Cycles Containing Many Vertices of Subsets in 1-Tough Graphs with Large Degree Sums¹

Jianping Li²

Institute of Math. and Department of Math., Yunnan University Kunming 650091, Yunnan, P.R.China.

Abstract. Let G be a graph of order n and X a given vertex subset of G. Define the parameters $\alpha(X) = max\{|S||\ S$ is an independent set of vertices of the subgraph G[X] in G induced by $X\}$ and and $\sigma_k(X) = min\{\sum_{i=1}^k d(x_i)|\ \{x_1, x_2, \cdots, x_k\}$ is an independent vertex set in G[X]. A cycle C of G is called X - longest if no cycle of G contains more vertices of X than C. A cycle C of G is called X - dominating if all neighbors of each vertex of $X \setminus V(C)$ are on C. In particular, G is X - cyclable if G has an X-cycle, i.e., a cycle containing all vertices of X. Our main result is as follows: If G is 1-tough and $\sigma_3(X) \geq n$, then G has an X-longest cycle C such that C is an X-dominating cycle and $|V(C) \cap X| \geq min\{|X|, |X| + \frac{1}{3}\sigma_3(X) - \alpha(X)\}$, which extends the well known results of D. Bauer et al [2] in terms of X-cyclable.

Keywords: (X-)longest cycle. (X-)dominating cycle, hamiltonian graph, vertex degree, large degree sums.

AMS Subject Classifications (1990): 05C38, 05C45, 05C35.

¹Research was supported by the Natural Science Foundation of Yunnan Province. Part of the work was done while the author was visiting Institute of Systems Science. Academia Sinica, P.R. China.

²Current address: L.R.I., URA 410 du CNRS, Bât.490, Université de Paris-Sud, 91405-Orsay, France. *Email: jpli@lri.fr

§1. Results

We use [4] for terminology and notations not defined here and consider simple graph only.

Let G be a graph of order $n, X \subseteq V(G)$ and $\omega(G)$ denote the number of components of graph G. As introduced by Chvátal [6], a graph G is t-tough if $|S| \geq t \cdot \omega(G \setminus S)$ for any $S \subset V(G)$ with $\omega(G \setminus S) > 1$. The toughness of G, denoted by $\tau(G)$, is the maximum value of t for which G is t-tough $(\tau(K_n) = \infty$ for all $n \ge 1$). A cycle C of G is called X - longest if no cycle of G contains more vertices of X than C, and by c(X) we denote the number of vertices of X in X-longest cycle. A cycle C of G is called X - dominating if all neighbors of each vertex of $X \setminus V(C)$ are on C. We say that G is X - cyclable if G has an X-cycle, i.e., a cycle containing all vertices of X. If X = V(G), instead of V(G)-longest cycle and V(G)cyclability, we use the common terms hamilton cycle and Hamiltonian, and c(G) instead of c(V(G)), respectively. We denote by $\alpha(X) = \max\{|S|| |S| \}$ is an independent set of vertices of the subgraph G[X] in G induced by X $\}$. More generally, for $k \leq \alpha(X)$ we denote by $\sigma_k(X)$ the maximum value of the degree sums (in G) of any k pairwise nonadjacent vertices of X; for $k > \alpha(X)$, we set $\sigma_k(X) = k(n - \alpha(X))$. We write α and $\sigma_k(G)$ instead of $\alpha(V(G))$ and $\sigma_k(V(G))$, respectively.

Two classical results in hamiltonian graph theory are the following.

Theorem 1. [10] Let G be a graph of order $n \geq 3$ with $\sigma_2(G) \geq n$, then G is Hamiltonian.

Theorem 2. [7] Let G be a 1-tough graph of order $n \geq 3$ with $\sigma_2(G) \geq n-4$, then G is Hamiltonian.

In [2]. D.Bauer et al obtained the further extension of Theorem 2.

Theorem 3. [2] Let G be a 1-tough graph of order $n \geq 3$ with $\sigma_3(G) \geq n$, then $c(G) \geq \min\{n, n + \frac{1}{3}\sigma_3(G) - \alpha(G)\}$.

Theorem 3 implies several known results. For details, readers are referred to the surveys of D. Bauer et al in [1] and [2].

We note that, the proof of Theorem 3 relies on the following fact: if G is 1-tough and $\sigma_3(G) \geq n$, then every longest cycle is dominating; Moreover, if G is nonhamiltonian, G contains a longest cycle C with $\mu(C) = max\{d(v)|v \in V(G) \setminus V(C)\} \geq \frac{1}{3}\sigma_3(G)$.

Recently, H.J. Broersma, H. Li, J.P. Li, F. Tian and H.J. Veldman [5] obtained some results involving given subsets.

Theorem 4. [5] Let G be a 2-connected graph of order $n \ge 3$ and let $X \subseteq V(G)$ with $\sigma_3(X) \ge n+2$, then $c(X) \ge \min\{|X|, |X| + \frac{1}{3}\sigma_3(X) - \alpha(X)\}$.

Motivated by Theorem 4, we can obtain the following main result, which extends the some results of D. Bauer et al [2] in terms of X-cyclability.

Theorem 5. Let G be a 1-tough graph of order $n \geq 3$ and $X \subseteq V(G)$ with $\sigma_3(X) \geq n$, then G contains an X-longest cycle C which is X-dominating.

The proof of Theorem 5 is postponed to section 2. For a note, under the conditions of Theorem 5, we easily obtain that: $X \setminus V(C)$ is an independent set for every X-longest cycle C.

Theorem 5 admits the following corollary, which extends the theorem of Bigalke and Jung [3] in terms of X-cyclability.

Corollary 6. Let G be a 1-tough graph of order $n \geq 3$ and $X \subseteq V(G)$ with $\delta(X) \geq \frac{1}{3}n$, then G contains an X-longest cycle C which is X-dominating.

Next key Lemma is the basis for many of the results that follows.

Lemma 7. Let G be a graph of order n with $\delta(X) \geq 2$ and $X \subseteq V(G)$ with $\sigma_3(X) \geq n$. Let G contain an X-longest cycle C which is X-dominating. If $x_0 \in X \setminus V(C)$ and $A = N(x_0)$, then $(X \setminus V(C)) \cup A^X$ is an independent set of vertices, where A^X contains, for each $v \in A$, the first vertex of $X \cap V(C)$ succeeding v on C (in a fixed orientation of C).

We note that, a weak version of Lemma 7 can be found in J.P. Li [8]. For convenience, we give the full argument in section 2.

Lemma 7 has many applications. The next Theorem is obtained by combining Lemma 7 with Theorem 5. An outline proof of Theorem 8 is given in section 2.

Theorem 8. Let G be a 1-tough graph of order $n \geq 3$ and let $X \subseteq V(G)$ with $\sigma_3(X) \geq n$, then $c(X) \geq \min\{|X|, |X| + \frac{1}{3}\sigma_3(X) - \alpha(X)\}$.

Theorem 8 admits the following result, which extends one result of Bigalke and Jung [3] in terms of X-cyclability.

Theorem 9. Let G be a 1-tough graph of order $n \geq 3$ and let $X \subseteq V(G)$ with $\sigma_3(X) \geq \max\{n, 3\alpha(X) - 2\}$, then G is X-cyclable.

Proof: By assumption, $\sigma_3(X) \ge \max\{n, 3\alpha(X) - 2\}$, then $\sigma_3(X) \ge 3\alpha(X) - 2$. Also, by Theorem 8, $c(X) \ge \min\{|X|, |X| + \frac{1}{3}\sigma_3(X) - \alpha(X)\} \ge \{|X|, |X| - \frac{2}{3}\}$. Since c(X) is an integer, we have c(X) = |X|, i.e., G is X-cyclable.

We now turn our attention to graph with $t(G) = \tau \ge 1$. For $X \subseteq V(G)$, we easily get $\alpha(X) \le \alpha(G) \le \frac{n}{\tau+1}$, then Theorem 8 immediately implies our next result.

Corollary 10. Let G be a graph of order $n \geq 3$ and let $X \subseteq V(G)$ with $t(G) = \tau \geq 1$. If $\sigma_3(X) \geq n$, then $c(X) \geq \min\{|X|, |X| + \frac{1}{3}\sigma_3(X) - \frac{n}{\tau+1}\}$.

A special case of Corollary 10 is the following result.

Corollary 11. Let G be a 2-tough graph of order $n \geq 3$ and $X \subseteq V(G)$. If $\sigma_3(X) \geq n$, then G is X-cyclable.

§2. Proofs

In order to prove our main results, we introduce some additional terminology and notations.

Let C a cycle of graph G. We denote by \overrightarrow{C} the cycle with a given orientation, and by \overrightarrow{C} the cycle with the reverse orientation. If $u, v \in V(C)$, then $u\overrightarrow{C}v$ denotes the consecutive vertices of C from u to v in the direction specified by \overrightarrow{C} . The same vertices, in reverse order, are given by $v\overrightarrow{C}u$. We will consider $u\overrightarrow{C}v$ and $v\overrightarrow{C}u$ both as paths and as vertex sets. We use u^+ to denote the successor of u on \overrightarrow{C} and u^- to denote its predecessor. If $S \subseteq V(C)$, then $S^+ = \{v^+ | v \in S\}$ and $S^- = \{v^- | v \in S\}$.

Proof of Theorem 5. Let G satisfy the conditions of Theorem 5. Assume that no X-longest cycle of G is X-dominating. Choose a cycle C and a path P satisfying the following conditions:

- (a). C is an X-longest cycle:
- (b). Subject to (a), |M(C)| is minimal, where M(C) denotes the set of all edges of G\V(C) which are incident with at least one vertex of X. (Here, M(C) ≠ Ø by assumption):
- (c). P connects two vertices v_r and v_s of C, is internally disjoint from C and contains a vertex $x_0 \in X$ incident with an edge e_0 of M(C):
- (d). Subject to (a), (b) and (c), let H be the subgraph of $G\backslash V(C)$, which contains x_0 , e_0 and |V(H)| is minimal.

Set $R = V(G) \setminus V(C)$ and A = N(H). We give an orientation of C, and let $v_1, v_2, \dots, v_{|A|}$ be the vertices of A, occurring on \overrightarrow{C} in consecutive order. So $v_r, v_s \in A$. Hence, we obtain the assertion:

(1) for any $i \in \{1, 2, \dots, |A|\}$, either $v_i^+ \overrightarrow{C} v_{i+1}^- \cap X \neq \emptyset$ or there exists a vertex $u' \in v_i^+ \overrightarrow{C} v_{i+1}^-$ such that u' is adjacent to a vertex $w' \in X \setminus V(C)$.

Assuming the contrary to (1), i.e., $v_i^+ \overrightarrow{C} v_{i+1}^- \cap X = \emptyset$ and there exists no vertex $u' \in v_i^+ \overrightarrow{C} v_{i+1}^-$ such that u' is adjacent to a vertex $w' \in X \setminus V(C)$, we consider the cycle $C' = v_i H v_{i+1} \overrightarrow{C} v_i$, we easily get either $|V(C') \cap X| > |V(C) \cap X|$ or $|V(C') \cap X| = |V(C) \cap X|$ which contradicts to the condition

(b) or (d). This leads to a contradiction to the choice of C. Indeed, the assertion (1) holds.

Let u_{r1} be the first vertex on $v_r^+ \overrightarrow{C} v_{r+1}^-$ such that either $u_{r1} \in X$ or u_{r1} is adjacent to a vertex $u_{r2} \in X \setminus V(C)$. Set $x_r = u_{r1}$ if $u_{r1} \in X$ and $x_r = u_{r2}$ otherwise. Define $u_{s1} \in v_s^+ \overrightarrow{C} v_{s+1}^-$ and u_{r2} , x_s similarly. We have that

(2) $x_i \neq x_j, x_i x_j \notin E(G)$ and $N(x_i) \cap N(x_j) \cap R = \emptyset$ $i, j \in \{0, r, s\}$ and $i \neq j$.

otherwise we contradict (a) or (d). A similar argument shows that

(3) $x_i v \notin E(G)$ whenever $v \in v_j^+ \overrightarrow{C} u_{j1} \cup \{x_j\}, i \in \{0, r, s\}, j \in \{r, s\}$ and $i \neq j$.

For any $v_i \in A \setminus \{v_r, v_s\}$, set $u_{i1} = v_i^+$. Let $u_{i2} = u_{i1}^+$ if $N(u_{i1}) \cap R = \emptyset$, otherwise let u_{i2} be an arbitrary vertex in $N(u_{i1}) \cap R$. Then we obtain

- (4) $x_r(x_s) \neq u_{i2}, u_{i2} \neq u_{j2}$ $(i, j \in \{1, 2, \dots, |A|\} \setminus \{r, s\} \text{ and } i \neq j).$ otherwise contradicting (a) or (d). Furthermore, we get that
- (5) $x_k u_{im} \notin E(G)$ $(i \in \{1, 2, \dots, |A|\} \setminus \{r, s\}; k=r, s; m=1, 2.)$ We can also obtain the following observations (otherwise contradicting the choice of C):
- (6) if $v \in u_{r1}^+ \overrightarrow{C} v_s^-$ and $x_s v \in E(G)$, then $x_r v^+ \notin E(G)$:
- (7) if $v \in u_{s_1}^+ \overrightarrow{C} v_r^-$ and $x_r v \in E(G)$, then $x_s v^+ \notin E(G)$. Let $U = V(C) \cup \{x_r, x_s\} \cup \{u_{i2} | i \in \{1, 2, \dots, |A|\} \setminus \{r, s\}\}$. We define a bijection $f: U \longrightarrow U$ as follows:
- (8) if $x_i \neq u_{i1}$, then $f(u_{i1}) = x_i$ and $f(x_i) = u_{i1}^+$ (i = r, s):
- (9) if $u_{i2} \notin V(C)$, then $f(u_{i1}) = u_{i2}$ and $f(u_{i2}) = u_{i1}^+$ ($i \in \{1, 2, \dots, |A| \setminus \{r, s\}\}$):
- (10) if f(v) is not yet defined as above, then $f(v) = v^+$. We consider the following sets:

$$A(x_r) = \{v \in (u_{r1} \overrightarrow{C} u_{s1}^- \cup \{x_r\} \cup \{u_{i2} | i \in \{r+1, r+2, \dots, s-1\}\}) \\ | x_r f(v) \in E(G)\}$$

$$A(x_s) = \{v \in (u_{r1} \overrightarrow{C} u_{s1}^- \cup \{x_r\} \cup \{u_{i2} | i \in \{r+1, r+2, \dots, s-1\}\}) \\ | x_s v \in E(G)\}$$

$$B(x_r) = \{v \in (u_{s1} \overrightarrow{C} u_{r1}^- \cup \{x_s\} \cup \{u_{j2} | j \in \{s+1, s+2, \dots, r-1\}\}) \\ | x_r v \in E(G)\}$$

$$B(x_s) = \{v \in (u_{s1} \overrightarrow{C} u_{r1}^- \cup \{x_s\} \cup \{u_{j2} | j \in \{s+1, s+2, \dots, r-1\}\}) \\ | x_s f(v) \in E(G)\}$$

$$D(x_i) = \{v \in V(G) \setminus U | x_i v \in E(G)\}$$

$$i \in \{0, r, s\}.$$

Set $AB(x_r, x_s) = A(x_r) \cup A(x_s) \cup B(x_r) \cup B(x_s)$ and $D(x_r, x_s) = D(x_r) \cup D(x_s)$. Noting that f is bijection, we obtain

$$d(x_i) = |A_i| + |B_i| + |D_i| \qquad (i = r, s)$$

and

$$d(x_0) = |A \cap N(x_0)| + |D(x_0)|.$$

Observing (2) to (7), we have that the sets $A(x_r)$, $A(x_s)$, $B(x_r)$, $B(x_s)$, $D(x_0)$, $D(x_r)$ and $D(x_s)$ are pairwise disjoint, and the x_0 , u_{i1} ($i \in \{1, 2, \dots, |A|\} \setminus \{r, s\}$) are in none of these sets. Noting that x_0 , x_r , $x_s \in X$, we conclude that

$$\sigma_{3}(X) \leq d(x_{0}) + d(x_{r}) + d(x_{s})
\leq |A \cap N(x_{0})| + |D(x_{0})| + |A(x_{r})| + |B(x_{r})| + |D(x_{r})|
+ |A(x_{s})| + |B(x_{s})| + |D(x_{s})|
= |A \cap N(x_{0})| + |D(x_{0})| + |AB(x_{r}, x_{s})| + |D(x_{r}, x_{s})|
\leq |A| + (|H| - 1) + (|V(C)| - (|A| - 2))
+ (|V(G)| - |V(C)| - |V(H)|)
= n + 1$$

On the other hand, since x_0 , x_r and x_s are three pairwise nonadjacent vertices of X, we get

(12) $d(x_0) + d(x_r) + d(x_s) \ge \sigma_3(X) \ge n$ It follows that x_0 , and hence every vertex of $X \cap V(H)$, is adjacent to all but at most one vertex in A. This implies the existence of a (v_i, v_j) -path $P_{i,j}$ with all internal vertices in H for all $i, j \in \{1, 2, \dots, |A|\}$ with $i \ne j$, such that $P_{i,j}$ contains at least one vertex in $X \cap V(H)$ and either one edge in M(C) or is adjacent to at least one edge in M(C). Again using (11), we obtain that at most one of the following assertions holds:

- (13) (i). at most one vertex u_{i1} of $\{u_{11}, u_{21}, \dots, u_{|A|1}\} \setminus \{u_{r1}, u_{s1}\}$ satisfying $u_{i1} \notin X$;
 - (ii), at most one vertex of $V(G)\setminus (V(C)\cup V(H))$ is not in $D(x_r,x_s)$.

Without loss of generality, we may assume that $u_{i1} \in X$ for any $i \in \{1, 2, \dots, |A|\} \setminus \{r, s\}$ (otherwise we easily obtain a contradiction in the similar argument below).

So we set $x_i = u_{i1}$ for any $i \in \{1, 2, \dots, |A|\}$. For each $i \in \{1, 2, \dots, |A|\}$, if $v \in x_i \overrightarrow{C} v_{i+1}^-$ such that $x_i v \in E(G)$, let u'_{i1} be the first vertex on $v = \overleftarrow{C} x_i$ such that $u'_{i1} \in X$ or u'_{i1} is adjacent to a vertex $u'_{i2} \in X \setminus V(C)$. Set $x'_i = u'_{i1}$ if $u'_{i1} \in X$ and $x'_i = u'_{i2}$ otherwise. We call that x'_i is an i - vertex respect to v, maybe $x_i = x'_i$. In particular, x_i is an i-vertex.

If x_r' is an r-vertex and x_s' is an s-vertex, substitute x_r' and x_s' for x_r and x_s , the observations (2) through (12) still hold. Moreover, observations (2) through (12) actually hold for arbitrary r and s with $1 \le r < s \le |A|$. From (11) and (12), we also deduce the follows $(1 \le r < s \le |A|)$:

(14) if x'_r is an r-vertex and x'_s is an s-vertex, then at most one of the following assertions holds:

- (i). at most one vertex of $V(C)\setminus\{u_{i1}|i\in\{1,2,\cdots,|A|,i\neq j\}$ is not in $AB(x'_r, x'_s)$;
- (ii), at most one vertex of $V(G)\setminus (V(C)\cup V(H))$ is not in $D(x'_r, x'_s)$.

Without loss of generality, we may assume that $x'_r, x'_s \in V(C) \cap X$.

Now, we give some notations. For any $i \in \{1, 2, \dots, |A|\}$, let w_{i1} be the last vertex on $v_i^+ \overrightarrow{C} v_{i+1}^-$ such that either $w_{i1} \in X$ or w_{i1} is adjacent to a vertex $w_{i2} \in X \setminus V(C)$. Set $y_i = w_{i1}$ if $w_{i1} \in X$ and $y_i = w_{i2}$ otherwise. With the similar arguments as above (in the given reverse orientation of C), we have that $y_i \in V(C) \cap X$ for any $i \in \{1, 2, \dots, |A|\}$.

- For $s \in \{1, 2, \dots, |A|\}$, we can obtain the next three observations. (15) if $v \in v_{s+1}^+ \overline{C} v_s$ and $x_s v \in E(G)$, then $y_s v^- \notin E(G)$, otherwise we easily construct an X-longer cycle than C.
- (16) if $v \in v_{s+1}^+ \overrightarrow{C} v_s$ and $x_s v \in E(G)$, then
 - (i). if $N(v_{s+1}^-) \cap R = \emptyset$ or $v_{s+1}^- \notin X$, then $v_{s+1}^{--} v^- \notin E(G)$:
- (ii). if $N(v^-) \cap R = \emptyset$ or $v^- \notin X$, then $y_s v^{--} \notin E(G)$. otherwise contradicting assumptions (a) to (d).
- (17) if $v \in v_{s+1} \overrightarrow{C} v_s^{-1}$ and $x_s v \in E(G)$, then
 - (i). $y, v^+ \notin E(G)$;
 - (ii). if $N(v_{s+1}^-) \cap R = \emptyset$ or $v_{s+1}^- \notin X$, then $v_{s+1}^{--} v^+ \notin E(G)$:
- (iii). if $N(v^+) \cap R = \emptyset$ or $v^+ \notin X$, then $y_s v^{++} \notin E(G)$. otherwise contradicting assumptions (a) to (d).

Using observations as above, we now derive contradictions in all cases distinguished below. If $v \in V(G)$, then by N'(v) we denote the set of vertex x such that there is a (v, x)-path of length at least 1 with all internal vertices in $V(G)\backslash V(C)$. In particular, $N(v)\subseteq N'(v)$. For $S\subseteq V(G)$, set $N'(S) = \bigcup_{v \in S} N'(v) \setminus S$. (Noting $x_i \in X \cap V(C)$ for any $i \in \{1, 2, \dots, |A|\}$.

Case 1. For all
$$i \in \{1, 2, \dots, |A|\}$$
, $N'(v_i^+ \overrightarrow{C} x_i) \cap V(C) \subseteq v_i \overrightarrow{C} v_{i+1} \cup A$ and $N'(y_i \overrightarrow{C} v_{i+1}) \cap V(C) \subseteq v_i \overrightarrow{C} v_{i+1} \cup A$.

Suppose there exist integer r, s and vertices x, y such that $1 \le r < s \le |A|$. $x \in x_r^+ \overrightarrow{C} v_{r+1}^-, y \in x_s^+ \overrightarrow{C} v_{s+1}^-$ and $xy \in E(G)$. Since by the hypotheses of Case $1 x_s x, x_r y \notin E(G)$, we get either $x_r x^+$ or $x_s y^+$ is in E(G), otherwise x. $y \notin AB(x_r, x_s)$, contradicting (14). Without loss of generality, we assume $x_r x^+ \in E(G)$. So we get $x_s y^+ \notin E(G)$, otherwise we get an X-longer cycle than C. Hence we obtain

(i) If exists $y' \in N(y^+) \cap R$, then $y' \notin D(x_s)$ (otherwise we get an X-longer cycle then C). So $y, y' \notin AB(x_r, x_s)$, contradicting (14).

(ii) If $N(y^+) \cap R = \emptyset$, then $x_s y^{++} \notin E(G)$ (otherwise contradicting assumptions (a) to (d)). So $y, y^+ \notin AB(x_r, x_s)$, contradicting (14).

This contradiction with (14) shows that in the case no edge, and similarly no path with all internal vertices in $V(G)\backslash V(C)$, joins two vertices in different sets of the collection $\{v_i^+ \overrightarrow{C} v_{i+1}^- | 1 \le i \le |A|\}$, then $\omega(G\backslash A) \ge |A| + 1$, contradicting the fact that G is 1-tough.

Case 2. For some $i \in \{1, 2, \dots, |A|\}$, $N'(v_i^+ \overrightarrow{C} x_i) \cap V(C) \not\subseteq v_i \overrightarrow{C} v_{i+1} \cup A$ or $N'(y_i \overrightarrow{C} v_{i+1}^-) \cap V(C) \not\subseteq v_i \overrightarrow{C} v_{i+1} \cup A$.

Assume, e.g. $z_r \in N'(v_s^+ \overrightarrow{C} x_s)$, where $z_r \in v_r^+ \overrightarrow{C} v_{r+1}^-$, r < s and $|v_r^+ \overrightarrow{C} z_r|$ is minimum. Moreover, we have $z_r \in x_r^+ \overrightarrow{C} v_{r+1}^-$, otherwise we get an X-longer cycle than C, a contradiction. For convenience, we may assume $x_s z_r \in E(G)$, in the other cases we easily get a contradiction in the similar manner.

By (3), $z_r \neq x_r$. Let z be a vertex in $x_r^+ \overrightarrow{C} z_r^-$ with $x_r z \in E(G)$ such that $|z\overrightarrow{C} z_r|$ is minimum. Let x_z be the r-vertex respect to z. For convenience we suppose $x_z \in X \cap V(C)$, maybe $x_z = x_r$. Either $z = z_r^-$ or $z = z_r$. otherwise $z, z^+ \notin AB(x_r, x_s)$, contradicting (14). So we distinguish two subcases.

Case 2.1. $z = z_c^-$

In the case, $x_r z_r^+ \notin E(G)$. Moreover, we have

 $(18). x_r z_r^{++} \notin E(G).$

In the fact, suppose $x_r z_r^{++} \in E(G)$. If $N(z_r^+) \cap R = \emptyset$, we get a cycle $C' = v_r P_{r,s} v_s$ $C z_r^{++} x_r C z_r x_s C v_r$, which satisfies either $|V(C') \cap X| > |V(C) \cap X|$ or $|V(C') \cap X| = |V(C) \cap X|$ with |M(C')| < |M(C)|, contradicting the choice of C. If $z^* \in N(z_r^+) \cap R$, then $x_r z^*$, $x_s z^* \notin E(G)$, otherwise we get an X-longer cycle C' than C. Hence $z,z^* \notin AB(x_r,x_s) \cup D(x_r,x_s)$, contradicting (14). Indeed, $x_r z_r^{++} \notin E(G)$.

By (15) and (17), $y_s z_r^+, y_s z_r^- \notin E(G)$. Hence $x_s y_s' \notin E(G)$ for any $y_s' \in y_s^+ \overrightarrow{C} v_{s+1}$, i.e., y_s is not an s-vertex, otherwise $z_r^-, z_r^+ \notin AB(x_r, y_s)$, contradicting (14). Thus $x_r y_s \in E(G)$, otherwise $z, y_s \notin AB(x_r, x_s)$, contradicting (14).

Note that $x_r z_r^{++} \notin E(G)$, we have $x_s z_r^{+} \in E(G)$, otherwise $z, z_r^{+} \notin AB(x_r, x_s)$, contradicting (14). With the similar argument as (18), we have $x_r z_r^{+++} \notin E(G)$. Using inductive method, we obtain $z_r \overrightarrow{C} v_{r+1} \subseteq N(x_s)$ and $z_r \overrightarrow{C} v_{r+1} \cap N(x_r) = \emptyset$, otherwise contradicting (14).

Also note that $y_s v_{r+1}^- \notin E(G)$ and $y_s \in X$ $(x_s \neq y_s)$, otherwise we get an X-longer cycle than C), there exists $x_s^* \in X \cap x_s^+ \overrightarrow{C} y_s$ satisfying $z_r \overrightarrow{C} v_{r+1} \not\subseteq N(x_s^*)$. Choose that x_s' is the first vertex in $X \cap x_s^+ \overrightarrow{C} y_s$ satisfying such condition. Moreover, we may assume that no vertex on $x_s^+ \overrightarrow{C} (x_s')^-$ is not

adjacent to any vertex $x \in X \setminus V(C)$, otherwise we replace x by x'_s and also get a contradiction with the similar manner. For convenience, we also assume $x_s^+ \overrightarrow{C}(x'_s)^- \cap X = \emptyset$. Note that, in this case, if we replace x_s by x'_s , then observations (2)-(18) still hold. Hence there exists exactly one vertex on $z_r \overrightarrow{C} v_{r+1}$ which is not a neighbor of x'_s , otherwise there exist $w, w' \in z_r \overrightarrow{C} v_{r+1}$ which are not neighbors of x'_s , then $w, w' \notin AB(x_r, x'_s)$, contradicting (14). So we may assume that w is only one vertex on $z_r \overrightarrow{C} v_{r+1}$ which is not a neighbor of x'_s .

Suppose $zx'_s \in E(G)$, then $x_zy_s^+ \notin E(G)$, otherwise we get an X-longer cycle $C' = x_zy_s^+ \overrightarrow{C}v_r$ $P_{r,r+1} \overrightarrow{C}x_sv_{r+1}^+ \overrightarrow{C}zx'_s\overrightarrow{C}y_sx_r \overrightarrow{C}x_z$, a contradiction. If $y_s^+x'_s \in E(G)$, then $z_r^-, z_r^+ \notin AB(x_r, y_s)$, contradicting (14). If $y_s^+x'_s \notin E(G)$, then $y_s, w \notin AB(x_z, x'_s)$ (note $y_sx_z \notin E(G)$ in the case, otherwise the cycle $x'_sz\overrightarrow{C}v_{r+1}^-x_s\overrightarrow{C}v_{r+1}P_{r+1,s+1}v_{s+1} \overrightarrow{C}x_zy_s\overrightarrow{C}x'_s$ contradicts the choice of C), contradicting (14). Indeed $zx'_s \notin E(G)$. Hence $w, z \notin AB(x_r, x'_s)$, a contradiction.

Case 2.2. $z = z_r$

Case 2.2.1 $x_s v \notin E(G)$ for any $v \in y_s^+ \overrightarrow{C} v_{s+1}$

For any vertex $v \in y_s \overrightarrow{C} v_{s+1}^-$, we have $x_z v \notin E(G)$, otherwise we get an X-longer cycle than C. In particular $x_z y_s$, $x_z v_{s+1}^- \notin E(G)$. Hence, by (14), $y_s = v_{s+1}^-$. Moreover, we get (19), $x_z y_s^- \notin E(G)$.

In the fact, suppose $x_zy_s^- \in E(G)$. If there exists $y' \in N(y_s)\backslash V(C)$, then $y'x_s \notin E(G)$, otherwise we get an X-longer cycle than C. Hence $y_s, y' \notin AB(x_z, x_s) \cup D(x_z, x_s)$, contradicting (14). This shows that $N(y_s) \subseteq N(C)$. So we get the cycle $C' = x_zy_s^- \overrightarrow{C} x_sz_r \overrightarrow{C}v_sP_{s,s+1}v_{s+1} \overrightarrow{C}x_z$ such that $|V(C') \cap X| > |V(C') \cap X|$ or $|V(C') \cap X| = |V(C) \cap X|$ with |M(C')| < |M(C)|, a contradiction. Indeed $x_zy_s^- \notin E(G)$.

Thus $y_s x_s \in E(G)$, otherwise $y_s, y_s^- \notin A(x_z, x_s)$. Without loss of generality, we may assume that $y_s^- \in X$ (otherwise we find an s-vertex respect to y_s , say y_s' , and substitute y_s' for y_s^-), i.e., y_s^- is an s-vertex respect to y_s .

It is clear to see $x_z z_r^+ \notin E(G)$. Moreover, we get (20). $x_z z_r^{++} \notin E(G)$.

In the fact, suppose $x_z z_r^{++} \in E(G)$. If $N(z_r^+) \subseteq V(C)$, we get an cycle $C' = v_s \overleftarrow{C} z_r^{++} x_z \overleftarrow{C} x_r z_r x_s \overrightarrow{C} v_r P_{r,s} v_s$ such that $|V(C') \cap X| > |V(C) \cap X|$ or $|V(C') \cap X| = |V(C) \cap X|$ with |M(C')| < |M(C)|, a contradiction. If there exists $y \in N(z_r^+) \setminus V(C)$, then $yx_r, yx_s \notin E(G)$, otherwise we easily get an X-longer cycle than C. Then $y_s, y \notin AB(x_z, x_s)$, contradicting (14). Indeed, $x_z z_r^{++} \notin E(G)$.

Recalling that $x_z y_s \notin E(G)$, we conclude that $x_s z_r^+ \in E(G)$, since otherwise $z_r^+, y_s \notin A(x_z, x_s)$. Noting that $N(y_s) \subseteq V(C)$ (otherwise if there exists $y \in N(y_s) \setminus V(C)$, then $y, y_s \notin AB(x_z, x_r) \cup D(x_z, x_r)$), we get

 $y_s^- z_r, y_s^- z_r^+ \notin E(G)$. It follows that $z_r, z_r^+ \notin AB(x_z, y_s^-)$, a contradiction. Case 2.2.2 $x_s v \in E(G)$ for some $v \in y_s^+ \overrightarrow{C} v_{s+1}$

In the case, without loss of generality, we may assume $x_s v_{s+1} \in E(G)$, i.e., y_s is an s-vertex respect to v_{s+1} . It is clear to see $x_z z_r^+ \notin E(G)$. Moreover, we get

(21). $y_s z_r \in E(G)$.

In the fact, suppose $y_s z_r \notin E(G)$. If there exists $z \in N(z_r^+) \cap R$, then we get $z \notin D(x_z, y_s)$, otherwise, we easily get an X-longer cycle than C, so $z, z_r \notin AB(x_z, y_s)$, contradicting (14). If $N(z_r^+) \cap R = \emptyset$, we get $z_r^+ \notin AB(x_z, y_s)$, also $x_z z_r^{++} \notin E(G)$, otherwise we get a cycle $C' = v_s \overleftarrow{C} z_r^{++} x_z \overleftarrow{C} x_r x_s \overrightarrow{C} v_r P_{r,s} v_s$ with $|V(C') \cap X| \ge |V(C) \cap X|$ and |M(C')| < |M(C)|, contradicting the choice of C. So $z_r, z_r^+ \notin AB(x_z, y_s)$, contradicting (14). Indeed $y_s z_r \in E(G)$.

Now, for any $v \in y_r \overrightarrow{C} v_{r+1}^-$, we have $x_z v \notin E(G)$, otherwise the cycle $x_z v \overrightarrow{C} z_r y_s \overrightarrow{C} v_{r+1} P_{r+1,s+1} v_{s+1} \overrightarrow{C} x_z$ is an X-longer than C. It is clear that $y_s v \notin E(G)$ for any $v \in y_r \overrightarrow{C} v_{r+1}^-$. Below, we will show (22). $y_r^- = z_r^+$.

If there exists $z \in N(z_r^+) \cap R$, we have $y_r = v_{r+1}^-$, otherwise $z, y_r \notin AB(x_z, y_s) \cup D(x_z, y_z)$. So $N(y_r) \cap R = \emptyset$, otherwise if there exists $y' \in N(y_r) \cap R$, then $z, y' \notin D(x_z, y_s)$ (if z = y', we have $y_r^-y_s \notin E(G)$, then $z, y_r^- \notin AB(x_z, y_s) \cup D(x_z, y_s)$), contradicting (14). Moreover, $y_r^-y_s \notin E(G)$, otherwise the cycle $y_s y_r^- C v_{s+1} P_{s+1,r+1} C y_s$ contradicting to the choice of C. Hence $z, y_r^- \notin AB(x_z, y_s)$, a contradiction. If $N(z_r^+) \cap R = \emptyset$, we have $x_z z_r^{++} \notin E(G)$. As the similar argument above, we get $y_r^- y_s \notin E(G)$. It follows that $z_r^+, y_r^- \notin AB(x_z, y_s)$. Hence, by (14), $y_r^- = z_r^+$.

We now show that

(23). x_s connects to all vertices in $x_s^+ \overrightarrow{C} v_{s+1}$ by some paths whose internal vertices in $V(G)\backslash V(C)$.

Assuming the contrary, let v be the vertex in $x_s^+\overrightarrow{C}$ v_{s+1} such that x_s is not connected to v by a path whose internal vertices in $V(G)\backslash V(C)$ and $|v\overrightarrow{C}v_{s+1}|$ is minimum. Then $v\in x_s^+\overrightarrow{C}v_{s+1}^-$ and $x_sv^+\in E(G)$. We let $v^*=v^-$ if $N(v)\cap R=\emptyset$ and v^* be an arbitrary vertex in $N(v)\backslash V(C)$, let $z=z_r^+$ if $N(z_r^+)\cap R=\emptyset$ and z be an arbitrary vertex in $N(z_r^+)\backslash V(C)$. Hence, we easily obtain v^* , $z\notin AB(x_r,x_s)$, otherwise we get a cycle contradicting the choice of C (note $y_sz_r\in E(G)$ by (21)). This contradiction proves (23).

Similarly we have

(24). x_r connects to all vertices in $x_r^+ \overrightarrow{C} v_r$ by some paths whose internal vertices in $V(G)\backslash V(C)$.

By (21), we have $y_s z_r \in E(G)$, hence $x_z z_r^{++} \notin E(G)$, otherwise we get an X-longer cycle than C. If there exists $y \in N(y_r^-) \backslash V(C)$, then

 $yy_s, y_r^-y_s \notin E(G)$, hence $y, y_r^- \notin AB(x_z, y_s) \cup A(x_z, y_s)$. This shows that $N(y_r^-) \subseteq V(C)$. Moreover, $x_s z_r^{++} (u_s y_r) \notin E(G)$ by (16). Recalling that $x_s z_r^{++} \notin E(G)$, we now note that for all $i \in \{1, 2, \cdots, |A|\} \setminus \{r\}$ the assumption $x_i z_r^+ \in E(G)$ or $x_i z_r^{++} \in E(G)$ leads to a contradiction by applying the above arguments substitute s for i. Thus $x_i z_r^+, x_i z_r^{++} \notin E(G)$ for all $i \in \{1, 2, \cdots, |A|\} \setminus \{r\}$. By (20), noting $y_s z_r \in E(G)$ and x_r is r-vertex, we have $x_r z_r^+, x_r z_r^{++} \notin E(G)$. Hence $x_i z_r \in E(G)$ $(i \in \{1, 2, \cdots, |A|\} \setminus \{r\})$, for otherwise $z_r, z_r^+ \notin AB(x_r, x_i)$, contradicting (14). It now follows that (23) remains true if s is replaced by i $(i \in \{1, 2, \cdots, |A|\} \setminus \{r\})$. By (14), $AB(x_r, x_s) = V(C) \setminus (\{z_r\} \cup \{x_j|j \in \{1, 2, \cdots, |A|\} \setminus \{r, i\})$, implying that

 $N'(x_r) \cap V(C) \subset v_r^+ \overrightarrow{C} z_r \cup A$

and

 $N'(x_i) \cap V(C) \subseteq v_i^+ \overrightarrow{C} v_{i+1} \cup A \cup \{z_r\} \quad (i \in \{1, 2, \dots, |A|\} \setminus \{r\}.$

Using the properties as above, we conclude that no edge, and similarly no path with all internal vertices in $V(G)\backslash V(C)$, joins two vertices in different sets of the collection $\{v_i^+\overrightarrow{C}v_{i+1}^-|1\leq i\leq |A|, i\neq r\}\cup\{v_r^+\overrightarrow{C}v_r^-\}\cup\{z_r^+\overrightarrow{C}v_{i+1}^-\}$. But then $\omega(G\backslash (A\cup\{z_r\}))\geq |A\cup\{z_r\}|+1$, our final contradiction.

Proof of Lemma 7. By assumption, $X \setminus V(C)$ is an independent set in G[X] and a standard argument shows that A^X is an independent set in G[X] since C is a X-longest cycle which is X-dominating. Hence it suffices to show that no vertex in $X \setminus V(C)$ is adjacent to any vertex in A^X .

Let $x_1, x_2, \dots, x_{|A|}$ be the vertices of A^X , occurring on \overrightarrow{C} . Suppose that exists $x' \in X \setminus V(C)$ such that $x'x_i \in E(G)$ for some $i \in \{1, 2, \dots, |A|\}$. Clearly $x' \neq x_0$ since C is a X-longest cycle. Without loss of generality, we assume that i = 1, i.e. $x'x_1 \in E(G)$. We consider following sets of vertices.

$$\begin{array}{lll} A_1 & = & \{v \in x_1 \overrightarrow{C} x_{|A|}^- \mid x'v^+ \in E(G)\} \\ A_2 & = & \{v \in x_1 \overrightarrow{C} x_{|A|}^- \mid x_{|A|}v \in E(G)\} \\ B_1 & = & \{v \in x_{|A|} \overrightarrow{C} x_1^- \mid x'v \in E(G)\} \\ B_2 & = & \{v \in x_{|A|} \overrightarrow{C} x_1^- \mid x_{|A|}v^+ \in E(G)\} \\ D & = & \{v \in V(G) \backslash V(C) \mid x_{|A|}v \in E(G)\} \end{array}$$

Then we get $A_1 \cap A_2 = \emptyset$, otherwise, if $v \in A_1 \cap A_2$, we can obtain a X-longer cycle C' than C as follows:

 $v_{|A|} x_0 v_1 \overrightarrow{C} x_{|A|} v \overrightarrow{C} v^+ x' x_1 \overrightarrow{C} v_{|A|} \qquad \text{(if} \quad v \in v_{|A|} \overrightarrow{C} x_{|A|}^- \text{)}$

or

$$v_{[A]}x_0v_1 \overleftarrow{C} x_{[A]}v \overleftarrow{C} x_1x'v^+ \overrightarrow{C} v_{[A]} \qquad (\text{if} \quad v \in x_1 \overrightarrow{C} v_{[A]})$$

and we get $B_1 \cap B_2 = \emptyset$, otherwise, if $v \in B_1 \cap B_2$, we can obtain a X-longer cycle C' than C as follows:

$$v_{|A|}x_0v_1\overleftarrow{C}vx'x_1\overrightarrow{C}v_{|A|} \qquad \text{(if } v=x_{|A|}\text{)}$$
 or
$$v_{|A|}x_0v_1\overleftarrow{C}v^+x_{|A|}\overrightarrow{C}vx'x_1\overrightarrow{C}v_{|A|} \qquad \text{(if } v\in x_{|A|}^+\overrightarrow{C}v_1^-\text{)}$$
 or
$$v_{|A|}x_0v_1\overleftarrow{C}x_{|A|}v^+\overrightarrow{C}v_{|A|} \qquad \text{(if } v\in v_1\overrightarrow{C}x_1^-\text{)}$$

Since $N(x') = A_1^+ \cup B_1 \cup \{x_1\}$, then $d(x') = |A_1| + |B_1| + 1$. Similarly, we have $d(x_{|A|}) = |D| + |A_2| + |B_2|$. Moreover, we obtain that

$$d(x_0) + d(x') + d(x_{|A|}) = |A| + |A_1| + |B_1| + 1 + |D| + |A_2| + |B_2|$$
$$= |A| + |A_1 \cup A_2| + |B_1 \cup B_2| + |D| + 1$$

Clearly, we can obtain the fact that $x_i \notin A_1$ for each $i \in \{1, 2, \dots, |A|\}$, otherwise we can find a X-longer cycle C'' than C. Since $x_1, x_2, \dots, x_{|A|}$ are independent, then $x_i \notin A_2$ for each $i \in \{1, 2, \dots, |A| - 1\}$. It is easy to see that $v_1 \notin B_1 \cup B_2$, otherwise we can find a X-longer cycle C'' than C. Thus, noting that $x, x', x_{|A|} \in X$, we obtain the following

$$\begin{array}{lll} n \leq \sigma_3(X) & \leq & d(x_0) + d(x') + d(x_{|A|}) \\ & \leq & |A| + (|V(C)| - (|A| - 1) - 1) + (n - (|V(C)| - 2) + 1) \\ & \leq & n - 1 \end{array}$$

a contradiction. Thus we prove the lemma.

Outline Proof of Theorem 8. Let C be an X-longest cycle of G which is X-dominating. Assume C is chosen such that $\max\{d(v)|v\in X\setminus V(C)\}$ is maximum. If $X\setminus V(C)=\emptyset$, there is nothing to prove. Thus we assume $X\setminus V(C)=\{u_0,u_1,\dots,u_t\}$, such that $d(u_0)\geq d(u_1)\geq \dots \geq d(u_t)$. Let $A=N(u_0)$ and $v_1,v_2,\dots,v_{|A|}$ be the vertices of A and $x_1,x_2,\dots,x_{|A|}$ be the vertices of A^X , occurring on \overrightarrow{C} and, without loss of generality, we assume that $d(x_1)=\min\{d(x_i)|1\leq i\leq |A|\}$. From Lemma 7, we have $|X\setminus V(C)|+|A^X|\leq \alpha(X)$. Hence $|X\cap V(C)|\geq |X|+|A^X|-\alpha(X)=|X|+d(u_0)-\alpha(X)$. Thus it suffices to show that $d(u_0)\geq \frac{1}{3}\sigma_3(X)$. It is clearly true if $t\geq 2$.

Suppose t=1, $d(u_0) < \frac{1}{3}\sigma_3(X)$ and consider x_1 . Set $R = V(G) \setminus V(C)$. For $j \in \{2, 3, \dots, |A|\}$, set $u_{j1} = v_j^+$, and let $u_{j2} = u_{j1}^+$ if $N(u_{j1}) \cap R = \emptyset$, otherwise let u_{j2} be the an arbitrary vertex in $N(u_{j1}) \cap R$.

Suppose $x_1u_{j2} \in E(G)$ for some $j \in \{2, 3, \dots, |A|\}$, then the cycle $C' = u_0v_j \stackrel{\frown}{C} x_1u_{j2} \stackrel{\frown}{C} v_1u_0$ is X-longer than C, unless $u_{j1} \in X$ and $N(u_{j1}) \cap R = \emptyset$. Moreover, if $u_{j1} \in X$ and $N(u_{j1}) \cap R = \emptyset$, the cycle C' is X-dominating and has $|V(C') \cap X| = |V(C) \cap X|$ but includes u_0 and omits u_{j1} . However, u_0, u_1, u_{j1} are independent and belongs to X, thus $d(u_0) + d(u_1) + d(u_{j1}) \geq$

 $\sigma_3(X)$. This implies $d(u_{j1}) > \frac{1}{3}\sigma_3(X) > d(u_0)$, contradicting the choice of C. Indeed, $x_1u_{j2} \notin E(G)$ for any $j \in \{2, 3, \dots, |A|\}$.

Clearly, we have that $x_1u_{j1} \notin E(G)$ for any $j \in \{2, 3, \dots, |A|\}$. We denote $s = |\{j|u_{j2} \notin V(C), j \in \{2, 3, \dots, |A|\}|$. We note that, any distinct two vertices of $\{x_1, u_{21}, u_{22}, \dots, u_{|A|1}\}$ have no neighbors in $V(G) \setminus V(C)$, $u_0, u_1 \notin N(x_1), u_{j2} \neq u_0, u_1 \ (j \in \{2, 3, \dots, |A|\})$ and $u_{j2} \notin N(x_1)$. Since $N(x_1) \cap V(C) \subseteq V(C) \setminus (\{x_1\} \cup \{u_{j1}, u_{j2} | j \in \{2, 3, \dots, |A|\}\})$, hence we obtain th follows

 $d(x_1) \leq |V(C)| - (d(u_0) + d(u_0) - 1 - s) + |N(x_1) \setminus V(C)|$ But then $n \leq d(x_1) + d(u_0) + d(u_1) \leq d(x_1) + 2d(u_0) \leq |V(C)| + s + |N(x_1) \setminus V(C)| + 1 \leq n - 2 + 1 = n - 1$, a contradiction.

Finally, the proof for t=0 is modeled along the lines of the proof of Theorem 5. Whenever a contradiction is obtained in the proof of Theorem 5 by finding an X-longest cycle, we now find a contradiction either in the same way, or by finding an X-dominating cycle C' such that $|V(C') \cap X| = |X| - 1$ and $v_0 \in X \setminus V(C')$ has $d(v_0) > d(u_0)$. The argument, although quite lengthy is involved, is tedious and is thus omitted here. The full proof can be found in the appendix of [9].

Thus we prove the theorem.

Acknowledgments

I thank one anonymous referee for the suggestion to this revised paper.

References

- [1] D. Bauer, H.J. Broersma and H.J. Veldman, Around three lemmas in hamiltonian graph theory, In: R. Bodendiek and R. Henn, editors, Topics in Combinatorics and Graph Theory, Essays in Honour of Gerhand Ringel, Physica-Verlag, Heidelberg (1990) 101-110.
- [2] D. Bauer, A. Morgana, E.F. Schmeichel and H.J. Veldmam, Long cycles in graphs with large degree sums. Discrete Math. 79 (1989/1990) 59-70.
- [3] A.Bigalke and H.A. Jung, *Uber hamiltonsche kreise und unabhangige ecken in graphen*, Monatsh. Math. 88(1979) 195-210.
- [4] J.A. Bondy and U.S.R. Murty, *Graph Theory with Its Applications* . Macmillan, London and Elserier, New York (1976).
- [5] H.J. Broersma, H. Li, J.P. Li, F. Tian and H.J. Veldman Cycles through subsets with degree sums, Discrete Math. 171 (1997), 43-54.

- [6] V. Chvátal, Tough graphs and hamiltonian circuits, Discrete Math. 4 (1973) 215-228.
- [7] H.A. Jung, On maximal circuits in finite graphs, Annals of Discrete Math. 3 (1978) 129-144.
- [8] J.P. Li, Cycles containing many vertices of large degree in 2-connected graphs with large degree sums, preprint (1993).
- [9] J.P. Li. Cycles containing many vertices of subsets in 1-tough graphs with large degree sums, preprint (1994).
- [10] O. Ore, Note on hamilton circuits, Amer. Math.Monthly 67(1960), 55.