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Abstract

In 1992, Mahmoodian and Soltankhah conjectured that, for all 0 <
i <1, a (v,k,¢) trade of volume 2'%! — 2°=* exists. In this paper we
prove this conjecture and, as a corollary, show that if s > (2t — 1)2°
then there exists a (v, k, t) trade of volume s.

Introduction

A (v, k,t) trade T of volume s consists of two disjoint collections 7} and
T3, each containing s k-subsets (blocks) of some set V, such that every
t-subset of V' is contained in the same number of blocks in T} and 7. Note
that not all elements of V need appear in a block of T The set of elements
of V contained in T is called the foundation of the trade, denoted by
F(T). Let m(T) = s and f(T) = |F(T)|; whence f(T) < v < |V|. The
trade T is often written as Ty — T3, where the following example illustrates
this notation.

Example 1 T =T} — T = +135 + 146 + 236 + 245 — 136 — 145 — 235 — 246
is a (6,3, 2) trade, with F(T) = {1,2,3,4,5,6}, m(T) = 4 and f(T) = 6.

Trades, which are also known as null ¢-designs, have many uses in the
theory of designs. They can be used to construct t-designs with differ-
ent support sizes (Hedayat [3]), and are related to the design intersection
problem (Billington [1]) and the problem of finding defining sets of designs
(Street [7]).

An obvious question to ask is, given parameters k and ¢, for which volumes
does there exist a (v, k,t) trade? Hwang [4] showed that m(T) > 2¢ and
f(T) > k+1t+ 1. Trades of volume 2* are called basic trades.
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For0 <i<t,define s; =2+ 214 ... 4207 = 2!¥1 — 2t=%, Mahmoodian
and Soltankhah [6] constructed (v,k,t) trades of volumes si, s2, s3, for
t>1,1>2,t> 3 respectively. It was further shown that trades of volume
s, where sp < s < 51, do not exist. This led to the following conjecture.

Conjecture 2 ([6]) For all0 < i < t, there ezists a (v, k,t) trade of volume
Si.

In this paper we will prove Conjecture 2 by adding two basic trades, with
foundations chosen so that the resultant trade has volume s;. All the trades
we construct are simple; that is, they have no repeated blocks.

Results

Graham, Li and Li [2) determined the structure of basic trades. For the

following theorem however, we will use the form given by Khosrovshahi,
Majumdar and Widel [5].

Theorem 3 ([5)) Ifv> k+t+1 and k > t+1, then there ezists a (v, k,1)
(basic) trade of volume 2'. Such a trade has the following form:

T =T, — Tz = So(S1 — S2)(S3 — Sa) - - - (Sat41 — Sat42),

with S; CV fori=0,...,2t+2, $iNS; =0 fori#j, |S2i-1|=[Su{ 21
fori=1,...,t+1, and |So| + X 1Sul = . 0

i=1

Example 4 Let So = 0 and S; = {i} fori = 1,...,6. Then the basic trade
T =T, — T, constructed as in Theorem 3 is that given in Example 1.

Lemma 5 ([3]) Suppose T = Ty — Tz and R = Ry — Ry are (v,k,1) and
(v* k,t) trades respectively. Then T+ R = (Ty + R1) — (T2 + Re) is a
(v**, k, 1) trade. D

Note that, if in Lemma 5 F(T)NF(R) = 0, then m(T + R) = m(T)+m(R).
The following theorem uses non-disjoint foundations for basic trades T' and
R to construct a trade of volume s;.

Theorem 6 For all 0 < i<, there ezists a (v, k,t) trade of volume s;.

Proof Let T and R be basic (v, k,t) trades of the form

T = Ti—-To = So(S1— S52)(Ss— Sa)...(Sat41 — S2t42),
R = Ri-Ry=—5(Si—5)... )
< (Sat-2i—1 — S2t-2i)(Sat-2i41 — S2e-2i42) - - - (S2e41 — S2e42),
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where 0 < ¢ < 1, and 5'_,- is chosen so that 5',- NS =0forj=2—-2i+
1,2t —2¢43,...,2t+1,1=0,1,...,2t + 2.

That T+ R is a (v* k,1) trade follows from Lemma 5. It remains to find
m(T + R). There are two cases to consider, i = ¢ and ¢ < {, depending
on whether 2!~ is odd or even. When i = ¢, the only block common to
T and R is SpS2...S2:42. This block is in T3 N Ry or T3 N Ry, hence
m(T+R)=m(T)+m(R)—1=2"*1—1. When0<i<t—1,|TiNRy| =
|T> N Ry| = 2¢—%~L Therefore,

m(T + R) = m(T) + m(R) — 2.20711 = o141 _ 9t~
as required. m]

Example 7 Let T = (1 — 2)(3 — 4)(5 — 6), as in Example 4, and choose
R=—(1-2)(3—-4)(5-6). Then

T+R = +135+ 236+ 245+ 136 + 145 + 235
—136 — 145 — 235 — 135 — 236 — 245

is an (8, 3,2) trade with m(T' + R) = 6 and f(T + R) = 8.
Corollary 8 For s > (2t — 1)2* there ezists a (v, k,t) trade of volume s.

Proof Let 0 < a < 2 — 1. Then a has a unique binary representation
Z:.__l a;2'~% where a; € {0,1}. Therefore, if s* = 1.2'+! —q, where 0 < a <

2t — 1, then
t

t
s = Za,-s; + Z(l - a,-)2‘+1.
i=1 i=1

Any integer s > (2t — 1)2* can be written in the form s = b.2' + s*, where
s* =121 —q, with 0 < @ < 2 — 1, and b > 0. Using disjoint foundations,
choose b basic trades, for each a; = 1 a trade of volume s; and for each
a; = 0 two trades of volume 2! (or a trade of volume 2't! as in [6], if a
smaller foundation size is required). Now use Lemma 5 to construct a trade
of volume s as required.

For s = (2t — 1)2¢, choose (2t — 1) basic trades on disjoint foundations, and
use Lemma 5 to construct the required trade. (m]
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