On a conjecture of Mahmoodian and Soltankhah regarding the existence of (v, k, t) trades

Brenton D. Gray¹
Centre for Combinatorics,
Dept. of Mathematics,
The University of Queensland.

Colin Ramsay²
Depts. of Computer Science
and of Mathematics,
The University of Queensland.

Abstract

In 1992, Mahmoodian and Soltankhah conjectured that, for all $0 \le i \le t$, a (v, k, t) trade of volume $2^{t+1} - 2^{t-i}$ exists. In this paper we prove this conjecture and, as a corollary, show that if $s \ge (2t-1)2^t$ then there exists a (v, k, t) trade of volume s.

Introduction

A (v, k, t) trade T of volume s consists of two disjoint collections T_1 and T_2 , each containing s k-subsets (blocks) of some set V, such that every t-subset of V is contained in the same number of blocks in T_1 and T_2 . Note that not all elements of V need appear in a block of T. The set of elements of V contained in T is called the **foundation** of the trade, denoted by F(T). Let m(T) = s and f(T) = |F(T)|; whence $f(T) \le v \le |V|$. The trade T is often written as $T_1 - T_2$, where the following example illustrates this notation.

Example 1 $T = T_1 - T_2 = +135 + 146 + 236 + 245 - 136 - 145 - 235 - 246$ is a (6, 3, 2) trade, with $F(T) = \{1, 2, 3, 4, 5, 6\}$, m(T) = 4 and f(T) = 6.

Trades, which are also known as null t-designs, have many uses in the theory of designs. They can be used to construct t-designs with different support sizes (Hedayat [3]), and are related to the design intersection problem (Billington [1]) and the problem of finding defining sets of designs (Street [7]).

An obvious question to ask is, given parameters k and t, for which volumes does there exist a (v, k, t) trade? Hwang [4] showed that $m(T) \geq 2^t$ and $f(T) \geq k + t + 1$. Trades of volume 2^t are called basic trades.

¹Research supported by an APA Scholarship and ARC Grant A49532477

²Research supported by an APA Scholarship

For $0 \le i \le t$, define $s_i = 2^t + 2^{t-1} + \dots + 2^{t-i} = 2^{t+1} - 2^{t-i}$. Mahmoodian and Soltankhah [6] constructed (v, k, t) trades of volumes s_1, s_2, s_3 , for $t \ge 1, t \ge 2, t \ge 3$ respectively. It was further shown that trades of volume s, where $s_0 < s < s_1$, do not exist. This led to the following conjecture.

Conjecture 2 ([6]) For all $0 \le i \le t$, there exists a (v, k, t) trade of volume s_i .

In this paper we will prove Conjecture 2 by adding two basic trades, with foundations chosen so that the resultant trade has volume s_i . All the trades we construct are simple; that is, they have no repeated blocks.

Results

Graham, Li and Li [2] determined the structure of basic trades. For the following theorem however, we will use the form given by Khosrovshahi, Majumdar and Widel [5].

Theorem 3 ([5]) If $v \ge k+t+1$ and $k \ge t+1$, then there exists a (v, k, t) (basic) trade of volume 2^t . Such a trade has the following form:

$$T = T_1 - T_2 = S_0(S_1 - S_2)(S_3 - S_4) \dots (S_{2i+1} - S_{2i+2}),$$

with $S_i \subset V$ for i = 0, ..., 2t + 2, $S_i \cap S_j = \emptyset$ for $i \neq j$, $|S_{2i-1}| = |S_{2i}| \ge 1$ for i = 1, ..., t + 1, and $|S_0| + \sum_{i=1}^{t+1} |S_{2i}| = k$.

Example 4 Let $S_0 = \emptyset$ and $S_i = \{i\}$ for i = 1, ..., 6. Then the basic trade $T = T_1 - T_2$ constructed as in Theorem 3 is that given in Example 1.

Lemma 5 ([3]) Suppose $T = T_1 - T_2$ and $R = R_1 - R_2$ are (v, k, t) and (v^*, k, t) trades respectively. Then $T + R = (T_1 + R_1) - (T_2 + R_2)$ is a (v^{**}, k, t) trade.

Note that, if in Lemma 5 $F(T) \cap F(R) = \emptyset$, then m(T+R) = m(T) + m(R). The following theorem uses non-disjoint foundations for basic trades T and R to construct a trade of volume s_i .

Theorem 6 For all $0 \le i \le t$, there exists a (v, k, t) trade of volume s_i .

Proof Let T and R be basic (v, k, t) trades of the form

$$T = T_1 - T_2 = S_0(S_1 - S_2)(S_3 - S_4) \dots (S_{2t+1} - S_{2t+2}),$$

$$R = R_1 - R_2 = -S_0(S_1 - S_2) \dots$$

$$\dots (S_{2t-2i-1} - S_{2t-2i})(\tilde{S}_{2t-2i+1} - S_{2t-2i+2}) \dots (\tilde{S}_{2t+1} - S_{2t+2}),$$

where $0 \le i \le t$, and \tilde{S}_j is chosen so that $\tilde{S}_j \cap S_l = \emptyset$ for j = 2t - 2i + 1, 2t - 2i + 3, ..., 2t + 1, <math>l = 0, 1, ..., 2t + 2.

That T+R is a (v^*,k,t) trade follows from Lemma 5. It remains to find m(T+R). There are two cases to consider, i=t and i< t, depending on whether 2^{t-i} is odd or even. When i=t, the only block common to T and R is $S_0S_2...S_{2t+2}$. This block is in $T_1 \cap R_2$ or $T_2 \cap R_1$, hence $m(T+R)=m(T)+m(R)-1=2^{t+1}-1$. When $0 \le i \le t-1$, $|T_1 \cap R_2|=|T_2 \cap R_1|=2^{t-i-1}$. Therefore,

$$m(T+R) = m(T) + m(R) - 2 \cdot 2^{t-i-1} = 2^{t+1} - 2^{t-i}$$

as required.

Example 7 Let T = (1-2)(3-4)(5-6), as in Example 4, and choose $R = -(1-2)(\tilde{3}-4)(\tilde{5}-6)$. Then

$$T + R = +135 + 236 + 245 + 1\tilde{3}6 + 14\tilde{5} + 2\tilde{3}\tilde{5}$$
$$-136 - 145 - 235 - 1\tilde{3}\tilde{5} - 2\tilde{3}6 - 24\tilde{5}$$

is an (8,3,2) trade with m(T+R) = 6 and f(T+R) = 8.

Corollary 8 For $s \ge (2t-1)2^t$ there exists a (v, k, t) trade of volume s.

Proof Let $0 \le a \le 2^t - 1$. Then a has a unique binary representation $\sum_{i=1}^t a_i 2^{t-i}$, where $a_i \in \{0,1\}$. Therefore, if $s^* = t \cdot 2^{t+1} - a$, where $0 \le a \le 2^t - 1$, then

$$s^* = \sum_{i=1}^t a_i s_i + \sum_{i=1}^t (1 - a_i) 2^{t+1}.$$

Any integer $s > (2t-1)2^t$ can be written in the form $s = b.2^t + s^*$, where $s^* = t.2^{t+1} - a$, with $0 \le a \le 2^t - 1$, and $b \ge 0$. Using disjoint foundations, choose b basic trades, for each $a_i = 1$ a trade of volume s_i and for each $a_i = 0$ two trades of volume 2^t (or a trade of volume 2^{t+1} as in [6], if a smaller foundation size is required). Now use Lemma 5 to construct a trade of volume s as required.

For $s = (2t-1)2^t$, choose (2t-1) basic trades on disjoint foundations, and use Lemma 5 to construct the required trade.

References

- [1] Elizabeth J. Billington, The intersection problem for combinatorial designs, Congressus Numerantium, 92 (1993), 33-54.
- [2] R.L. Graham, S.-Y.R. Li and W.-C.W. Li, On the structure of tdesigns, SIAM Journal of Algebraic Discrete Methods, 1 (1980), 8-14.
- [3] A. Hedayat, The theory of trade-off for t-designs, in: Coding Theory and Design Theory, Part II: Design Theory (ed. D. Raychaudhuri), IMA Volumes in Mathematics and its Applications, 21 (1990), Springer-Verlag, pp. 101-126.
- [4] H.L. Hwang, On the structure of (v, k, t) trades, Journal of Statistical Planning and Inference, 13 (1986), 179-191.
- [5] G.B. Khosrovshahi, Dibyen Majumdar and Mario Widel, On the structure of basic trades, Journal of Combinatorics, Information & System Sciences, Vol. 17, Nos. 1-2, 102-107, (1992).
- [6] E.S. Mahmoodian and Nasrin Soltankhah, On the existence of (v, k, t) trades, Australasian Journal of Combinatorics, 6 (1992), 279-291.
- [7] Anne Penfold Street, Trades and defining sets, in: CRC Handbook of Combinatorial Designs (eds. C.J. Colbourn and J.H. Dinitz), CRC Publishing Co., Boca Raton, Florida, 1996, pp. 474-478.