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Abstract

Cyclonomial coefficients are defined as a generalization of binomial coeffi-
cients. [t is proved that each natural number can be expressed, in a unique
way, as the sum of cyclonomial coefficients, satisfying ceriain conditions.
This cyclonomial number sysiem generalizes the well-known binomial num-
ber system. Il appears that this system is the appropriate number system
to indez the words of the lezicographically ordered code LI(n,k). This code
consists of all words of length n over an alphabet of q symbols, such that
the sum of the digils is constani. It provides efficient algorithms for the
conversion of such a codeword lo ils indez, and vice versa.

Index Terms - binomial number system, cyclonomial coefficients, cyclono-
mial number system, lexicographic constant-sum code, ranking problem,
index system.

AMS class 05A15, 69G10, 69G11

1 Introduction

Bionomial coefficients have been generalized in many ways. In Section 2 of
this paper we introduce a generalization (Z)q, for any integer ¢ > 2, which
we call a cyclonomial coefficient. It appears hat these cocflicients share a
number of properties with binomial coefficients (the ¢ = 2-case). Among
other things there exists, for any £ > 1 and for any ¢ > 2, a cyclonomial
number system, which generalizes the concept of binomial number system
(cf. [2]). More specifically, it is proved in Section 3 that, for fixed values of
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k and ¢, any natural number can, in a unique way, be written as the sum of
k cyclonomial coefficients (bk")q, i“_jl‘)q, cee, ("l‘)q, with b > by > --- >
by > 0, and such that at most ¢ — 1 consecutive numbers b; are equal.

In Section 4 we present an application of the cyclonomial number system.
It is shown that this system is the appropriate tool for indexing the words
of a lexicographic conslant-sum code over an alphabet of q clements.

We define such a code LI(n, k) as the lexicographically ordered list of all
words over R := {0,1,---,q — 1}, of length n, and such that thc sum of
the digits of cach word is cqual to k. In [1] a method is devcloped to
calculate the index values of the words of a more general lexicographically
ordered list. It appears that in the special case of L!(n, k) the indez-value
or rank of a codeword can quite naturally be expressed as a number in
the cylonomial number system for that particular value of q. Hence, the
cyclonomials number system is the appropriate number system to solve the
ranking problem of LI(n, k), i.e. it provides us with efficient algorithms to
convert a codeword to its index, and vice versa. We remark that such a
ranking problem exists for any ordered list of combinatorial objects, and
that inherent to this problem one can pose the question of an appropriate
number system (cf. refs. [3,4,5,6]). The solution presented in Section 4
generalizes the solution for ¢ = 2, given in [5], in terms of the binomial
number system.

Finally, in Section 5, we demonstrate by an example an efficient way of
converting a codeword to its index, and vice versa, using the cyclonomial
number system.
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2 Cyclonomial coefficients

Let n,k and ¢ be natural numbers with ¢ > 2, and let V9(n, k) be the set
of words

W = Wn—|Wn_2" - W, (1)
with w; € {0,1,---,¢—1},0< i< n—1, and such that
n-1
Zw; =k. (2)
i=0

The words w usally are called codewords of length n and weight k over an
alphabet of ¢ elements. The set V9(n, k) can be referred to as the complete
g-ary constant-sum code of length n and weight k. Furthermore we define

the number
() =i ©

as the total number of words in V9(n,k). One could also say that (:)q
is equal to the total number of compositions of k& into n parts the size of
which do not exceed ¢ — 1.

In the bmary case this number is just the normal binomial coefficient, i.c.
(3), = (}). Therefore, it will be obvious that the numbers (), have

properties which are generalizations of well-known relations for bmomlal
coefficients. In the first place we mention the symmetry property

(Z), = (Ann— fc); @

where we introduce the abbreviation

Ai=g-1 (5)
Equality (4) follows immediately from the one-to-one correspondence be-
tween the codewords wn_j, wn-2, +--, wg and A — wpo1, A — wp_g, +-,
A— wo.

Next we give the generating function for the numbers (k) which follows
from their definition -

(1+x+-~+z"“)"=§:(2) z*. (6)
q

k=0

Because of the occurence of the cyclotomic polynomial 1 4 z 4 - -- + 29!
in the lhs of (6) we call (2), a cyclonomial coefficient of order q. We can
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easily derive, either from (3) or from (6), the special cases

0, (),

1 _ 1: 05"5‘1—1:
(k)q_{ 0, g—1<k. (8)

It is also obvious from the definition of V4(n,k) that for ¢ > n

()= ®

since for those g-values we have to do with compositions of k into n parts,
where the size of the parts is not restricted by the size of the alphabet.
Another simple consequence of (6), which follows by putting z = 1, is

§ (Z)q =q" (10)

k=0

and

A slightly less trivial property is obtained by applying (6) to the identity

Q+z+-+2 Y =(l+z+--- 27 ) (1424 297 H)™,

,.,,,2,, (T).,(T;)q - (n:m)q- (11)

By substituting m = 1 in (11) and using (8) we get

.ﬁi_x (r;)q B (nz 1),* (12)

This last equality, which clearly generalizes the ”basic” addition theorem
for binomial coefficients, enables us to construct a Pascal triangle for the
numbers (:)q, for any ¢ > 2. In Figure 2.1 this has been done for ¢ = 3,
and0<n<7,0<k<14.

This yields
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a0 1 2 3 4 5 6 7
o |1 111 1 1 1 1
1 |01 23 4 5 6 71
2 (01 3 6 10 15 21 28
3 |0 0 2 7 16 3 5 77
4 |0 0 1 6 19 45 90 16l
5 [0 0 0 3 16 51 126 266
6 [0 0 0 1 10 45 141 357
7 |0 0 0 0 4 30 126 393
8 |o 0o 0 0 1 15 90 357
9 |0 00 0 0 5 50 266
10 /]o 000 0 1 21 161
11 (0000 0 0 6 77
12 [0 000 0 o 1 28
13 (0000 0 o 0 7
4]0 000 0 0 0 1
Fig. 2.1

A second tool for the computation of cyclonomial coefficients is a relation

which expresses them in terms of binomial coefficients. Writing

1~ 2z9

1

(1+z+-~~+z”")"=(1_

S5

G)(

t=0 i=0

and applying (6) provides us with

(2), -2

i=0

) -
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3 The cyclonomial number system

In this section k and g, and consequently A := ¢—1, are fixed, but otherwise
arbitrary integers, with £ > 1 and ¢ > 2. We shall show that each natural
number can in a unique way be represented as a sum of k cyclonomial
coefficients of order ¢, or stated equivalently, that for any such k and ¢ there
exists a number system to represent the natural numbers. The existence of
these systems is based on the following theorem.

Theorem 3.1
Letk > 1 and q > 2. Then any natural number N can uniquely be written

@ b b b
_ (% k-1 1
N‘(k)ﬁ(k 1)* +< )

withbg > bp—y > -+ > by > 0, and such thal al most A conscculive numbers
b; are equal.

Proof

A. First we establish the existence of an expression as stated in the The-
orem. We choose b; as large as possible such that (b") < N. Next we
choose by_; as large as possible such that (3%~ D, SN = (% :),- Continuc
with choosing a.ll numbers by, k£ > 1 > 2, as large as p0551ble and such that
(b‘)q <N - Zx-l+l ( ) Finally we put b, := N — Z'_ ( *)., and we
end up with the stated expressnon for N.

Now suppose that bg_; > bx. Then we can write

0, m), 2 (1), (1)
NZ( + > + =
kq k—lq kq k—lq
), (), () o (5), - ()
+ + +--+ + =
(k q k-1 1 k-2 q k—XA+1 q k—A q
bk-l-l) (bk) (bk-l-l)
+ > ,
(k q k—/\q k 7

where we applied twice the addition formula (12) It is clear that the last
lnequahty contradicts the assumption that by is the largest integer with
() <N

Hence, we may conclude that by > bg_;. In the same way it can be proved
that bp_y > bgz > --- > b;.

q
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Next, suppose there is an index I, 1 <1 < k— A, such that b = by =
-+ = bi4a. Because of (12), with k replaced by I, we then have

biyj biga +1

v- 3 (0,25 (), = (1),
i=l4q 9 j=0 1+J [+A q

contradicting the assumption that b4 is the largest integer satisfying

(?:’;) <N- Ez—l+q (" ) . So there can be at most A consecutive numbers
b; equal to each other.

B. The second part of the proof concerns the uniqueness of the represen-
tation.

Let N = ¥°F (?), be another representation for some integer N > 0,
such that the ¢; satisfy the same requirements as the b;, 1 < i < k. Let {
be the highest index with b; = ¢; for { +1 < i < k, and b # ¢;. Without
restriction of the gencrality we assume that b; < ¢ and define ¢ := ¢.
Furthermore we define unique integers a and b, with 1 < b < A, satisfying
{=a)+b. In order to come to a contradiction we write

w=r- 52 (4,=5(),s

i=l+1

S (50,7 (3)
j=11t=1 l—jA+t b q

For the first inequality we made use of b < b3 < --- < b < ¢ = ¢, and
of the property that at most A consecutive numbers b; can be equal, and
for the second onc we applied (12). By successively applying (12) again a
number of times we can write for the rhs of the last inequality

Z( JA+t) "‘Z(Z;?)q
EZ(I—CJ'_A{H)q"'(c;:jl)q:..:
=1§(1_"J‘_Ait)q+ (cb—:;z)q:_: (b:a)\)q: (?)q
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We conclude that M < (f)q On the other hand it follows from the def-
inition of M that M > (‘,‘)q = (‘;)q. So we have a contradiction, and

therefore there is no index ! with b; # ¢;. This proves the uniqueness of the
representation derived in part A. a

The number system based on the contents of Theorem 2.1 is called the
cyclonomial number system (for those particular values of k and g), and we
shall use the notation

N = (bgbg—y1---b1)q. (14)

For ¢ = 2 we obtain the well-known binomial number system (cf. [2]).
As an example we present in Fig. 3.1 the representation of the integers

0,1,---,15 in the cyclonomial number system for k =5 and ¢ = 3.
0 = (21100)3 8 = (32211)3
1 = (22100)3 9 = (33100)3
2 = (22110)3 10 = (33110)3
3 =(31100)3 11 = (33200)3
4 = (32100)3 12 = (33210)3
5 = (32110)3 13 = (33211)3
6 = (32200)3 14 = (33220)3
7 =(32210)3 15 = (33221)3
Fig. 3.1
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4 The lexicographic constant-sum code Li(n, k)

We take the codewords of the code V9(n, k) of Section 2 and arrange them
in lezicographic order. 1fboth w = wa—Wp—g - - wpand v = vu_ Vp_y - - Vo
are words of V9(n, k), then one says that w is lexicographically less than
v if and only if, for some { > 1, one has w; = v; for all i < {, and w; < v;.
The ordered list of codewords we get in this way is called the lezicograhic
conslani-sum code LI(n, k), over the alphabet {0,1,---,¢~1}. Each word
in this list is given an indez or rank, which ranges from 0 to (Z)q -1. As

an example we present in Fig. 4.1 the code L3(4,5).

L3(4,5)
index codeword index codeword

0 0122 8 1220
1 0212 9 2012
2 0221 10 2021
3 1022 11 2102
4 1112 12 2111
5 1121 13 2120
6 1202 14 2201
7 1211 15 2210

Fig. 4.1

In order to determine the index of a given codeword w := wp_ Wn_g- - wp
of LI(n, k), i.e. to solve the ranking problem of that code (cf. Section 1),
we introduce the vector

l_).:'(n_1)"':”'l:n_zx"':n_21"',0:'”10)) (15)

where each integer i occurs w; times for n 1> i > 0. Since 30y w; = &
the vector b has precisely k¥ components and we write

Q:'(bk)bk-l)""bl)’ (16)

where bi,bi—1, - - -, b, are determined by (15). The componets of b indicate
the positions in w where the k ”units” of its weight are located. For this
reason b is called the position vector of w.

We are now ready to formulate the theorem which solves the ranking prob-
lem of L(n, k).
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Theorem 4.1
Lel w = wp—1wn—2-- wp be a codeword of LY(n, k). Then the indez of w
s given by

ind(w) = (bkbk_l v bl)q,

where the numbers by, bg_1,by are the components of the posilion veclor b
of w.

Proof

We prove the correctness of the expression for ind(w) by counting the total
number of codewords preceding w. For our convenience we introduce the
partial sums

i
a; :=ij, 0<i<n-—1
i=0
First we consider the words v with v,.; = wu~1 —t for some fixed t > 0.

The number of these words is equal to (t :a_nl_z)q.

Hence, the number of words v with v,_; < w,—-) equals ) ;7" n-1

t=1 (l-l-a,._g q'
In the same way it appears that the number of words v with va_; = ws—)
Wn—2

and va_3 < wn_2 is equal to ), " (t_:a:":a . etc. So we find that the

total number of words preceding w is equal to

We remark that the second sum has to be interpreted as 0 if w; = 0. It
is obvious that the set of integers {t +aj—;1 |1 <j<n—-11<t< w;}
is just the set {1,2,---,k}. If we arrange the non-vanishing cyclonomial
coefficients in the above expression according to decreasing values of ¢ +
aj_1, the variable j in these coefficients runs through the set of values as
indicated in the rhs of (15) from left to right. Hence, applying (16), the
index of w is equal to

by br_1 b1\ _
(k)q+ (k—l)q+"'+ (1)9 = (ebir by

The contents of Theorem 4.1 enable us to compute the index of a given
codeword of L?(n,k). The inverse problem, i.e. computing the codeword
corresponding to a given values of the index, can be performed by express-
ing this value in the cyclonomial number system by means of the method
discussed in the proof of Theorem 3.1. From the digits bz, bx—1,---,b; the
codeword can be constructed immediately. If there are p consecutive digits
equal to ¢, then we have w; = pfor0<i<n-1.
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We remark that in the expression for ind(w) in Theorem 4.1 to each digit
w; there corresponds a sum of w; cyclonomial coellicients.

This sum can be considered as a weight assigned to that particular digit.
In this sense we can speak of a weighting system for LI(n, k).

5 Example

We take w = 1202 € L3(4,5). According to (15) and (16), its position
vector is equal to b = (3,2,2,0,0). Hence, Theorem 4.1 and the table in
Fig. 2.1 give

i = (%) + (2) + ()4 (0),+ (), =+ 14200000

Fig. 4.1 shows that this is the correct value.

Conversely, we want to know the codeword v € L3(4,5) with ind(v) = 12.
To this end we write 12 in the cyclonomial number system for ¢ = 3 and
k = 5. First we determine the largest integer bs such that (b‘) < 12.
From the table in Fig. 2.1 we conclude that bs = 3. Next we det,ermlne
the largest integer b4 such that (), < 12— (§), = 12-3 = 9. We find
by = 3. Contmumg in this way ylelds 12 = (33210)3 Hence, the position
vector of v is equal to b = (3,3,2,1,0). Since there are two components
of b equal to 3, we may conclude that v3 = 2. Furthermore there is one
component equal to 2, so v = 1. Analogously we find v; = 1 and vg = 1.
Hence, v = 2111. Again Fig. 4.1 shows that this answer is correct.
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