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ABSTRACT

The following problem, known as the Strong Coloring Problem for the
group G (SCPg) is investigated for various permutation groups G. Let G
be a subgroup of S, the symmetric group on {0,...,h—1}. An instance of
SCPg is an h-ary areflexive relation p whose group of symmetry is G and
the question is “does p have a strong h-coloring”? Let m > 3 and D, be
the Dihedral group of order m. We show that SCPp_ is polynomial for
m = 4, and NP-complete otherwise. We also show that the Strong Coloring
Problem for the wreath product of H and K is in P whenever both SC Py
and SCPk are in P. This, together with the algorithm for D4 yields an
infinite new class of polynomially solvable cases of SCPg.

1. PRELIMINARIES

Let A be a finite set. An h-ary relation p on A is said to be areflexive if
for every (zg,...,z5-1) €Epand all 0 < i< j < h—1, we have z; # z;.

Let S; be the symmetric group on b := {0,...,h — 1}, and let # € S.
For an h-ary relation p, let

™) = {(zz(0)s - - - 1 Zx(a-1)) : (T05- -, Z0-1) € p}.

We say that p is symmetric (respectively asymmetric) with respect to x if
p = p(™) (respectively p N p™ = @).

Let p be an h-ary relation on a finite set A and suppose that there exists
a subgroup G of S}, such that p is symmetric with respect to each 1 € G
and asymmetric with respect to each 7 € S; \ G. Then we say that G is
the symmetry group of p. Note that if p admits a symmetry group, then
such a group is unique. If G is the symmetry group of p, then we define the
model of p to be the h-ary relation M, : = {(#(0),...,7(h — 1)) : 7 € G}
on theset h = {0,...,h —1}.

We also define a strong h-coloring of p to be a map ¢ : A — h whichisa
relational homomorphism from p to M, (i.e. for every (zo,...,Zn-1) € p,
(¢(z0),...,é(zn-1)) € M,). Note that a strong h-coloring is a surjective
map.
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Examples.

(1) Let p = (A, E) be a simple graph. Then h = 2, G = S, and p
has M, = {(0,1),(1,0)} and p has a strong 2-coloring if and only if p is
bipartite.

(2) Let h =3 and G =< (0 1 2) > the subgroup of Ss generated by the
cycle (0 1 2). Then G is the symmetry group of the ternary relation
e : = {(0,1,2),(2,0,1),(1,2,0),(3,0,4),(4,3,0),(0,4,3),(2,5,4),(4,2,5),
(5,4,2)} on the set 6 = {0,1,2,3,4,5}. Here M, = {(0,1,2),(2,0,1),
(1,2,0)} and ¢ : 6 — 3 defined by ¢(0) = ¢(5) = 0, ¢(1) = 4(4) = 1,
#(2) = ¢(3) = 2 is a strong 3-coloring of p.

Now the motivation for studying h-ary areflexive relations that admit
a strong h-colouring is their link to maximal partial subalgebras. This is
discussed in [4] and, in more detail, in [6].

Let h > 2 and consider a subgroup G of Sj operating on the set
h:={0,...,h —1}. Then the Strong Coloring Problem for G (SCPg)
is stated as follows:

Instance An h-ary areflexive relation p on the finile set A whose symmetry
group is G.

Question Does p have a strong h-coloring?

Note that for every (fixed) symmetry group G, the SCPg is in NP. The
study of its complexity has been started in [4]. We recall the following:

Theorem 1.1 [4] If G is a regular subgroup of Sy, then the SCPg is in P.
[n}

An obvious consequence of this is that for any abstract group, G, there
is a permutation group G’, G = G’ and SCPg is in P. Note that Theorem
1.1 extends to semi-regular subgroups of S, i.e., with the property that for
every i # j, there exists at most one a € G such that a(i) = j.

The strong coloring problem is closely related to the H-coloring problem
for graphs.

Let H be a fixed graph. An H-coloring of a graph E is a graph ho-

momorphism ¢ € Hom(E, H), that means a mapping ¢ : V(E) — V(H)
such that (¢(z), #(y)) is an edge of H whenever (z,y) is an edge of E. The
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H-coloring problem for graphs is stated as follows:
Instance A graph E.
Question Does there exist an H-coloring of E?

The complexity of the H-coloring problem has been studied by several
authors. In particular J. Nesetril together with the second author of the
present paper proved the following.

Theorem 1.2. [8] The H-coloring problem (for undirected graphs) is in P
if H is bipartite and is NP-complete if H is not bipartite. w]

For directed graphs, the situation is more complex, cf[1,2]; only recently
a conjecture classifying hard and easy instances of the H-coloring has been
proposed [1]. Now Maurer et al. [9] have shown that the H-colouring
problem is in P when H is a directed cycle or a transitive tournament, but
that Gy, 1-coloring is NP-complete for any odd integer n > 2. Also it has
been shown [7] that if T is a tournament that contains at least two cycles
then the T-coloring problem is NP-complete and if 7" has at most one cycle
then the T-coloring problem is in P. Moreover a similar result has been
shown for semicomplete digraphs [2].

Returning to the SCPg, if 0 < ¢ < j < h — 1 then the binary relation
Rij : = {(=(3), 7(4)) : = € G}
is called a biorbit of G on A. We have
Theorem 1.3. [4] Let 0 < i < j < h—1 and let G be a subgroup of Sj

operating on h. If the R;;-coloring problem for graphs is NP-complete then
so is the SCPg. o

A direct consequence of this result is

Corollary 1.4. [4] Let n > 1 and G be an n-fold transitive subgroup of
Sh, then the SCP¢ is NP-complete. u}

Comparing this result with Theorem 1.1, it is natural to expect that there
are no transitive but not regular subgroups G of Sy for which the strong
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coloring problem can be decided in polynomial time. We shall construct
an infinite family of such groups in section 3. In the following section,
we show that among all dihedral groups of degree m > 4, only D, is such
that the SCPp, is in P. The financial support of NSERC Canada operating
grants and the Connaught Grants of the University of Toronto are gratefully
acknowledged.

2. THE DIHEDRAL GROUP
Let Dy = (D4,4) be the Dihedral group of degree 4 and order 8. Let p

be a 4-ary areflexive relation on A whose symmetry group is Ds. Then the
Model M of p is the 4-ary relation

M : = {((0), 7(1),7(2), 7(3)) : w € Dy}
on the set 4.

Notation. If A is a 4-ary relation and 0 < i < j < 3, then let A;; denote
the binary relation defined by

Nij = prij(A) - = {(2i,2;) : (z0, 21,22, 23) € A}.
Hence

M01 = M12 = M23 = Mao = {(0,1), (1,0),(1,2),(2, 1),
(2,3),(3,2),(0,3),(3,0)}

which can be viewed as the undirected edges of a four-cycle. Also
Moz = M3 = {(0: 2)1(27 0)1(1a3): (3) 1)}

which can be viewed as an undirected graph with two disjoint edges. Hence
M;; is an bipartite graph forall 0 < i< j < 3.

Moreover note that poy = p12 = p2s = pso, po2 = p1s and p;; = pj; for
al0<i<j<3.

Lemma 2.1. The relation p has a strong 4-coloring if and only if both
po1 and pgs are bipartite.

Proof. (=) Let 1 be a strong 4-coloring of p. Thenforall0 < i < j < 3,
(¥(z), ¥(v)) € M;j, for all (z,y) € p;;.
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Since M;; is a bipartite graph, we get that p;; is a bipartite graph as well
forall0<i<j<3.

(<) We assume that both po; and pos are bipartite. Let ¢ : A — {0,1}
and ¥ : A — {0,1} be 2-colorings of (the undirected bipartite graphs)
po1 and pop respectively. Define the map f : A — {0,1,2,3} by set-
ting f(z) : = 2¢(z) + #(2). Let (zo,z1,22,23) € p . Since each of
Tox1, T2z3 and zor3 is an edge of po1, we have that ¢(z;) # d(z0) #
#(z3) and ¢(z2) # ¢(z3). So suppose (without loss of generality) that
#(z0) = ¢(z2) = 0, ¢(x1) = é(z3) = 1 and P(zo) = 0. If y(z;) = 0, then
¥(22) = ¥(z3) = 1 and f(i) = ifor i =0,1,2,3. Else P(z) = ¥(z2) = 1,
Y(z3) = 0 and (f(xo), f(21), f(z2), f(z3)) = (0,3,2,1). In either case
(f(z0), f(21), f(x2), f(z3)) € M. Thus f € Hom(p, M) and p is strongly
4-colorable. o

Corollary 2.2. The SCPp, isin P. o
The situation is quite different if m > 4. We will distinguish the two
cases i) m has an odd factor and ii) m = 2" for some n > 2. For the first

case we have the following:

Fact 2.3. Let m = nt with n and t two positive integers. Then Ry, is an
undirected graph with a cycle of length n.

Proof. The fact that R, is an undirected graph is straightforward. Clearly
(0,2) € Ry = {(m(0),7(t)) : 7 € Dy},
and if & € D,, is the rotation of the regular m-gon by 32 degrees, then

(a(O),a(t)) = (t12t) € RO!~ Thus {(Ott)’ (tx 2t)1 [EE] ((n —n l)tv 0)} g ROta
proving that Ry, has a cycle of length n. o

Combining this Fact with Theorem 1.3 we deduce

Lemma 2.4. If m has an odd prime factor, then the SCPp,_ is NP-
complete. o

Assume now that m = 2" > 4 is a power of 2. Then we have
Lemma 2.5. The SCPp,. is NP-complete for any fixed n > 3.

Proof. We reduce the 3-vertex-colorability problem for graphs to the
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SCPp,., the NP-completeness of graph 3-vertex coloring is well very well
known (e.g., see [3] p.84).

Let G = (V, E) be a simple t-vertex s-edge graph which is an instance of
3-vertex-coloring and assume V = {1,...,t}. We define a 2"-ary areflexive

relation whose symmetry group is Do» as follows:

(1) There is a one “central” vertex z which lies in ¢ otherwise disjoint 2"-
tuples f,' = (:c,z,-l, Ti2y ..., .'B;’zn._l), i=1,...,t.

(2) there are t further 2"-tuples y; : = (51, ¥%1,..-,¥i2n=1),8 = 1,...,1,
where y;y # yirer whenever i £ i or £ £ £/,

(3) for every edge e = {i,j} € E(G), the vertices y;; and y;; are connected
by a sequence of three 2™-tuples

Ze i = (yjlyzel’ze2y'*~aze,2"—l):

ge L= (Ze3, Uel, Ue2,y - - wue,Z"—l),
ge = (ue4,vela Ve2,Yi1s Vedy - - - yve,Q“—l))
where the new 3 . 2” —4 vertices z.1,...,Ze 2n—1,Ue1, . ., Ue, 27 =1, Vel - - -y

Ve,2n—1 are pairwise distinct (and for every edges e # e’, the set
{Ze1,.. . Ve2n—1} and {ze11,...,ver 20 _1} are disjoint).

For every 2"-tuple (zo,...,%an—1) constructed above, take the set
{(zx(0)s---»Tx(2n-1)) : T € D3n} and let p be the obtained 2"-ary rela-
tion. Note that | p |= 2"*+!(2t +3s). Clearly D,» is the symmetry group of
p. In the sequel the operations + and — are the addition and subtraction
mod 2%,

Claim 1. For every strong 2"-coloring of p, there exists a color ¢ such that
the vertices y;) receive colors from the set {¢ — 2,c,c+2} fori=1,...,t.

Proof. Let the vertex x receive color ¢. Then each x;; is colored c— 1, ¢
or c+ 1 and thus y;; receives colorc—2,corc+2foralli=1,...,t

Claim 2. For every strong 2"-coloring of p and every e = {i, j} € E, the
vertices y;; and y;, receive different colors.

Proof. Let ¢ : V(p) — {0,...,2" — 1} be a strong 2"-coloring of p and
put ¢ : = ¢(z) € {0,...,2" — 1}. Therefore {¢(zi1), #(z;j1)} C {c—1,c+1}
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and thus {¢(yi1), #(1)} C {c—2,¢,c+2}. We show that ¢(yi1) # é(y;1).
Assume ¢(y;1) = ¢. Then é(z.3) € {c—3,c+ 3} and thus ¢(u.s) € {c +
1,e£ 7}. This means that ¢(yi1) € {c - 2,c,c+2} N{c+2,c+4,c+ 10}.
Asce {0,...,2" —1} where n > 3, we see that ¢ does not belong to the set
on the right hand side proving that ¢(yi1) # ¢(yj1). The proofs are similar
for ¢(yj1)=c+2o0rc-2.

Claim 3. If all vertices y11, .. .,yn are assigned arbitrary colors from c—2,
¢, ¢+ 2, so that y;; and y;, receive different colors whenever {i,j} € E,
then there exists a strong 2"™-coloring ¥ of p that extends this assignment.

Proof. Let ¢ : {y11,...,9n} — {c — 2,¢,c + 2} be such an assignment.
Set ¥(z) : = c and let i € V(G). Choose ¥(z;;) such that c+ 1 =
¥(zi1) = ¢(vi1) = 1 (note that such a choice is unique if ¢(yi1) # ¢) and
extend ¥ to the vertices z;5,...,2; 201, Y2, . .. y¥i,2n—1 so that the integers

¢, ¥(zi1), ¥(2iz), - .-, Y(zi,2n—1) and Y(zi1), ¥(vi1), $(wi2), -, Y(¥i,20-1)
are consecutive mod 2". Let j € V(G) form an edge with i and set
e: = {i,j} € E. We extend ¢ to the vertices of the 2"-tuples z., u.

and v, as follows. Since ¢(yi1) # #(yj1) we have 6 different but similar
cases. Assume (#(¥;1), #(yj1)) = (¢ — 2,¢). Then put

(¥(=), ¥(zi1), ¥(zi2), - - -, ¥(@ian—1)) = (c,e— 1,e—2,...,c — 2" + 1),
($(zan), $(wi1), ¥(wiz), ..., ¥(Wizno1)) = (e — L,e—2,...,¢),

(¥(=), ¥(z1), ¥(zj2), - .., ¥(zj20-1)) = (c,c+ 1,c+2,...,c+ 2" = 1)
(¥(zj1), 8(¥52), ¥(ja), - - -, $(yj2n-1)) = (e +1,c,e— 1,...,cc = 2* +2).

Moreover for £ =1,...,2" ~ 1, set
Y(2er) i =c— 6 P(ter) i =c+L—=3,9(ver) : ==L+ 1.

It is easy to check that the three sequences of positive integers
1) é(yj1),¥(2e1)s .-, ¥(2ze;2n-1); 2) ¥(2e3),¥(Uer), ..., ¥(tezn—1) and

3) ¥(uea), ¥(ver), Y(ve2), #(i1), ¥(vea), - - - , P (ve,2n 1) are consecutive mod
2". As mentioned above the five remaining cases are similar. Since p con-

tains vertex disjoint copies of the three 2"-tuples z., u. and v, for every
edge ¢ € E, Claim 3 follows.

We turn to the proof of the Lemma. Let f : V(G) — {0,2,4)} be a 3-coloring
of G. Set ¢(yir) = f(i) for all i € V(G). Then ¢(yi1) # #(yj1) when-
ever e = {i,j} € E(G). By Claim 3 the assignment ¢ : {g11,...,9a} —
{0,2,4} can be extended to a strong 2"-coloring of p. Conversely let
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¥ :V(p) — {0,...,2" — 1} be a strong 2"-coloring of p. Let ¥(z) = c.
Then by Claims 1 and 2 the vertices y;; (¢ € V(G)) receive colors from
{e¢ —2,¢c,c + 2} such that ¢(yi1) # #(yj1) whenever {i,j} € E(G). Clearly
F:V(G) — {c—2,c,c+2} defined by f(i) : = ¢(vi1) is a 3-coloring of the
graph G. As the above construction can be achieved in polynomial time,
the Lemma follows. (n]

Remark. The above proof can also be used to show that the SCPp,, is
NP-complete for all m 3 3, 4, 5 and 10.

Combining Lemmas 2.1, 2.2 and 2.3 we deduce

Corollary 2.6. (1) The SCPp, is in P and (2) if m > 4, then the SCPp,,
is NP-complete. o

Note that D, is a non regular transitive subgroup of Sj.

We now give an interpretation in terms of graphs of these results. We
need the following,.

Definition 2.7. Let Hy = (Vi, Ep) be a subgraph of H = (V,E). We
say that H is a (colimit) mosaic of Hy if there are a set A and a family
of monomorphisms (i.e., injective graph homomorphisms) ¢y, : Hy — H,
a € A, that are pairwise distinct (i.e., @ # o implies Imi, # Imiy) such
that

1) V= Imaand
a€A

2) for every (a,b) € E, there are (agp,b0) € Ep and o € A such that
(a,b) = (ia(ao),ia(bo)). Moreover we say that H is a finite mosaic of
Hy if the set A is finite.

Examples 2.8.

1) Every graph is a finite mosaic of itself.

2) Let m > 2 and p be an m-ary areflexive relation on the set A whose
symmetry group is Dp,. Fix (ao,...,am-1) € p. Let Ho = (Vo, Ep)
be defined by

Vo= {ao, e ,am_l} and (a,-,a,-) € Ey

if and only if either i = j + 1 (mod m) or j =i+ 1 (mod m).
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Moreover let H = (V,E) be the graph defined by V = A and E =
proi(p) : = {(z,¥) : (z,9,22,...,2m-1) € p for some 22,..,2;m-1 € A}
Then H is a finite mosaic of Hy, (here | A |=| p|).

In the following we assume that the graph H, = (Va, Ep) is finite and
we will say mosaic for finite mosaic. The Hy-retraction coloring problem
(Ho — RCP) for Hg-mosaics is stated as follows.

Instance A finite set V and a mosaic graph H = (V, E) of Hy.

Question Does there ezist a graph homomorphism ¢ : H — Hy such that
Y 0iy is an isomorphism for every o € A (i.c., a retraction ¢ : H — Hy)?

Now let G be a subgroup of S, and assume that (G, h) is realizable as
Aut (Ho) for some graph Hy = (h, Ep). Then it is easy to see that the
SCPg is equivalent to the Hy-RCP problem for Hy-mosaics. This can be
generalized as follows:

Let G be a subgroup of Sy operating on h = {0,...,h — 1}. Then it
is well known that there is a connected graph Hg = (X, E) without loops
or isolated points with i) |X| < (h!)4, ii) £ C X and iii) there is a group
isomorphism ¢ : G — Aut(Hg) such that ¢(g)|, = g for all g € G (see [10]).
This allows the stronger result. N

Proposition 2.9. Let G be a subgroup of S;, and the graph Hg be as
above. Then there is a polynomial reduction from the SCPg to the Hg-
RCP.

Proof. Let p be an h-ary areflexive relation with vertex set Y whose sym-
metry group is G. Construct the graph Hg = (X,E) as above. Put
Y :={(z,r) : £ € X,r € p} and define an equivalence relation = on

the set Y by setting
(r)=wr)=z=y

Next define a graph H : = (V, E) with vertex set V : = V/= the quotient set
of V' by the equivalence = and for any equivalence classes (z, r), (y,s) €V,
((z,7),(y,5)) € E if and only if (z,y) € E and r = 5. Note that as pis
an areflexive relation, the equivalence = does not collapse any edge of Hg.
Now it is straightforward to check that H is an Hg-mosaic and p has a

strong h-coloring if and only if there is a retraction ¢ : H — Hy. We also
note that the only difference between this and the previous construction is
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the introduction of some extra points to each h-tuple » which are “bound”
to the tuple anyway.

Remark 2.10. 1) The converse of last proposition holds. Indeed let Hq =
(V(Ho), E(Hp)) be a graph. Indeed let Hy = (V(Hp), E(Hp)) be a graph.
Put G : = Aut(Hp). We show that there is a polynomial reduction from the
Hg-RCP to the SCPg. Let H = (V(H), E(H)) be a mosaic of Hy (hence
H is an instance of the Hz-RCP). Hence there are n graph monomorphisms
i1,...,in : V(Ho) — V(H) with properties 1) and 2) of Definition 2.6. For
notational ease assume V(Ho) = b = {0,...,h — 1}. Define the h-ary
areflexive relation p with vertex set V(H) by setting

p:=A{@E=(0),...,ij(x(h-1))):j=1,...,n,7 € G}

Then clearly p = p(™ for all # € G. Moreover let 3 € S; \ G and
assume (zo,...,Zx-1), (€p(0);--- Zpn-1)) € p. Then (zo,...,za-1) =
(#(m(0)), ..., 4(m(h — 1))) and (zp(0),---,2sn-1)) = ((7'(0)),...,
ij(n'(h — 1))) for some j,j' = 1,...,n and some 7, 7' € G. Hence
zp(ey = ij+(n'(t)) and thus z; = ij(x'(B~1(2))) for all t = 0,...,h - 1.
As the i;’s are pairwise distinct we see that j = j’ and hence i;(7(t)) =
i;(n'(8~1(t)) proving that = = #/#~! and hence § = 7~'7’ € G, a contra-
diction. Now let ¢ : V(H) — V(Hy) be an homomorphism. Then clearly
¢ is an Hy-retract iff ¢ o i; € Aut(Hy) for all j = 1,...,n and this holds if
and only if ¢ is a strong h-coloring of p. This shows that the Hy — RCP is
polynomial equivalent to the SCP¢.

2) Let Hy be the undirected cycle of length m > 2, ie,
Hy = (V(Ho), E(Ho)) where V(Hg) = {0,...,m—1} and {i,j} € E(Ho) if
and only if |i — j| = 1 (mod m). Note that here Aut(Hy) = Dp,. Then com-
bining Corollary 2.5 with Proposition 2.8 we deduce that the Hp -RCP
is N P-complete if m # 2 and m # 4. Moreover according to Theorem 1.2
the Hy-coloring problem for graphs is in P whenever m is even. This shows
that the situation is quite different in the Hy-coloring problem for graphs
if we ask the Hy-coloring to be moreover a retraction.

3. THE WREATH PRODUCT

In this section we seek to construct infinitely many new transitive groups
(not covered under Theorem 1.1) with polynomial strong coloring problem.
Let the group H act on the set h and the group K act transitively on k.
Assume moreover that both SCPy and SCPk are in P. Then it is easy to
see that the same holds for the SCPyxx where the direct product H x K
acts on h x k (see below). However H x K is not transitive on b x k. In
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this section we show that the SCPg is in P where G = H 1K is the wreath
product of H and K. Note that G acts transitively on h x k whenever both
H and K are transitive. However if | H |[> 1 and k > 1 then G is not
regular.

Let h > 1, k > 1 be two integers, H a permutation group acting on
the set A = {0,...,h ~ 1}, K a transitive permutation group on the set
kE={0,...,k -~ 1}. We take k copies of H and h={0,...,h— 1}, say
Hy,...,Hy_1, Xo,...,Xr—1 where

Xi={(t49):0<t<h-1} foralli=0,... k1.

Then the action of F : = Hy x --- X Hy_y on X := XoU- - UXp_y is
defined by
[, - - ,ak—].](t) i):= (a,'(t), i)

for all [ag,...,0p—1] € F and (4,i) € X.

Let G = H 1 K be the wreath product of H and K (in that order).
Then G is a subgroup of S(uxk) (the symmetric group on h x k) and every
permutation in G is written uniquely as [ay, ..., ag-1, B) where a; € H for
t=0,...,k—1and # € K. The action of G on A x k is defined by

[oo, .-y k=1, BI(2,4) : = (ai(2), B(3))
forall0<t<h—1and0<i<k-1. Itis known [11] that
degG =k -degH and |G|=|H|F-|K]|.
For notational ease we will consider the following total order defined on

-h x k by
(t,i) < (s,§) = t+ih < s + jh.

Let p be an hk-ary areflexive relation with vertex set A and whose symmetry
group is H) K. Put

A =P"(0,0),(1,0)...(h—=1,00P : = {(3(0,0):3‘(1,0), ceey 2().-1,0)) : (-’B(o,o), )
T(h=1,0T(0,1); - - -» T(h—1,k-1)) € p, for some z(o,1y, ..., E(h_1,k-1) € A}

i.e., A consists of the first h coordinates of p. Clearly X is an h-ary areflexive
relation on A.

We have

Lemma 3.1. Let p and )\ be as defined above. Then
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1) Foreveryi=0,...,k—1

A = pro iy (h-10)P : = {(2(0,i) T(1i)r- - > E(h=1,0)) ©
(%(0,0)s - - - 1 T(h=1,0)1 - - - » £(0,k 1)1 - - - s E(h=1,k-1)) € r}

2) If there exists a permutation o € Sp \ H for which (ap,...,an-1) and
(@ao), - - - y@a(h-1)) € A, then p does not have a strong hk-coloring.

Proof. 1) Fix i € {0,...,k — 1}. Since K is transitive on k, there is a
B € K such that #(i) = 0. Thus for every [ag,...,ar_1] € F and every
0<t<h-—1,

[ao, .. .,Otk_l,ﬂ](i,i) = (Ct,' | (t),O).

In particular for a; = 1 the identity on h,
[QOa <oy Oy, laai-l-lw ceey O, ﬂ](t,i) = (ta 0)

Since o = [aCl)- <y Xi—1, lyai-*'ly s aak—lyﬂ] € Hth we have that pP= P(a)'
Let (a(o,o),.. .,a(h_l,o)) € A. Then
a(o,o),---:a(h—l,k—l)) € p for some a1y, ---,8(h-1,k-1) € A, which im-
plies that
(@0(0,0)s - -» aa(h—l,k—l)) €p,
and thus

(a(o,o)a-'-»a(h—l,O)) = (aa(o,i):---:aa(h—l,i)) € PTr(0,i)...(h-1,i)P»
proving that A C pr(o,)...(h-1,i)p- The converse is similar.

2) Let ¢ : A — h x k be a strong hk-coloring of p and assume that
(@g,---,85-1) € X and (@q(0y; - --)8a(a-1)) € A for some o € Sp. We
show that o € H.

Clearly (ag, ..., 8h-1) = (£(0,0), - - - » £(h—1,0)) for some (%(0,0)1 - -+ B(h=1,k-1))
€ p. It is easy to see that (aq(0), - - - a(h-1)) = (T(a(0),0): - - - y E(a(h=1),0))-
It follows that

(-‘v(a(o),o), <y 8a(h=1),0)s Y(0,1)s - > y(h-l,k-l)) €p
for some Yo,1)- - Yh-1,k-1) € A.
Since ¢ is a strong hk-coloring of p, we have that

(8(200))s---» 8(z(h-1,4-1)) = (¢(0,0),...,0(h =1,k =1)) (1)

and

($(2(a(0),0)) - - - 8(Z(ah-1),0) BW(0,1)): - - - B(Y(h=1,k-1))
= (¢'(0,0),...,0'(h — 1,0),0°(0,1),...,0'(h— L,k -1)) (2
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for some o = [, ..., a5-1,0] and ¢’ = [a},.. ., a)_;, '] both elements of
H K.

From (1) we deduce
(0((0),0), ..., o(a(h = 1,0)) = ($(=(a(@)0):- - - » B(Z(a(h=1),0)))>

and combining with (2) we obtain

(0((0),0), ..., 0(a(h - 1),0)) = (¢(0,0),...,0'(h — 1,0)).
Thus o(a(t),0) = ¢'(t,0) for all 0 < ¢t < h — 1 which implies

(ao(a(?)), B(0)) = (eb(?),8'(0)), forall0<t<h-—1.
This shows that
ao(a(t)) = cp(t) forallteh,

and thuse = oplaj € H. o
Remark 3.2.
1) It is easy to see that the property

(@o,...,8n-1) € A and(an(q), - - - Ga(a-1)) € A imply a € H
can be checked in polynomial time in | p|and | H1K |=|H |F-| K |.

2) The above property combined with 1) of Lemma 3.1 gives that H is the
symmetry group of A. In this case the model of ) is the h-ary relation

My = {(«(0),...,a(h—1)): h € H}
on the set A. Then we have

Lemma 3.3. Let p and A be as above. If p has a strong hk-coloring, then
A has a strong h-coloring.

Proof. Let ¢ : A — h x k be a strong hk-coloring of p. Define the map
e1: h x k — h by setting

ei(t,i): =t forall (t,i)ehxk.

We show that # = e; 04 : A — h is a strong h-coloring of A. Indeed let
(ao,...,ap-1) € A. Then
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(@0, .- an-1) = (Z(0,0)s- - - » T(h-1,0))
for some (3(0,0), <o 3 T(h-1,0))T(0,1)s - - ~ax(h—1,k—1)) € p. Now

(3(z0,00): - - » (Z(h=1,-1))) = (¢(0,0),...,0(h — 1,k - 1))
for some o = [ag,...,ar-1,8] € H1 K. Here
(¢(0,0),...,0(h —1,0)) = ((20(0), B(0)), .. ., (@ (h — 1),5(0))),
therefore

(6(a0), - --,0(an-1)) = (e1 0 8(2(0,0))---,€10 43(1'(»-1,0)))
= (e1(@0(0), (0)), ..., ex(cxo(h — 1), 8(0)))
= (o(0), - - ., a0k — 1)),

where ag € H. This shows that # € Hom(A, M,) and thus is a strong
h-coloring of A. o

We need to construct a k-ary areflexive relation R whose symmetry group
is K and that admits a strong k-coloring if p has a strong hk-coloring.

First recall that a subrelation C of an h-ary areflexive relation
p is a connected component of p if the the h-regular hypergraph
He := {{a0,.-- ,an-1} : (@p,...,an—1) € C} is a connected component
of the h-regular hypergraph H,, := {{zo,... ,za-1} : (%0, .-- ,Zr-1) € p}).
Let ) be the h-ary relation defined above and Cj,...,Cy be its connected
components. Define a k-ary relation R with vertex set C := {C),... ,Cn}
by setting
R:= {(Cj,,---,Cj,_,) €CF : There are k h-tuples z; = ((0,i), - - -, T(h-1,))
€Cj, (i=0,...,k—1) and such that (2(o,0), -+ E(h=1,0)s - -1 F(O,k—1)1- - »
Z(h-14-1)) € p}- We have:

Lemma 3.4. Let p and R be as above. If p has a strong hk-coloring then
i) R is a k-ary areflexive relation whose group of symmetry is K and
ii) there exists a relational homomorphism ¥ € Hom(R, {(8(0),...,B8(k -

1)) : B € K}).
Remark. According toi) the Model of the relation R is the k-ary relation
Mg = {(B8(0),...,8(k-1)) : B € K} and thus ii) means that R has a strong

k-coloring.

Proof. (of Lemma 3.4.) Let ¢ : A — h x k be a strong hk-coloring of p.

124



i) First note that the map ez 0 ¢ : A — k (where e(z,y) = y) satis-
fies ez 0 6(z(0,)) = -+ = €2 0 $(2(n-1,) for any (z(o),. .., Z(h-1,)) € A
(follows from the definitions of the wreath product and the strong color-
ing of an areflexive relation). Hence ez o ¢(z) = e3 o ¢(y) whenever the
vertices z, y belong to a same component C; of \. Assume that R is
not areflexive. Thus there exists an hk-tuple (0(0,0),-~,a(h—1,k-1)) €Ep
such that the vertices ag sy, .. ., Q(h=1,5)) B(0,5); - - - » G(h—1,j) (With i # j) be-
long to a same component of A. But this implies that e o #a:)) ==
e200(aen-1,4)) = ez0¢(ag,j)) = -+ = e200(a(x-1,)) and hence the hk-tuple
(¢(a(0,0)) - - - 1 #(a(a—1,6-1)) does not belong to M, = {((0,0), ..., o(h ~
1,k—1)) : 0 € H1K}, a contradiction. Next we show that K is the symme-
try group of R. Note that the equality R = R for all 8 € K follows from
the definition of R. Indeed let (Cj,,...,Cj,_,) € Rand # € K. Denote Cj,
by D; fori =0,...,k—1. Then (Dy, ..., D¢_1) € R implies that there are
kh-tuples z; = (Z(0,i)s ++ - » E(h—1,i)) With 2y ;) € D; foralli =0,...,k -1
andt=0,...,h — 1 and such that

(z(0,0)s- -1 Z(h=1,k-1)) E P (1)

As € K, the permutation ¢ : =[1,1,...,1,8] € H1 K and so

(Z20,0) -2 Za(h=1,6-1)) = (Z(0,8(0): - - -» E(h=1,8(k-1)) € P

where z(1 (i) € Dp(iyfori =0,...,k—1. Hence (Dp(o), ey Dp(k_l)) € R
This shows that R®) C R. Thus (R®)”" C R®™) which implies that
R®) = Rfor all B € K. The proof of RNR® = ¢ for all § € Sy, \ K is
similar to the proof of R is an areflexive relation. This establishes i).

ii) Define : C — {0,..., k—1} by setting ¥(C;) = e20¢4(a) where a € C;.
According to the above proof ¢ is well defined. Let (Dy,..., D¢) € R and
T(0,0))- -+ T(h—1,k—1) be as in (1). Then thereis a o = [ay,...,az_1,0] €
HK such that (¢($(0,g)), e ,¢(a;(,._1,,,_.1))) = (a(0, 0),...,0(h—1,k-1)).
Therefore

(¥(Do), - .., ¥(De-1)) =(e20 ¢(z(0,0)); - - - €2 © $(2(0,6-1)))
=(62(a0(0))ﬂ(0))a cee !e2(ak—l(0)) ﬂ(’c - 1)))
=(6(0),...,B(k - 1)).

This shows that 9 is a strong k-coloring of the relation R. o
Theorem 3.5. Let p, A and R be as in Lemmas 3.1 and 3.3. Then p has
a strong hk-coloring if and only if 1) A (respectively R) is an areflexive

relation whose symmetry group is H (respectively K), 2) X has a strong
h-coloring and 3) R has a strong k-coloring.

125



Proof. (=) Lemmas 3.3 and 3.4

(<) Assume X and R as in the statement. Let 8 be a strong h-coloring of A
and 1 be a strong k-coloring of R. We defineamap ¢ : A — hx k as follows.
Let £ € A. Then 2 = z(; ;) for some (z(0,0), - - -, &(,i)s- - - yE(h=1,k-1)) € p-
As z; = (2(0,4)s-- -2 %(h-1,j)) € Aforall j = 0,...,k—1 and @ is a strong
k-coloring of A, there are permutations a; € H (j =0,...,k —1) such that

(0(:!2(0,]')), e ,0(2!(;,_1'1-))) = (aj(O), ceey O (h - 1)) .
Moreover let the vertices (o), - - -, Z(h-1,i) belong to the connected com-
ponent D; of A (i = 0,...,k = 1). Therefore (Do,...,Di-1) € R which

implies that

(d’(DO): sy ¢(Dk—l)) = (B(O)w ... ’ﬂ(k - 1)):
for some B € K. Set ¢(z) : = ((2),B(:)) € h x k. Clearly ¢(z) =
[@o,---,k-1,P0](t, %) (Where a, ...,k are the above permutations). We
have:

Claim ¢ is well defined.

Proof. Let z = z(1,;) = Y(s,5) for some (£@0,0)s- - » T(h—1,k=1))s (¥(0,0)5 -+
Yh-1,:-1)) Epand somet, s €h, i,j € k. Then

(0(::(0,;)), ceny 9(2(}._1,5))) =(a,~(0), ceaoi(h— 1)) and
(9(3’(0.7'))1 SEEE] 0(y(h-1..i))) =(a;' (0): cee »a:i(h - 1))’

where the permutations o; and o € H are such that a;(t) = (s). More-
over let the vertices y(o,i),- - -, Yh-1,) belong to the connected component
Diof A (i =0,...,k—1). Thus (Dy,...,D}_;) € R which implies that
(W(DY), ..., ¥(Di_,)) = (8(0),...,0'(k — 1)) for some pB' € K. Now the
equality Z(t,i) = Y(s,j) gives D; = D;- and thus B(i) = #'(j). Therefore

[@o, .., a1, B(2, ) = (@it), B(3)) = (af(5), B'(5))
= [al,'h en- !a;c—hﬂ'](s’j)'

This shows that ¢(z(:,i)) = é(y(,;)) and completes the proof of our claim.

We show that ¢ is an hk-coloring of p. Let (ic(o,o), .. .,z(,._l_k_l)) €p
and denote by D; the connected component of  containing the vertices
2@y 1 Th-1,0)({=0,..., k = 1). Thus there are ag,...,o;-1 € H and
B € K such that

(6(z(0,)): - - -+ 8(x(h—1,9)) = (@i(0),...,ci(h = 1))(i=0,...,k-1),

and
(‘l/)(Do), sy 1»b(Dk—l)) = (ﬂ(o)a v ,ﬁ(k - 1))
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Put o : = [ay,...,ak-1,8]. Then clearly o € H ] K and

(¢(m(0,0))) R ¢(z(h-1,k—l)) = (0(0)0)1 RN O'(h ~-1k- 1))1
proving that ¢ is a strong hk- coloring of p. o

Corollary 3.6. Let H and K be two permutation groups acting respec-
tively on h and k and assume that K is transitive. Let G = H ! K be the
wreath product of H and K. If both the SCPy and SCPg are in P, then
so is the SCPg. o

For t > 2 let C; denote the cycle permutation group acting on § =
{0,...,t—1}. As C; is regular we have by Theorem 1.1 that the SCPg, is
in P.

Corollary 3.7. Let n,m > 2 and G := Cy 1 C,,. Then the SCP¢ is in P.
o

Note that C, 1 Cp, acting on n x m is transitive but not regular and has
degree n - m.
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