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Abstract
A family of double circulant quasi-cyclic codes is constructed from
the incidence matrices of difference sets associated with hyperplanes
in projective space. A subset of these codes leads to a class of doubly-
even self-orthogonal codes, and two classes of self-dual codes.
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1 Introduction

A binary [n, k] linear code C is a k-dimensional vector subspace of GF(2)",
where GF(2) is the field of 2 elements. The elements of C are called code-
words and the Hamming weight of a codeword is the number of non-zero
coordinates. An [n,k,d] code is an [n,k] code with minimum (non-zero)
Hamming weight d. The weight enumerator Wc(y) of a code C'is given by
Wely) = Xor Aiy* where A; is the number of codewords of weight ¢ in C.
The numbers Ag, - - -, A, are called the weight distribution of C.

Two codes are equivalent if one can be obtained from the other by a
permutation of coordinates. An automorphism of C' is a permutation of the
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coordinates of C' which preserves C. The dual code C* of C is defined as
Ct ={z e GF(2)*| z-y =0Vy € C}. C is self-orthogonal if C C C*, and
self-dual if C = CL. A code is doubly-even if all codewords have weight
divisible by four, and singly-even if all weights are even and there is at
least one codeword of weight = 2 (mod 4). A self-dual code is extremal
if it has the largest possible minimum weight for that length. A code C is
formally self-dual if the codes C and C* have identical weight distributions.
Self-dual codes are formally self-dual, but there are formally self-dual codes
which are not self-dual. A formally self-dual code is divisible if there exists
a positive integer § > 1 such that ¢ divides all non-zero weights in the code.
Forimnally self-dual codes with & = 2 are called formally self-dual even.

Let V be an (n + 1)-dimensional vector space over the field GF(g) of ¢
elements. The projective space PG(n,q) is the set of all vector subspaces of
V [2]. An i-flat is a subspace of dimension ¢ + 1. The 0-flats are therefore
points, and the 1-flats are lines. The (n — 1)-flats are called hyperplanes. It
is well known that the points and hyperplanes of PG(n, ¢) form a symmetric
block design with [3]

"t -1 -1 n—1 _ 1
v = K=

q
A_
g—-1

g—-1""" 4¢-1

(1)

Singer [4] showed that this design corresponds to a cyclic difference set. Let
R denote the incidence matrix of this difference set. It is well known that
R is an orthogonal circulant matrix, i.e., RRT = I over GF(2). Anm xm
circulant matrix R is defined as

To m T2 ' Tm-1
Tm-—-1 7o . - Tm-2
R=]| ™Tm-2 Tm-1 70 °°* Tm-3 , (2)
T1 T2 rg - 7o

where each successive row is a right cyclic shift of the previous one. The
algebra of m x m circulant matrices over GF(2) is isomorphic to the algebra
of polynomials in the ring f[z]/(z™ —1) if R is mapped onto the polynomial,
r(z) = ro+rzx+ryx?+---+ryu_12™ ), formed from the entries in the
first row of R {1].

A code is called quasi-cyclic (QC) if there is some integer p such that
every cyclic shift of a codeword by p positions is again a codeword {1, ch.
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16, p. 506]. The blocklength, n, of a QC code must be a multiple of p, with
p the least positive integer for which the code is invariant under a cyclic
shift by p positions. By rearranging the columns of the generator matrix,
many QC codes can be transformed into an equivalent code with generator
matrix

G' = [Ro; R1; Ry; ...; Rp1], (3)

where R; is an mxm circulant matrix, so that n = mp. The r;(z) associated
with this QC code are called the defining polynomials [5). If p = 2, the code
is called double circulant (DC). A DC code C is equivalent to its dual C*+
{1], so that all DC codes are formally self-dual.

If the defining polynomials r;(z) contain a common factor which is also
a factor of 2™ — 1, then the QC code is called degenerate [5]. Define the
order of the QC code defined in (3) as [6]

z™m -1

h(x) = (xm — 1, 7'0(3),7'1 (x), e ,'rp—-l (.’E)) '

4

The dimension K of the QC code is equal to the degree of h(z). If
deg(h(z)) = K < m, a generator matrix can be constructed by deleting
7 =1m — K rows of (3). These are called r-degenerate QC codes.

In this paper, we construct DC codes from the incidence matrices of the
difference sets associated with PG(n,q). It is shown that these codes are
majority logic decodable. Further, self-dual and self-orthogonal codes are
obtained from a subset of these codes.

2 Codes withn=2

Singer [4] was the first to show that a projective plane (n = 2) of order ¢
exists whenever g is a prime power. The design parameters are

v=¢+q+1,k=qg+1,A=1. (5)

The incidence matrix of the corresponding cyclic difference set has dimen-
sions v X v and k 1’s in each row. For g = 2, the difference set is (0,1,3), so
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the 7 x 7 incidence matrix is

1101000
0110100
0011010

R, = 0001101 (6)
1000110
0100011
1010001

Appending to this a 7 x 7 identity matrix gives a generator matrix for a
[14,7) DC code C7 of the form

Gz = [I1; Ry). (7

The weight distribution of C; is
Weight Count

1
14
49
49
14

1

—
T eoo s

This distribution corresponds to that of the unique [14,7,4] self-dual code
(7). However, C is not self-dual, since the rows of (6) are not orthogonal.
The parity check matrix is

H:;=[R]:I4]. (8)

The weight distribution of H7 is the same as that of G7, so that C7 is a
formally self-dual even code. In fact, for g even, the rows of G always have
even weight, so these codes are all formally self-dual even. Further, the
columns of G have odd weight so the codes contain the all-ones codeword
and A; = A, —; for all i.

Consider the rows of H; with a leading 1
10001011 000O0O0TO
11000100100 00°0
1 0110000001001
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They form 3 orthogonal parity checks on bit 0 (leftmost). This is due to
the fact that A = 1, so that any two rows of RY have a common 1 in only
one position. Along with bit 0 alone, these form a set of 4 equations, so
that with a majority vote, a single bit error in position 0 can be corrected.
Due to the circulant nature of Hr, a set of 3 orthogonal parity checks can
easily be formed on all 7 information bits in C7. Thus all single bit error
patterns in the information bits can be corrected. In addition, all double
error patterns can be detected (d = 4).

The [N, K,d] DC codes for n = 2 can be characterized in terms of the
properties of the incidence matrix

N = 2(¢+q+1),
K = ¢+q+1,
d = ¢+2,

for ¢ a prime power. The corresponding class of PG codes hasd =g+ 1
and are based solely on the incidence matrices [8]. Since the DC codes only
have even weight codewords (due to the addition of the identity matrix), d
must be ¢ + 2 as shown above.

The first few codes are listed in Table 1. From this table, it is clear

Table 1: (v, k, A) Difference Set DC Codes

(v, k, )
7.3,1)
(13,4,1)
(21,5,1)
(31,6,1)
(57,8,1)
(739,1) 10
(91,10,1) 11
(133,12,1) 13
(183,14,1) 15
(273,17,1) 18
(307,18,1) 19
(381,20,1) 21

O NG

that the codes are asymptotically poor (but can easily be decoded). For
example, consider the (31,6,1) cyclic difference set (0,1,3,8,12,18). If this
set is used to denote the non-zero coefficients in r3;(z), then r(z) = 1 +
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&+ 2% + 28 + 2'2 + '8, The rows of H3, with a leading 1 are

1000000000000100000100010000101
1100000000000010000010001000010
1011000000000000100000100010000
1000010110000000000001000001000
1000100001011000000000000100000
1000001000100001011000000000000

1000000000000G0GG000G0000000000
0100000000000000000000000000000
0001000000000000000000000000000
0000000010000000000000000000000
0000000000001000000000000000000
0000000000000000001000000000000

These rows all have a 1 in the first location and no other location has more
than one 1. Thus Cj, is three error correcting, with ¢ + 2 = 7 orthogonal
parity checks (the 6 above and bit 0 alone). The best known minimum
distance for a [62,31] binary linear code is d = 12, and a DC code exists with
this minimum distance [9] (but is not majority logic decodable). Therefore
the maximum possible number of correctable errors is 2 more than that for

Cu.

Consider now the codes with q odd. For g = 3, the incidence matrix of

the (13,4,1) cyclic difference set is

Ry =

_HOMRKOOCOCOOROOOH
O OO0 OO~ROOO K
_OOOQOCORFOOOMMFEO
OO OO OHOOO=HOR
OCCOCOO-ROOCOHHORO

COOHOOO MO OO

COHOOOHHMHOMROOO
OHHOOQOMMmOOOO O
_OQOOHHMHOMOOOOO
OO OMMOMFOCOCOOCO
OO HFHOFOOOOO O
O O OOOOCOMOO
- O OO0 OO0 =O0OO0Oo

The corresponding [26,13] DC code C)3 with generator matrix

Gis = [h3; Ras],

has weight distribution
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Weight Count

0 1
5 13
8 390
9 780
12 2340
13 2510
16 1313
17 780
20 52
21 13

The minimum distance is ¢+ 2 = 5, as expected, but there are only k = 13
codewords with this weight, corresponding to the rows of G,3. Clearly if
we ezpurgate all codewords of odd weight, we obtain a [26,12] code with
minimum distance 8 and weights divisible by 4. To illustrate this, consider
the sum of two adjacent rows of Gy3, which produces a codeword of weight
2(g + 1) = 8. This codeword is orthogonal to all other pairs of adjacent
codewords, as shown in the matrix G};,.

(1100000000000
011 0 0 0 0 0 0 0 0 0 O
0 01 1 0 0 0 0 0 0 0 0 0
0 0 01 1.0 0 0 0 0 0 O0 O
00 0 0 1.1 0 0 0 0 0 0 0
+ _ |0 0 0 0 0 1 1 0 0 0 0 0 0
3710 0 0 0 0 0 1 1 0090 0 0
0 0 0 0 00 0 1 1 0 0 0 o0
00 0 000 0 0 I 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 o
0 0 0 0 0 0 0 0 0 0 1 1 0
L0 0 0 0 0 0 0 0 0 0 0 1 1
1 01 1 1 0 0 0 0 1 1 0 07
0 1 0 1 1 1 0 0 0 0 1 1 0O
6 0 1 0 1 1 1 0 0 0 0 1 1
1 0 601 0 1 1t 1 0 0 0 0 1
1 1 0 0 1 0 1 1 1 0 0 0 O
0 1 1 0 0 1 0 1 1 1 0 0 O
0 0 1 1 0 06 1 0 1 1 1 0 O
0 0 0 1 1.0 0 1 0 1 1 1 0
0O 0 0 0 1.1 0 0 1 0 1 1 1
1.0 0 0 0 11 0 0 1 0 1 1
1 1.0 0 0 0 1 1 0 0 1 0 1
1110000110010_

'The codewords of C{; (the code with generator matrix G13) must be the
codewords of even weight in C,3, because Gi; is formed of 12 linearly
independent even weight codewords of C;3. Note that C1; is a 1-degenerate
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QC code, since z + 1 divides both defining polynomials of Gij, so that
K=12=¢*+q.

If the rows of the generator matrix of a self-orthogonal code have weight
divisible by 4, the code is doubly-even [1]. Since every row of Gi; is self-
orthogonal and has weight 8, C}; is a doubly-even self-orthogonal code and
has weight distribution

Weight Count

0 1
8 390
12 2340
16 1313
20 52

Since the blocklength IV is even, and all codewords have even weight, the
rows of G5 are orthogonal to the all-ones word. Thus Cj3 can be extended
to a self-dual [26,13] code C}; by appending this word. The code C}; has
weight distribution

Weight Count

0 1
6 52
8 390
10 1313
12 2340
14 2340
16 1313
20 52
26 1

which as expected corresponds to the unique extremal self-dual code of
length 26 [7]. Another construction of this code based on circulant matrices
is given in [10].

For g = 5, the [62,31] code C3, has weight distribution

154



Weight Count

0 1

7 31
12 4030
15 89590
16 259625
19 3977920
20 8492450

23 55602065
24 90578280
27 260449600
28 325217900
31 433503412
32 420190275
35 260449600
36 195332612
39 55602065
40 31874200

43 3977920
44 1775990
47 89590
48 16275
52 186
55 31
62 1

Expurgating the odd weight codewords again gives a doubly-even self-
orthogonal code Cj; with d = 2(g + 1) = 12. Appending the all-ones
codeword, as done for ¢ = 3, to C3; gives a self-dual code with weight
distribution
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Weight Count

0 1
10 186
12 4030
14 16275
16 259625
18 1775990
20 8492450

22 31874200
24 90578280
26 195332612
28 325217900
30 420190275
32 420190275
34 325217900
36 195332612
38 90578280
40 31874200

42 8492450
44 1775990
46 259625
48 16275
50 4030
52 186
62 1

Note that in this case, adding the all-ones codeword reduces the minimum
distance from 12 to 10, because of the weight 52 codeword in G%;. These
results lead to the following theorem.

Theorem 1 For all odd q, the double circulent code constructed from the
incidence matriz of a (v, k, ) cyclic difference set related to PG(2,q) has
parameters [2(¢® + ¢+ 1),q> +q+1,q+2]. Ezpurgating the odd weight code-
words results in a doubly-even [2(q® +g+1),¢% +q,2(g + 1)) self-orthogonal
code. Appending the all-ones codeword to this self-orthogonal code results
in a self-dual [2(¢® + ¢ +1),¢% + g + 1] code withd < 2(g + 1).

Proof. The parameters of the double circulant code C can be determined
from the properties of the incidence matrix. Consider now the even weight
codewords in C. A generator matrix for the resulting code C' can be
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constructed by taking ¢* + ¢ adjacent pairs of codewords in C (as was done
in the preceding examples). Since the weight of every row of G is ¢+ 2, the
rows of G' have weight 2(g + 1), and this is a multiple of 4.

To show that C' is self-orthogonal, consider the rows of G’ associated
with the incidence matrix. For two adjacent rows of G', one row of G
appears twice, along with two distinct rows of G. Since every distinct pair
of rows in G has one 1 in common, the number of common 1's between
the two adjacent rows in G’ due to the row of G which appears twice is
(¢ + 1) — 2. The number of common 1’s between these two rows of G' due
to the distinct rows from G is one, and the number of common 1’s from the
identity matrix in G is one. Thus the total number of common 1’s between
two adjacent rows of G is ¢ + 1, which is even. For two non-adjacent rows
in G', there are either 2 or 4 common 1’s, depending on where the common
ones between adjacent rows of G lie. Thus the rows of G' are orthogonal,
and since the weight of each row is divisible by 4, C’ is doubly-even.

To determine the minimum distance of C', consider the formally self-
dual codes C and C*. The minimum distance of C' can be obtained by
considering the even combinations of rows of G. Since these codewords
are self-orthogonal, they also appear as the even weight codewords in C*.
Therefore, if there is a even weight codeword ¢ of weight d in C then ¢
must be a combination of at most d/2 rows of G or H. The reason for
this is as follows. Let wt — 7(¢) and wt — I(c) be the Hamming weights
of the right and left halves of ¢, respectively. If there is codeword c such
that wt — l(c) = d/2 + 1 and wt - r(c) = d/2 — 1, then ¢ is combination of
d/2 — 1 rows of G, and ¢ must be a combination of d/2 — 1 rows of H, since
wt—7r(c) = df/2—1. Thus it is only necessary to consider even combinations
of up to d/2 = g+ 1 rows of G to determine d. Any sum of 2<z <q+1
rows in the incidence matrix must have weight at least 2(¢ + 1) from the
matrix properties, and since the sum of two rows of G has weight 2(q + 1),
d=2(g+1).

Extension to a self-dual code requires the addition of the all-ones code-
word. Since the rows of G' are even and N is even, there can be no words
of odd weight. Further, since the rows of G’ have even weight, they are
orthogonal to the all-ones codeword. Thus C* has parameters [2m,m], and
so is a self-dual code. o
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Consider again the [26,13) DC code C)3 with generator matrix (9). This
code can be lengthened by adding the all ones codeword and adding an
overall parity check. The resulting code, C4, is a bordered double circulant
code which has a generator matrix the form

01 --- 1
1

Iy : Ry3
1
The rows of G4 are self-orthogonal, since each pair of rows of R;3 has
a common one in only one column, and the overall parity check provides
another common 1. G4 is then a self-dual code, and has weight distribution

Weight Count

Gy =

0 1
6 26
8 442
10 1560
12 3653
14 5020
16 3653
18 1560
20 442
22 26
28 1

which corresponds to a unique extremal self-dual [28,14] code given in [7].
This code can be extended to a class of [N, K, d] bordered self-dual DC

codes with parameters

2q* +9+2),

@ +q+2,

g+3,

for ¢ an odd prime power. For example, the next code in the class is a

(64,32,8] code (g = 5).

R Z
mnn

3 Codes with A #1

Besides the codes considered in the previous section, there are numerous
codes with X # 1. For ¢ = 2, these codes are characterized in terms of the
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incidence matrices of cyclic difference sets with the following parameters
v=2""1 1 k=2"-1A=2""1 -1 (10)

We have already seen the code with n = 2, so consider the code with n = 3.
The parameters in this case are (v, k,A) = (31,15,7). This code has d = 4,
and so has a very poor minimum distance.

For n = 3, the difference sets have the following parameters

v=+¢ +q+1Lk=¢"+q+ 1, A=qg+1. (11)

For ¢ = 2, the difference set parameters are (15,7,3). The correspond-
ing [30,15] DC code has d = 4 [11], which is half the maximum possible
minimum distance [9].

Since the other codes in these classes have large dimensions, we were
unable to determine their distance properties. However, we conjecture that
in general the codes based on this DC construction have poor minimum
distances.

4 Summary

A class of double circulant (DC) codes has been characterized in terms of
the incidence matrices of cyclic difference sets associated with PG(n,q).
These codes are 1-step majority logic decodable since A = 1. The codes for
q even are formally self-dual even. The first codes for ¢ odd have an odd
weight symmetry [12], and it is conjectured that all codes in this class pos-
sess this property. It was shown that a class of doubly-even self-orthogonal
codes, and two classes of self-dual codes, can be constructed from the DC
codes for q odd.
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