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ABSTRACT. Let G be a graph with even order p and let k be
a positive integer with p > 2k + 2. It is proved that if the
toughness of G is at least k, then the subgraph of G obtained by
deleting any 2k — 1 edges or 2k vertices has a perfect matching.
Furthermore, we show that the results in this paper are best
possible.

1 Introduction

The graphs considered in this paper will be finite, connected, undirected,
and simple. Let G be a graph with vertex set V(G) and edge set E(G).
The connectivity and edge-connectivity of G are denoted by x(G) and A(G),
respectively. Notations and definitions not given in this paper can be found
in [1].
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Let S be a vertex cutset of graph G and let ¢(G — S) denote the number
of components in G — S. Then if G is not complete, the toughness of G
is defined to be min ?('Iai—lii where the minimum is taken over all vertex
cutsets S of G. Whereas we define the toughness of K,, to be oo for all
n. We denote the toughness of G by ¢(G). We will also say that graph
G is k-tough if ¢(G) > k. This parameter was introduced by Chv4tal [2]
who noted that every 1-tough graph with an even number of vertices has
a perfect matching. Enomoto et al. [3] proved that every k-tough graph
with |V(G)|] 2 k+ 1 and k|V(G)| even has a k-factor. Furthermore Liu
[4] proved that every k-tough (k > 2) graph has a k-factor containing any
given edge.

Let k and p be positive integers with k < 1 (p —2) and let G be a graph
with p vertices having a perfect matching. Then G is said to be k-eztendable
if every matching of size k in G can be extended to a perfect matching. If
[V(G)| = p, then we say that the order of G is p. Let G be a graph with
even order p and let k be positive integer with p > 2k + 2. Plummer [6]
proved that if £(G) > k, then G is k-extendable. In this paper we show
that if ¢(G) > k, then the subgraph ¢’ obtained from G by deleting any
2k — 1 edges or 2k vertices has a perfect matching. Furthermore we show
that the results in this paper are best possible.

Let o(G — S) denote the number of odd components of G — S. To prove
the main results we need the following theorems.

Theorem 1.1. (Tutte’s Theorem) A graph G has a perfect matching if
and only if for any proper subset S C V(G)

o(G-5)<|s]

Theorem 1.2. [2] If G is not complete, then x(G) > 2t(G).

Theorem 1.3. [6] Let G be a graph with even order p and let k be a
positive integer with p > 2k + 2. If t(G) > k, then G is k-extendable.

2 Main results

A graph G is called n-edge-deletable if the deletion of any n edges of E(G)
results in a graph with a perfect matching. Clearly, if G is n-edge-deletable,
G must have even order and G is also r-edge-deletable for any integer r < n.

We call a graph G n-vertez-deletable if the deletion of any n vertices of
V(G) results in a graph with a perfect matching. Notice that the 2-vertex-
deletable graphs are also called bicritical graphs and the 1-vertex-deletable
graphs are called factor-critical graphs in [5].

Let us start by investigating the edge-depletability of complete graphs.
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Theorem 2.1. Let G be a complete graph with even order n. Then G is
(n — 2)-edge-deletable.

Proof: It is well known that the edge set of a complete graph of even order
n can be decomposed into n — 1 disjoint perfect matchings. If we delete
n — 2 edges from G, then the remaining graph still has a perfect matching.
So G is (n — 2)-edge-deletable. o

Let G be a complete graph of order n. Clearly, if n — 1 edges incident
with a vertex are deleted, then G has no perfect matching. So Theorem 2.1
is best possible.

Note that for any graph H, we have c(H —e) < ¢(H) +1 for any edge e
of H. We will use this fact in the proof.

Theorem 2.2. Let G be a graph of even order p, where p > 2k + 2. If
t(G) > k > 1, then G is (2k — 1)-edge-deletable.

Proof: If G is a complete graph, then by Theorem 2.1 G is (2k — 1)-edge-
deletable. Now we assume that G is not a complete graph. Let E’ be any
subset of E(G) and |E'| = 2k — 1. Set G’ = G — E’. By Theorem 1.1 we
only need to prove that for any proper subset S C V(G)

o(G' - S) < |S|
or

|S]
o5 2 (2.1)

Then G’ has a perfect matching.

Since t(G) > k, by Theorem 1.2 x(G) 2> 2k. Thus A(G) 2> &(G) 2 2k.
Hence G’ is connected. We consider two cases.

Case 1. S is not a vertex cutset of G.

In this case G — S is connected. So

o(G-8)<c(G-8)=1.
When |S| > 2k, we have

181 181 sl %k _
(G -8) G -9 (G-8)+2%k—1- 2k

When |S| =7 <2k —1, A\(G-S) 2 k(G - 8) 2 2k —r. We have
(G -8)<c(G-8)+2k-1-(2k—-r)=1+4+r—-1=T.

1.

Thus

5L _Isl

T
-9 -5 27"
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Case 2. S is a vertex cutset of G.
In this case we have a-(l;%gy > t(G) 2 k, that is,
|S| 2 (G - S)k.
Thus
|51 |51 S|
2 .
(G —8) 2 AC —8) 2 AC=8) 42k -1 22

Case 2.1. |S| 2 ¢(G - S)k+1

In this case, since
(G—8)k+1—(c(G—S)+2k—1) = c(G—S)(k—1)—2k+2 > 2(k—1)—-2k+2 =0
by (2.2) we have

|S] S S| > A(G-S)k+1 >1
olG"-8) T e(G"-8)+2k-1"c(G-8)+2k-1"
Case 2.2. |S| = ¢(G — S)k.
If ¢(G — S) = 2, we have |S| = 2k and |V(G — S)| is even. Suppose

that (2.1) does not hold. Then o(G’ — S) > |S| and by parity we have
o(G' - S) 2 |S| +2 =2k +2. Thus

2%+2<0(G'-8) <G —S) <G —S)+2k—1=2+2%k—1=2k+1.

which is impossible. Hence, in this case

S|
G -5 "

If ¢(G — S) > 3 and k > 2, we have
|S| = (G - S)k > ¢(G — S) +2k - 1.
By (2.2)

|51 IS1
(G -8 A9 +ak-12"

Now we assume that ¢(G—S) >3 and k = 1. We have |S| = ¢(G—-S)k =
¢(G — S). By simple parity arguments, we can see that ¢(G — S) = |S| =
o(G—S8) (mod 2) or ¢(G —S)—0o(G —S) =0 (mod 2). That is, the number
of even components of G — S is even. By noticing |E'| =2k -1 =1, we
have o(G' — S) < o(G—-S)+2and ¢(G' - S) <c(G—-S)+1. If G- S has
at least two even components, then

S| S| IS|  _
(-5 2 C-8+2-AC-5 _ ©
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If G — S has no even components, then o(G’ —S) = o(G — S) = ¢(G - S).

So
ISl __ I8l _
o(G'-8) ¢(G-S)
By Theorem 1.1, G’ has a perfect matching. Now, we reach the conclusion
that G is (2k — 1)-edge-deletable. (n}
Chvital [2] has proved that if ¢(G) > 1 then G has a perfect matching.
For k = 1, Theorem 2.2 can be stated as follows: if ¢(G) > 1 then for any

given edge e there exists a perfect matching in G avoiding e. So Theorem
2.2 is slightly stronger than Chvé4tal’s result.

Let G = Kog.o — € where Kokt 2 is a complete graph of 2k + 2 vertices
and e = wv is any edge of Kak 2. It is easy to see that

He) =3 =k

1.

Let E’ be the set of edges incident with  in G. Then G — E’ has no perfect
matching and |E’| = 2k. In this sense Theorem 2.2 is best possible.

The condition ¢(G) > k in Theorem 2.2 is sufficient but not necessary.
Let G be a graph as shown in Figure 1. Clearly {(G) = } and G is (n—2)-
edge-deletable if n is even.

Figure 1

Theorem 2.3. Let G be a graph with even order p and let k be a positive
integer with p > 2k + 2. Then if t(G) > k, the graph G is 2k-vertex-
deletable.

Proof: Let S = {z1,z2,...,Zk,¥1,¥2,..-,¥&} be a subset of V(G). If
z;y; ¢ E(G), then join z; and y; by an edge. Denote the resulting graph
by G’.

Since t(G’) > t(G) > k, G’ is k-extendable by Theorem 1.3. Hence
there is a perfect matching M in G’ containing edges z,y;, Z2y2, - . - , Tk¥k-
M — {z1y1, z2y2, . .., Zxyx} is a perfect matching of G — S. That is, G is
2k-vertex-deletable. (]
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Remarks: 1. In general, every 2k-vertex-deletable graph must be k-
extendable, but a k-extendable graph may not be 2k-extendable. Under the
condition of ¢(G) > k, in light of Theorem 2.3, we see that k-extendibility
is equivalent to 2k-vertex-depletability.

2. The condition ¢(G) > k in Theorem 2.3 cannot be replaced by t(G) > k
(see the example in [6]).
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