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ABSTRACT. We investigate the connections between families of
graphs closed under (induced) subgraphs and their forbidden
(induced) subgraph characterizations. In particular, we discuss
going from a forbidden subgraph characterization of a family P
to a forbidden induced subgraph characterization of the family
of line graphs of members of P in the most general case. The
inverse problem is considered too.

1 Introduction

The first tentative discussion of the connection between families of graphs
closed under (induced) subgraphs and their forbidden (induced) subgraph
characterizations can be found in [1].

We basically follow the standard terminology of [2]. All graphs will be
undirected and finite without any loops or multiple lines.

Denote by G the set of all graphs distinguished up to isomorphism. A
subset P C G is called a class of graphs (or a graph-theoretic property). A
class P is called hereditary if ISub(G) C [P for any graph G € [P, where
ISub(G) denotes the set of all induced subgraphs of G. Define a partial
order “<” on G: H < G if and only if H € ISub(G). For aset ZC G
we put FIS(Z) = {G: ISub(G) N Z = 0} — a class of all graphs which is
defined by the set Z of forbidden induced subgraphs. The following simple
but important statement is well known.

Proposition 1. (i) A class P is hereditary if and only if P = FIS(Z) for
some set Z C G.

(ii) The minimal (by inclusion) set Z satisfying (i) is unique and it coin-
cides with the set of minimal elements of the partially ordered set (G—P, <).
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Similarly, a class P is strong-hereditary if Sub(G) C P for any graph
G € P, where Sub(G) denotes the set of all subgraphs of G. Define one
more partial order “<«” on G: H « G if and only if H € Sub(G). For a set
Z C G we put FS(Z) = {G: Sub(G) NZ = @} — a class of all graphs which
is defined by the set Z of forbidden subgraphs. The following statement is
similar to Proposition 1.

Proposition 2. (i) A class P is strong-hereditary if and only if P = FS(Z)
for some set Z C G.

(i) The minimal (by inclusion) set Z satisfying (i) is unique and it
coincides with the set of minimal elements of the partially ordered set
(G -P,<K).

Recall that the line graph of a graph G is denoted by L(G). For a class
P C G we put L(P) = {L(G): G € P}.

Proposition 3. If IP is a strong-hereditary class, then L(IP) is a hereditary
class.

Proof: We check that ISub(H) C L(P) for any graph H € L(P). Since
any induced subgraph of a graph can be obtained by a removal some points
of the graph, it is sufficient to show that H — v € L(P) for any point v of
the graph H. Since H € L(P), then H = L(G) where G € P. Let a line
e of the graph G corresponds to a point v of the graph H. Since a class
PP is strong-hereditary, then G — e € P. Obviously, L(G —€) = H — v, i.e.
H — v € L(P). This completes the proof. 0

However, the converse is false. For example, for class P = {Ps, K>}
we have L(P) = {Kj, K}, i.e. L(P) is hereditary, but P is not strong-
hereditary. However, some analogue of the converse statement can be ob-
tained. for any class of line graphs P we define the complete inverse image
as L YP) = {G: L(G) e PYU{Kn: n > 1}.

Proposition 4. If a class of line graphs P is hereditary, then its complete
inverse image L~(P) is strong-hereditary.

Proof: Let G € L~!(P) and H € Sub(G). It is necessary to show that
H € L7Y(P),ie. L(H) € Por H = K,.. If H = K,,, then there is nothing to
prove. Let H # K,,. A subgraph H can be obained from G by a removal of
some lines and isolates. For any e € EG we have L(G—¢) = L(G)—v, where
v is the point of L(G) corresponding to e. Since L(G) — v € ISub(L(G))
and the class PP is hereditary, then L(G) —v € P and L(G —¢) € P, i.e.
G — e € L™(P). Clearly, L(G) is not changed when we remove any isolate
from G. This completes the proof. m]

The following problem arises from Proposition 3: for any strong-hereditary
class P = FS(Z) it is necessary to find a set Z’ such that L(P) = FIS(Z). If
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Z = 0, then FS(Z) = G and in this case the set Z’ was found by L. W.Beineke
and N. Robertson (Theorem 8.4 in [2]):

Theorem 1. L(G) = FIS(BR) where BR is the set of graphs G1,...,Go
shown in Figure 1.
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G, G, G, G, G,

Figure 1. Set BR of minimal non-line graphs

2 Main results

Components of a graph which are isomorphic to either K3 or K; 3 we call
special. Graphs G and G’ are called S-equivalent if there is a bijection ¢
between their components such that ¢(K) = K for any non-special com-
ponent K and ¢(K) € {Ks, K13} for any special component K. Denote
by S(G) the set of all graphs which are S-equivalent to G. Obviously,
IS(G)| = s + 1, where s > 0 is the number of special components of the
graph G.

A graph G is called well-presented in a set Z C G if every graph G’ €
S(G) contains some subgraph H’ € Z. So “G is well-presented in Z” means
that no graph S-equivalent to G is in FS(Z). We denote by [G] the set
of minimal (with respect to the partial order “<«”) graphs which are well-
presented in Z and contain G as a subgraph. For example, if G = CsU K3
and Z = {Cs U K3,C4 U K, 3}, then the set [G] = {Hy,...,H7} is shown
in Figure 2 (in this case G itself is not well-presented in Z). In particular,
notice that [G] = {G} for any graph G € Z without special components.
Accordingly, we denote by [Z] the set of minimal elements (with respect to
the partial order “<”) of U[G], where the union is taken over all graphs
G eZ.

163



o b B

H1 Hz H3 H4
AN 8 yAV4
H; H H

Figure 2. Example of the set [G]

Further, we denote by G* the set of minimal (with respect to the partial
order “<”) graphs without isolates which contain G as a subgraph. For
example, Figure 3(a) shows the set K, = {Hs, ..., Hi2}. Finally, Z7 is the
set of minimal elements of UGZ, where the union is taken over all graphs

.é< (!

2+42+3 2+5 7 4K,
H, H, H1o H,, H,
Figure 3a. Set K7
Theorem 2. If P = FS(Z), then L(P) = FIS(Z') where Z' = BRU L([Z*]).
Proof: Firstly we prove the inclusion
L(P) C FIS(Z'). 1)
By Theorem 1 for any graph H € L(IP) we have
ISub(H) NBR = 0. (2)

164



Now we show that
ISub(H) N L([Z*]) = 0. (3)

Suppose that (3) is not true, i.e. H contains an induced subgraph H' €
L([Z%]). Clearly, H' = L(F’) for some graph F’ € [Z7].

Lemma 1. If F’ € [Z*], then F' does not contain isolates.

Proof of Lemma 1: Suppose there is an isolate u € V F'. By the definition
of [Z%], F’ contains some subgraph J € Z*. There are no isolates in J (by
the definition of Z*). So J € Sub(F' — u). Further, F’ is well-presented
in Z%, i.e. any graph F” € S(F’') contains some subgraph J; € Z*. As
in J, there are no any isolates in J;. Therefore, J; € Sub(F” — u). This
means that the graph F’ — u is well-presented in Z*. Since [Z7] includes
only minimal graphs (with respect to the partial order “<”), we arrive at
a contradiction. Lemma 1 is proved. ]
Now let H = L(G) where G € P. Clearly, there is a subgraph G’ of G
such that H' = L(G’). We can consider G’ as a graph without any isolates.
So H' = L(F') = L(G') and there are no isolates in both graphs F’
and G'. By the theorem of Whitney (Theorem 8.3 in [2]), graphs F’ and
G’ are S-equivalent. But F’ is well-presented in Z*. This means, by the
definition of [Z®), that G’ has a subgraph G; € Z*. Further, by the def-
inition of Z=, there is a subgraph G2 € Z of G;. Since Gy € Sub(G;) C
Sub(G’) C Sub(G), G contains a forbidden subgraph G, € Z. We arrive at
a contradiction with the condition G € P = FS(Z). Thus (3) is proved.
From (2) and (3) follows that L(P) C FIS(BR)NFIS(L([Z*])) = FIS(BRU
L([ZF))) = FIS(Z'), i.e. (1) is correct.
Now we prove the inverse inclusion

FIS(Z') C L(P). (4)

We consider any graph H € FIS(Z'). Since BR C Z', then (by Theorem 1)
H is a line graph, i.e. H = L(G). We can consider G as a graph without
any isolates.

If there is a graph G, € P which is S-equivalent to G, then H = L(G;) €
L(P) and (4) is proved. Otherwlse G is well-presented in Z.

Lemma 2. If G is well-presented in Z and does not contain any isolates,
then G is well-presented in Z*.

Proof of Lemma 2: Let G; € S(G). Since G is well-presented in Z,
there is a subgraph F € Z in G;. The graph G; (as well as G) does
not contain any isolates. Hence there is a subgraph F’ € F* in G; such
that F € Sub(F’) and F’ has no any isolates. By the definition of Z=,
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F'contains some subgraph F” € Z*. Thus F" € Sub(F’) C Sub(G,) and
G is well-presented in Z*. Lemma 2 is proved.

By Lemma 2, G contains some subgraph G’ € [Z*]. But then there is
an induced subgraph H' = L(G’) € L([Z*]) of H = L(G). It contradicts
the condition H € FIS(Z') = FIS(BR) N FIS(L([Z%])). The theorem is
proved. (x]

Now we consider some algorithmic problems concerning a construction
of [Z7]. Let G be an arbitrary graph. We denote by I = I(G) the set of all
isolates of G and put N = VG — I. Fix a subgraph isomorphic to G in a
graph H € G*. Let D =V H — VG. Lines of the fixed subgraph G we call
old and the other lines of H we call new. We will consider that the central
point of star K is either of its two points.

Proposition 5. For any graph G of order n and any graph H € G* the
following statements are correct.

(i) The subgraph H' of H, which is induced by new lines, is a disjoint
union of stars K, (r > 1) with all points of every star (possibly,
except the central point) belonging to I.

(i) 0<|Dj < 1.
(iii) If |D| =1, then i =|I| is odd and H = 1K, U G(N).

Proof: (i) Suppose that H’ contains a path u,v,w,z (possibly, z = u).
Clearly, the removal of the line vw from H results in a subgraph which has
no isolates and contains G as a subgraph. But it contradicts the minimality
of the set G* with respect to the partial order “<«”. Thus H’ has no paths
or cycles of length 3, i.e. all components of H’ are stars Ky, (r > 1).

Then let a component K, have the central point ». Denote by v one of
non-central points. Suppose that v g I (when r = 1 we suppose that u,v ¢
I, because either of two points u, v can be chosen as central). We consider
all possible cases and in every of them we transform H to a subgraph Hj.
Case 1. If v € N and r > 1, then we put H; = H — uwv.

Case 2. Ifve N and r =1, then u ¢ I and we put H; = H — uv (when
u € N) or H; = H — u (when u € D).

Case 3. Ifve Dand r > 1, then Hy = H —w.

Case 4. If v € Dand r =1, then » ¢ I and we put H; = H — v (when
u € N) or Hy = H — {u,v} (when u € D).

Clearly, in every case H; € Sub(H) \ {H} has no isolates and contains
a subgraph which is isomorphic to G. It contradicts the minimality of the
set G*.

(ii) Suppose the contrary: there are two different points = and y in D.
It follows from (i) that these points are both the central points of stars
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K1, and K, (components of H’). If r > 1, then remove z from H and
construct a star K;,_; on the set VK, — {z}. The resulting graph H;
gives a contradiction with the minimality of the set G*. An analogous
contradiction arises when s > 1. Therefore r = s = 1. Denote by z’
(correspondingly, 3') the only point of the subgraph H’ which is adjacent
to z (correspondingly, to y). Then remove points z,y from H and add the
new line z’y’. As a result we arrive at a contradiction with the minimality
of the set G* again.

(iii) Let |D| = 1. Clearly, if there is at least one point of the set I U
D which in the case of its removal from the graph H does not result in
an appearance of an isolate, then we arrive to a contradiction with the
minimality of the set G*. Hence every point of the set I U D has degree 1
and is adjacent to a point of the same set. Thus H = ‘—'g—lKg UG(N). The
proposition is proved. (]

Corollary 1. If Z is a finite set, then Z= is also a finite set.

The following method of construction of the set G* for any graph G
follows from Proposition 5. If a graph G is edgeless (N = 0), then G*
consists of all graphs of order n = |V G| in which all components are stars
Ky, (r > 1) as well as (when n is odd) of a graph 231K ;. These graphs
can be generated by means of an algorithm constructing all partitions of
an integer n = ny +ng + - - - + ng with n; > 2 (see [5]). An illustration for
n =7 is given in Figure 3(a).

Now let G be a graph that is not edgeless. We number points of the
set N: uj,u2,...,un, n = |[N|. We construct all possible partitions of a
number ¢ = |I| into non-zero parts. Every part i; > 1 corresponds to a
star-component K ;,_; with all points belonging to the set I. Every part
i; = 1 corresponds to those points of I which are adjacent to points from
N. Denote by m the number of parts which are equal to 1. Then we can
generate all ordered partitions of the number m = m; +ma + --- + my,
into n = |N| parts mj > 0, j = 1,2,...,n. Further, every point u; € N
we connect with m; points of the set I (j = 1,2,...,n) so that these m;
points of I have degree 1. When |I| is odd, we need to construct one more
graph described in Proposition 5 (iii). In Figure 3(b) the described above
method is illustrated for G = K4 U K». It is clear that in contrast to an
edgeless graph in this case the resulting set can be redundant, so it has to
be reduced by removing “superfluous” graphs.

Thus for a finite set Z we can construct sets G* (G € Z), then choose
all minimal elements in the union UG* over all G € Z with respect to the
order “<” and obtain the set Z*.
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Constructing the [Z] is more complicated since the set [G] does not de-
pend on a graph G only, but on a set Z too. As the next example shows the
set [G] can turn out infinite. Let Z = {G}, G, ...}, where G; = C4 U K3
and G; = Ciy3U K3 (i > 2). The graph G, is not well-presented in zZ
because the replacement of its only special component K, ,3 by compo-
nent Kg results in graph C4 U K3 which does not contain any subgraph G;
(# =1,2,...). But all graphs H; = C;UCi33U Ky 3 (i = 2,3,...) are
well-presented in Z. We check the minimality of graphs H; (i > 2) with
respect to the partial order “<”. There are only three proper maximal
subgraphs of H;: Hl P;UCi;3UK, ,35 H2 Cs4UP 3V Kl 3, and
H} =C4UCiyy3U Pg U K; (every of them is obtamed from the graph H;
by removing one line). It is clear that none of these graphs has triangles
and so they have no subgraphs G; (i > 2). Graphs H} and H? have no
subgraph G, either. The graph H? has G; as a subgraph but it is not
well-presented in Z, because graph C4 U Piy3 U K3 obtained from H? by
replacing component K 3 with K3 does not contain any graph from Z as
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a subgraph.

So all graphs H; (i > 2) are well-presented in Z and minimal with respect
to the partial order “«”. Thus [G,] 2 {H2, Hs, ...} and [Gy] is an infinite
set.

However, the next statement is valid.

Proposition 8. Let Z = {G1,Gy, ..., Gk} is a finite set of graphs. Then
for any graph G € Z the set [G] is finite.

Proof: If a graph G is well-presented in Z then [G] = {G} and the proof
is finished.

Suppose graph G is not well-presented in Z. We show that the or-
der of any graph H € [G] is bounded above. This implies the finite-
ness of [G]. Denote by N the number of special components of H. Let
q = maxi<i<k IVG';I.

Firstly, suppose that N > 29. Let H; € S(H) and every special com-
ponent of H; is isomorphic to K3. By the definition of [G], there is some
subgraph G;, € Z in H,. Clearly, G;, has common points at most with
[VG;i,| < q components K3 of Hy. Similarly, let H, € S(H) and every
special component of Hj is isomorphic to K; 3. As before we can find a
subgraph G;, € Z in H,. Clearly, G;, has common points at most with
|[VGi;| < q components K3 of Ha. Since any graph Hz € S(H) has
at least either ¢ components K3 or ¢ components K 3, then Hjz contains
correspondingly either the subgraph G;, or the subgraph G;,.

Since |V G| < g, there is a special component of H which has no common
points with the subgraph G. If we remove this special component from H,
then the resulting graph H’ will contain the subgraph G and the number
of special components in H’ will be N — 1 > 2q — 1. Consider any graph
H4 € S(H') and corresponding to it graphs Hy U K3, HyU K1 3 € S(H). It
is clear that Hy contains at least g identical special components. Suppose
that Hy contains ¢ components Ks. Then Hy U K3 and Hy U K, 3 also
contain at least ¢ components K3, so they have the subgraph G;, € Z.
Clearly, H, contains the subgraph G, since G;, has common points with
at most g components K3 of H4U K3 and H4U K 3. Similarly, in the case
when there are at least ¢ components K} 3 in Hy, we obtain that H, has the
subgraph G;, € Z. So any graph Hy € S(H’) contains either the subgraph
G;, € Z or the subgraph G;, € Z and therefore H' is well-presented in Z.
Since H' contains the subgraph G, then H’ € [G]. But H' is a subgraph of
H. This contradicts the minimality of members of [G] with respect to the
partial order “<”. Hence N < 2¢— 1.

Further, let S(H) = {H!,...,HN*1}. Since H € [G], any H' € S(H)
contains a subgraph G* € Z (i = 1,2,...,N +1). Denote by U the set
of all points of H which are not included in any special component. It is
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clear that U C VH! foreveryi=1,2,...,N+1. Let UN VG = U and
X =uMiys”

Denote by S the number of special components of the induced subgraph
H(X). It is clear that S < -;-lX | and none of these components is a special
component in H (by the definition of U). So for any such a component
R a point zr € U\ X which is adjacent to at least one of points of this
component can be found. Add into the set X all such points zz and denote
by Y the resulting set.

By the construction, the induced subgraph H(Y) has no special com-
ponents. From the minimality of members of [G] it follows that U = Y.
Then

1
VH| = U+ VH\U| < |Y]+4N < |X|+ 351X +4N

4 N+l N+l
=3lX|+4N < 3 Z US|+ 4N < = Z g+4N = —q(N+1)+4N

8_

8, 28
= (= g < (= -
(3q+4)N+3q_(3q+4)(2q 1)+ =39 +39-4

i.e. the order of H is bounded above. The proposition is proved. (]

Corollary 2. If P = FS(Z) and Z is a finite set, then L(P) = FIS(Z') and
Z is also a finite set.

Now we consider special cases of Theorem 2.

Corollary 3. Let P = FS(Z) with all graphs from Z being connected and
non-trivial. Then L(IP) = FIS(Z'), where Z' is one of following sets:

(l) BR U L(Z) if Kg, K1’3 ¢ Z;
(ii) {Ks,K1,3}U L(Z - {K3, K 3})if K3, K13 €Z;
(lii) {Kl,a, K, +?2} U L(Z - {K3}) if K3 € Z and Kl 3 €7Z;

(iv) {K1,3,K1+(K1UK2),K2+K2.K4}UL(Z {K13}) if K13 € Z and
K3 ¢gZ

Proof: Without loss of generality we consider that Z is minimal with
respect to the partial order “«”. By Theorem 2, Z' = BR U L([Z*]). We
construct the set [Z*]. Since there are no graphs with isolates in Z it follows
that Z* = Z. Then all graphs from Z, with the exception of K3 and K. 1,3
in Cases (iii) and (iv) respectively, are well-presented in Z. We obtain that
Z' = BRU L(Z) in Cases (i) and (ii) (notice that in (ii) the set Z’ is written
in a reduced form owing to the graphs G2 — Gy from BR containing induced
subgraph K3).
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Further, we find [K3] = {K1 + (K1U K?)}, L([K3]) = {K2+ K2} in Case
(iii) and [K; 3] = {T\, K1+ (K1UK3), K} 4}, where T is the tree with degree
sequence (3,2,1,1,1), L([K13]) = {K1+ (K1 U K?), K2 + Ko, K4} in Case
(iv). As above the set BR can be reduced in both Cases (iii) and (iv) to
only the graph G; owing to the presence of induced subgraph K> + K> in
the graphs Gs — Gg. The corollary is proved. (]

Denote by A, B, TF, BDx, N, and D, sets of acyclic graphs, bipar-
tite graphs, triangle-free graphs, graphs with bounded density w(G) < k,
graphs with bounded order p < k, and graphs with bounded maximum
degree A(G) < k respectively.

Corollary 4.
(i) L(A) = FIS(K1,3, K2 + K3,Cn,n 2 4);
(ii) (see [4]) L(B) = FIS(Ky3, K2 + K2, Cony1,n > 2);
(iii) (see [3,4]) L(TF) = FIS(Ky3, K2 + Ka);
(iv) L(BDy) = FISBRU L(K+1));

(v) L(N,) = FIS(K,) =0;
L(Np) = FIS(K,, K») = {K1};
L(Ng) = FIS(BR U L([Kj.44])), k 2 3;

(vi) L(D1) = FIS(K2); _
L(D2) = FIS(K1,3, K1 + (K1 U K3), K2 + K2, Ky);
L(Dy) = FISBRU {Kis1}),k > 3.

Proof: It is enough to use Corollary 3 (or Theorem 2 in Case (v)) and
known characterisations (or definitions): A = FS(Cy,n > 3), B = FS(Con+1,
n > 1), TF = FS(K3), BD; = FS(Kk+1), Ny = FS(Kg41), and Dy, =
FS(K1,k+1). The proof is finished. o

Now we investigate a problem arising from Proposition 4: from a given
hereditary class [P = FIS(Z) of line graphs find a set Z’ such that L~1(P) =
FS(Z').

We divide a set Z into two parts: Z = Zpg U Z;,, where Zpg contains all
non-line graphs and Z;, contains all line graphs of the set Z.

Let L(-1(G) = {H: L(H) = G and H has no isolates}. Correspondingly,
LE)(Z) = UL{1(G) over all graphs G € Z.

Proposition 7. If P = FIS(Z) is an arbitrary hereditary class of line
graphs, then L='(P) = FS(Z') where Z' = L\"')(Z).

Proof: Firstly, we prove the inclusion L~!(P) C FS(Z'). Let G € L™!(P),
i.e. G= K, or L(G) = H € P. Suppose the opposite: there is a subgraph
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G' € Z' = L"Y(Z.) in G. Then there is an induced subgraph L(G') €
Z;, C Z in H. We arrive at a contradiction with the condition H € P =
FIS(Z).

Now prove the inverse inclusion: FS(Z') C L~!(PP). Suppose the opposite:
there is a graph G € FS(Z') but G ¢ L~(P). By the definition of L~1(IP),
we have G # Ky, and H = L(G) ¢ P, i.e. there is a forbidden induced
subgraph H’ € Z in H. But H’ is a line graph (as an induced subgraph of
a line graph). So H’ € Zj,. There is a subgraph G’ without any isolates of G
corresponding to the induced subgraph H' of H. Clearly, G’ € L(-1)(Z;) =
Z'. It is a contradiction with the condition G € FS(Z'). The proof is
finished. ]

We use Proposition 7 for the class S = FIS(2K3, Cy, Cs) of split graphs.
So the class of line split graphs is FIS(Z), where Z = Zpg UZ;, with Zpg =
{Gl,Ga} (Flgure 1) and Z;, = {2K2,C4, Cs}. We find Z' = L—I(ZL) =
{2Ps,C4,Cs} and obtain that a graph L(G) is split if and only if G €.
FS(2P;,C4, Cs).
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