ﬁ] . We have

TR
p— p—
_[m’(p—l)+p—1
= -

]=jp+1.

Let n' = Z,_o a;ip’, k = Yo o bip', with a, # 0, be the corresponding
p-adic expansions. Especially we have ap = 1 and by = s. We distinguish
several cases:

i) p does not divide k.
Then we have with theorem 4.4

n’—ap

S(n, k) = (k_-p_én. )S(l, s) (modp),
P

If s =1, then it follows that S(1,1) =1 and one gets

S(n, k) = (Z) (modp).

If s > 1, then it follows that S(1, s) = 0, which means S(n, k) = 0(modp).
ii) p divides k.
We have n’ = 1 (modp), and therefore we get n’ # —1 (modp') for
all I € N, such that p' divides k. Thus it follows with theorem 4.4 that
S(n, k) = 0 (modp).

Remark 4.1 It is also possible to get corollary 4.1 from a result of L.
Carlitz (cf. [6]).

Proof: (Theorem 4.3) The proof consists of the following steps. Corollary
4.1 shows that the staircase-line (ui)ken, ur € Zp, at j(p — 1) + 1 for
j € N contains in column ip + 1 the binomial coefficient (}) (modp), i.e.
uip1 = (J) (modp). All other entries are zero. This means that the Stirling
numbers of 2nd kind (modp) include a certain distorted version of the
number table of the binomials (modp). Having this, it is not difficult to
prove that S, is affine homeomorphic to lim, o p™* Xo({S(n, k)}, p*).

Let Ap be the place-dependent automaton induced by A(r;) with r;(X) :=
X +i€Z,[X] fori=0,...,p— 1. This automaton satisfies

B(6)(X)k = S(n, k) (modp).
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Now let s(X) := X +1 € Zp[X], 5(X) := s(XP). Then Corollary 4.1
provides for §;(X) :=

A(E)(6)(X)x = SGp - 1)+1+[ ] ¥) (modp).

Let ¢ : Z — Z be defined bka[ ] and let H : R? — R? be defined
by (x,t) — (z+1,¢t +1). Then we have that
H(X(A(E),p”, ¢3p - 1)) c XP({S(T") k)},P“)

Now let I(l,t) C Xp({S(n,k)},p*), i.e. AS(6)(X): # 0. Since all place-
dependent local transformation rules A(r;) are linear and of degree 1, there
exists I(l',¢') C H (X(A(3),p*, ¢,p — 1)) with I(,t) c (I(I', t')),- There-
fore we can conclude that

h(H (X(AG), 7,6, - 1)), Z({S( B)},2*)) <p—1.

Now we consider the rescaled evolution patterns. To apply theorem 3.1 for
A(3) it is necessary to check if ¢ fulfills the condition of the theorem. It
is easy to see that the following estimate for j € Z and —(p - 1)p<i <0
holds

| $(p7 — 1) —po(5) | < p.
Therefore Xoo(A(3), #,p — 1) exists, and for all 4 € N we have
h(H (X(A(3),p",¢,p - 1)), X(A(8),9*,6,p — 1)) < const.
Hence

lim —Xp({S(n, k)},p*) = Xoo(A(3),¢,p—1)

m-—-voo

In the next step we eliminate the dependence from ¢ to clarify the global
geometric structure of the Stirling numbers. We claim that

Xoo(A(8), 6,2 1) = F'(Xuo(A(3))),

where F' : R? — R? is defined by (z,t) — (z, 2z 4 (p—1)t).
This can be easily seen. First we have

I(1,t) C X(A(3),p") if and only if I(,,t') C X(A(3),p*,4,p - 1),
where t' = (p — 1)t + [k;—l] . Further h (F'(I(l,t)), I(1,t')) < 2. Hence we
get h (F'(X(A(3),p*), X(A(3),p*,4,p — 1)) < 2, which proves the claim.
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Finally we note that the LCA A(3) is the p-th inner power of A(s) and
then proposition 3.1 yields

“li’ngop-l—”xp({s(n,k)},l’”) = F(Sp),

where F : R? — R? is defined by (z,t) — (pz, -’1; z + (p — 1)t). This proves
the theorem.

Remark 4.2 It is also possible to eztend theorem 4.8 to the case of p = 2.
Then we have lim, oo X2(S(n, k),2%) = F(S2), where F : R? — R? is
defined by (z,t) — (2z, 3T +1).

5 Growth Rate of non-trivial States

Let V be a finite set with a fixed (distinguished) element v € V. We
call the elements of V states and in particular vo the trivial state. Let
{F(n, k)}n ren be 2 number table in V. For a given non-trivial v € V we
consider the sequence

N(p,v) := card{ (n,k) | 30 <n < p—1, k € N such that F(n,k) = v}
for 1 € N. We also count the total number of non-trivial states by defining

N = ), N

veEV,v#vo

Definition 5.1 A non-trivial state v appearing in the sequence { F(n, k)}n .k
has a power law growth rate a if the limit

i 108 N(kY)
p—ooo  logp

exists and s equal to c.
The total number of non-trivial states has a power law growth rate B in the
sequence {F(n, k)}n x if the limit

im 108N (k)
u—co  logu
erists and is equal to B.
If the sequence {Fa(n,k)}n,ken is obtained as the orbit of any initial
configuration with finitely many non-trivial states under iteration of an

m-Fermat automaton A, then the total number of non-trivial states has
the same power law growth rate 8 and that is equal to the box-counting
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dimension dimp Xoo(A) (cf. [7]) of the rescaled evolution pattern Xoo(A)
of A (cf. [11]), i.e

»
lim log N(m*)
p—oo mlogu
Results like that were first proved by S. J. Willson (cf. [27]) for LCA with

states in Z,». He also showed that the power law growth rate is independent
from v.

Example 5.1 Let F(n, k) := (}) (modp¥), then the power law growth rate
of all non-trivial states of this sequence is log,, ﬂé&lz where p is a prime
number (cf. also [14]). This is the box-counting dimension of Spv which is
independent from v (c¢f. [9], corollary 3.2).

The result mentioned above combined with the theorems 4.1, 4.2, 4.3 and
corollary 3.2 in [9] yield the following corollary.

Corollary 5.1 Let p be a prime number and v € N, v > 0. Let q be a
natural number as in theorem 4.1. Then the Gaussian g-binomials (modp¥),
the Stirling numbers of first kind (modp”) and second kind (modp) all have

the same growth rate of the total number of non-zero states and that is equal
to log, e(p+1)

2

Remark 5.1 For the Stirling numbers of first kind the case v =1 has been
proven in [5] as well.

We will now examine the growth rate of each non-trivial state appearing
in the recursively defined number sequences. To do that we present an-
other approach to prove a corresponding result from S. J. Willson (cf. [27],
Corollary 7.9) for LCA with states in Z,.

Let p be a prime number and r(X) € Z,[X] be a polynomial. Then the
orbit {A™(8)}nen of §(X) under iteration of A = A(r) generates a number
sequence {Fy4(n, k)}knen where Fa(n, k) = A™(6)(X)x for all k and n.
Furthermore, we define for each non-zero element v of Z,, and for all x € N

X®)(A,p) = { (n,k) | 0 <n < p—1, kN such that Fa(n, k) =v}.

A non-trivial state v € Z, is called accessible (with respect to A) if there ex-
ist k,n € N'such that F4(n, k) = v, hence, X(¥)(A, p) # @ for all sufficiently

large p > po.

Proposition 5.1 Let A be a LCA with states in Z, and v € Z, an acces-
stble state. Then

1,

with respect to the Hausdorff-metric.
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Proof: We make use of the fact that a sequence of compact subsets {A,}.en
in a given compact metric space X converges with respect to the Hausdorff-
metric if and only if its limes inferior and limes superior coincide, i.e.
limA, = limA, (cf. [16]) where these sets are defined in the following
way:

ImA, = {z€X|3{ntien, i €N, ny <myyy foralli,
and z; € Ay,, i € Nsuch that lim z; =z }
3—00

limA, = {z€X|3r;€A;forallieNsit. ilggox,'=m}.

Let A be an LCA with states in Z, and let v € Z, be an accessible state.
First we prove that the sequence {;%X ()(A, p*)} converges with respect

to the Hausdorff-metric. Let Y, := p—l,,-X (¥)(A, p*), then it is sufficient to
show that

ImY, C limY,. (5.9)

Let (z,y) € mY,, i.e. there exits an increasing sequence {n;}ien and
points (:z:k,yk) e X (A,p"") such that (2, y) = limg_00 -p—.{,‘-(zk,yk).

We have F4(zk,yx) = v where 0 < zx < p™ — 1. Now define the
sequence (Z, k) € N x N by setting Zy, = 2k, Fn, = ¥k and Zx = z; p**,
¥k = y; p¥* where n; < k <nyy1 and k=n; + vk,

Then (Z,,75,) € X®)(A,p*) for all p € Nand (o, %) = limu—~o #(z,,,y,‘)
which proves equation 1. Hence {Y,}.en converges. Let xP) =
limy o0 Y.

Let v, and v, be accessible states for the automaton A, i.e. Fa(ny, k1) =
vy and Fa(ng, k2) = vo with ny, ki € N for i = 1,2. Then the state vyvz is
also accessible (cf. [27]). We go on and prove the inclusion

XE)(A) c XLrvI(A). (5.10)

Let (z,y) € Xg‘)(A) and (z,,y,) € X®(A,p#) for u € N such that
(z,) = limyoo ;%(z“, ¥s)- Let I € N be a natural number such that

maz{dks, n2} < p' where d = deg (X). Then

(Zu, gp) = (Plzﬂ + "'2,17"9# +k2) € X(vl"z)(AvP“-H)

and hence 1
Jim i B B) = (@) € XE(A)

The set Z of all accessible states with respect to A forms a multiplicative
group. Then the inclusion 1 implies Xg‘)(A) = Xg)(A) for allaccessible
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states z and v. Obviously, we have

X'(Ap") = J XM(4,p),

vEZ

where X'(A,p*) :={ (n,k) | Fa(n,k) # 0,0 < n < p* }. It is known (cf.
[11]) that
Xoo(A) = lim X'(A,p*).
p—00

Finally, we get the statement of the proposition from

Xoo(A) = | X&(4) = X(4)
ueZ

for all v € Z.

Corollary 5.2 (S.J. Willson) Let A = A(r) be an LCA with states in Z,
and v be an accessible state. The power law growth rate of the state v in
the sequence {Fa(n, k)}rnen i3 equal to the boz-counting dimension of the
rescaled evolution pattern X, (A).

Corollary 5.3 Let p be a prime number and q € N a natural number as
in theorem 4.1. The power law growth rate of a non-zero state appearing in
the Gaussian g-binomials (mod p), the Stirling numbers of first or second

kind (mod p) is equal to log, 3(3.}12

6 Open Questions

We have already mentioned one open question - the conjecture that the
patterns generated by the Stirling numbers of second kind modulo a prime
power p” is also homeomorphic to the Sierpinski triangle modulo p*.

Out of reach of our method is the deciphering of the self-similar features
of the Eulerian numbers because they are modelled by a time- and place-
dependent cellular automata. for which we have no general result concerning
the existence of rescaled evolution patterns. Nevertheless, experiments with
the Eulerian numbers showed that the induced patterns are resembling the
geometric structure of Sp. as well.

In [2] it was shown that the double sequences of Gaussian g-binomials
and Stirling numbers of first kind (mod p“) are p-automatic, i.e. they are
generated by a 2-dimensional finite p-automaton (cf. [1] and [20] for the
definitions and further references). We do not know whether the Stirling
numbers of second kind modulo a given prime power are also p-automatic.
It was also shown in [2] that the binomial coefficients (mod m), where m is
not a prime power, are not k-automatic for any k. Is this also true for the
Gaussian g-binomials and Stirling numbers ?
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We did not analyze the distribution of the residues (mod p“) in the
number tables we considered. This question is connected with multifractal
measures (cf. [8] for the definitions) on the corresponding rescaled evolution
sets. For the binomial coefficients modulo a prime we refer to (8] and for a
class of CA to [12].

References

[1] J. P. Allouche: Automates finis en théorie de nombres, Ezpo. Math. 5
(1986), 239-266.

[2] J. P. Allouche, F. v. Haeseler, H-O. Peitgen, and Guentcho Skordev:
Linear Cellular Automata, Matrix Substitutions, and Pascal’s Trian-
gle, Universitit Bremen. Institut fir Dynamische Systeme, Report Nr.
290 (Juli 1993).

[3] M. Aigner: Kombinatorik. 1. Grundlagen und Zahltheorie, Springer
Verlag 1975.

[4] B. Bondarenko: Generalized triangles and pyramids of Pascal, their
fractals, graphs and applications, Fan, Tashcent (1990), in russian.

[5] N. Brand, S. Das, T. Jacob: The number of non-zero entries in re-
cursively defined tables modulo primes, Congressus Numerantium 78
(1990), 47-59.

[6] L. Carlitz: Some partition problems related to the Stirling numbers of
the second kind, Ars Arithmetica 10 (1965), 409-422.

[7] G. E. Edgar: Measure, Topology and Fractal Geometry, Springer Ver-
lag 1990.

[8] C. J. G. Evertsz and B. Mandelbrot: Multifractal Measures, in: H-
O. Peitgen, H. Jiirgens, and D. Saupe: Chaos and Fractals, Springer
(1992).

[9] F. v. Haeseler, H.-O. Peitgen und G. Skordev: Pascal’s Triangle, dy-
namical systems and attractors, Ergod.Th.& Dynam.Sys. 12 (1992),
479-486.

[10] F. v. Haeseler, H.-O. Peitgen und G. Skordev: Linear Cellular Au-
tomata, Substitutions, Hierarchical Iterated Function Systems and At-
tractors, in: J.L. Encarnacao et al., eds. Fractal Geometry and Com-
puter Graphics, Springer-Verlag, Heidelberg, 1992.

[11] F. v. Haeseler, H-O. Peitgen und G. Skordev: On the Fractal Struc-
ture of Rescaled Evolution Sets of Cellular Automata and Attractors

24



of Dynamical Systems, Universitit Bremen. Institut fiir Dynamische
Systeme, Report Nr. 278 (Dezember 1992).

[12] F. v. Haeseler, H.-O. Peitgen und G. Skordev: Multifractal Decompo-
sitions of the rescaled Evolution set of equivariant cellular automata,
(in preparation).

[13] G. H. Hardy und E. M. Wright: An Introduction to the Theory of
Numbers, Oxford at the Claredon Press (1979), 5th edition.

[14] J. Holte: A recurrence relation approach to fractal dimension on Pas-
cal’s triangle, ICM-90, Kyoto.

[15] E.E.Kummer: Uber Erginzungsséitze zu den allgemeinen Rezipro-
zititsgesetzen, Journal fiir die reine und angewandte Mathematik 44
(1852), 93-146.

[16] C. Kuratowski: Topologie I, Warszawa, PWN (1958).

[17] E. Lange: Zellulire Automaten und ihre Anwendung auf rekursiv
definierte Zahlenfolgen, Diplomarbeit, Universitit Bremen (1992).

[18] C. T. Long: Some- Divisibility properties of Pascal’s Triangle, The
Fibonacci Quarterly (August 1981), 257-263.

[19] C. T.Long: Pascal’s Triangle modulo p, The Fibonacci Quarterly (De-
cember 1981), 458-463.

[20] O. Salon: Suites automatiques & multi-indices et algébricité, C. R.
Acad. Sci. Paris 305 Sér. I (1987), 501-504.

[21] R. Stanley: Enumerative Combinatorics, vol. I, Wadsworth &
Brooks/Cole, Advanced Books & Software, Monterey, California
(1986).

[22] M. Sved: Geometry of Combinatorical Arithmetic, Ars Combinatoria
21-A (1986), 271-298.

(23] M. Sved und J. Pitman: Divisibility of Binomials by prime powers. A
geometrical Approach, Ars Combinatoria 26A (1988), 197-222.

[24] M. Sved: Divisibility with Visibility, Math. Intell., 10, 2 (1988), 56-64.

[25] M. Sved: Fractal, Recursions, Divisibility, Australasian Joumnal of
Combinatorics (1990), 211-232.

[26] S. J. Willson: Cellular Automata can generate Fractals, Discrete Ap-
plied Mathematics 8 (1984), 91-99.

25



[27] S. J. Willson: Calculating growth rates and moments for additive Cel-
lular Automata, Discrete Applied Mathematics 35, 1 (1992), 47-65.

[28] S. Wolfram: Geometry of Binomial coefficients, Amer. Math. Monthly
91 (1984), 566-571.

[29] S. Wolfram: Theory and Applications of Cellular Automata, World
Scientific Publishing (1986)

26



