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§1. Results

We use [4] for terminology and notations not defined here and consider
simple graph only.

Let G be a graph of order n. X C V(G) and w(G) denote the number
of components of graph G. As introduced by Chvdtal [6], a graph G is
t — tough if |S| > t - «w(G\S) for any S C V(G) with w(G\S) > 1. The
toughness of GG, denoted by 7(G), is the maximum value of ¢ for which G is
t-tough(7(HK'y) = oc for all n > 1). A cycle C of G is called X — longest if
no cycle of G contains more vertices of X than C, and by ¢(.X) we denote
the number of vertices of .Y in .Y—longest cycle. A cycle C' of G is called
X — dominating if all neighbors of each vertex of X\V(C) are on C. We
say that G is X — cyclable if G has an X—cycle, i.e., a cycle containing
all vertices of X. If X = V/(G). instead of V(G)-longest cycle and V(G)-
cvclability, we use the common terms hamilton cycle and Hamiltonian, and
() instead of ¢(V((7)). respectively. We denote by a(X) = max{|S|| S
is an independent set of vertices of the subgraph G[X] in G induced by X
}. More generally. for & < a(.X) we denote by o4 (X) the maximum value
of the degree sums (in (i) of any k pairwise nonadjacent vertices of .X; for
k> a(X). we set op(X) = k(n—a(X)). We write @ and o (G) instead of
a(V((G)) and o (V' (()). respectively.

Two classical results in hamiltonian graph theory are the following.

Theorem 1. [10] Let G be a graph of order n > 3 with ¢2(G) > n, then
G is Hamiltonian.

Theorem 2. [7] Let G be a 1-tough graph of order n > 3 with o2(G) >
n — 4. then G is Hamiltonian.

In [2]. D.Bauer et al obtained the further extension of Theorem 2.

Theorem 3. [2] Let G be a 1-tough graph of order n > 3 with o3(G) > n,
then ¢(G) > min{n.n + $03(G) — a(G)}.

Theorem 3 implies several known results. For details, readers are re-
ferrect to the surveys of D. Bauer et al in [1] and [2].

We note that, the proof of Theorem 3 relies on the following fact: if G'is
1-tough and ¢3((G) > n. then every longest cycle is dominating; Moreover, if
(i is nonhamiltonian. (¢ contains a longest cycle C with u(C) = maz{d(v)|
v €V(GN\V(C)) 2 $03(G).

Recently, H.J. Broersma. H. Li. J.P. Li, F. Tian and H.J. Veldman [5]
obtained some results involving given subsets.

Theorem 4. [5] Let i be a 2-connected graph of order n > 3 and let .X C
V(G) with o3(.X) > n + 2. then ¢(X) > min{|X|, |X|+ jo3(X) — a(X)}.
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Motivated by Theorem 4, we can obtain the following main result, which
extends the some results of D. Bauer et al {2] in terms of X-cyclability.

Theorem 5. Let G be a 1-tough graph of order n > 3 and X C
(G) with o3(.X) > n, then G contains an X-longest cycle C' which is
X-dominating.

The proof of Theorem 5 is postponed to section 2. Fou a note, under the
conditions of Theorem 5, we easily obtain that: X\V(C) is an independent
set for every X-longest cyc]e C.

Theorem 5 admits the following corollary, which extends the theorem
of Bigalke and Jung (3] in terms of X-cyclability.

Corollary 6 . Let G be a l-tough graph of order n > 3 and X C
V{G) with §(X) > %n, then G contains an NX-longest cycle ' which is
X-dominating.

Next key Lemma is the basis for many of the results that follows.,

Lemma 7. Let G be a graph of order n with §(X) > 2 and X C
V(G) with 03(.X) > n. Let G contain an .X-longest cycle ¢ which is Y-
dominating. If 25 € X\V(C) and A = N(xp). then (X\V(C))U AX is an
independent set of vertices. where A% contains, for each v € A, the first
vertex of X NV (C) succeeding v on C (in a fixed orientation of 7).

We note that, a weak version of Lemma 7 can be found in J.P. Li [8].
For convenience, we give the full argument in section 2.

Lemma 7 has many applications. The next Theorem is obtained by
combining Lemma 7 with Theorem 3. An outline proof of Theorem R is
given in section 2.

Theorem 8.  Let GG be a 1-tough graph of order n > 3 and let X C V()
with a3(.Y) > n. then ¢(.X) > min{|X|.|X|+ $o3(X) — a(X)}.

Theorem 8 admits the following result, which extends one result of
Bigalke and Jung [3] in terms of X-cyclability.

Theorem 9. Let Gbea l touoh graph of order n > 3 and let X C V()
with a3(.X) > mar{n,3a(X) - 2}. then G is \ —cyclable.
Proof: By assumption, a3( .\) > mar{n.3a(X)-2}. lhon (73( ) > 3a(X)
—2. Also. by Theorem 8. ¢(.X) > min{|X]. |\] + 303(X) — a(X)} >
{1X]. |1X] —:—;} Since ¢(.Y') is an integer, we have c(\) [X]. 1e. G is
X-cxclable.

We now turn our attention to graph with {{G) = = > 1. Tor N C 17(().
we easily get a(\) < a(G) < 5. then Theorem & immediately implies
our next result.

Corollary 10. Let G be a graph of order n > 3 and let .Y C V'(G) \\ith
HG) =72 1. If 63(X) > n, then ¢(.X) > min{|X]|,|X]+ foa(X) —

r+1
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A special case of Corollary 10 is the following result.

Corollary 11.  Let GG be a 2-tough graph of order n > 3 and X C V(G).
If 63(X) > n, then G is X-cyclable.

§2. Proofs

In order to prove our main results, we introduce some additional termi-
nology and notations.

Let C' a cycle of graph . \We denote by T the cycle with a given
orientation, and by T the cycle with the reverse orientation. If v, v €
V(C). then «C v denotes the consecutive vertices of C from u to v in the
direction specified by Z_} The same vertices, in reverse order, are given
by vCu. We will consider v C' v and vC u both as paths and as vertex
sets. We use u? to denote the successor of u on C and u~ to denote its
predecessor. If S C 1(C'). then S* = {¢+|v € S} and §~ = {v~|v € §}.

Proof of Theoremn 5. Let (& satisfy the conditions of Theorem 5. Assume
that no .\X-longest cycle of (¢ is .Y-dominating. Choose a cycle C' and a path
P satisfving the following conditions:

(a). C is an X-longest cycle:

(b). Subject to (a). |M(C')| is minimal, where A\ (C) denotes the set of all
edges of G\1"(C') which are incident with at least one vertex of X.
(Here. A(C') # @ by assumption):

(¢). P connects two vertices v, and v, of C. is internally disjoint from
and contains a vertex .y € .X incident with an edge g of A (C):

(d). Subject to (a). (b) and (c). let H be the subgraph of G\V'(C'). which
contains ro. ¢g and |V (H)] is minimal.

Set R = V(GN\V(C) and A = N(H). We give an orientation of C'. and let
Ur. ta. s vy be the vertices of A. occuring on f} In consecutive order.
So vt € A Hence, we obtain the assertion:

(1) for any 7 € {1.2.---.|A|}. either r}"t)r,-'_,_l N X # O or there exists
a vertex u' € r?’f’r,-‘ﬂ such that v’ is adjacent to a vertex w' €
N\V(C).

Assuming the contrary to (1). i.e.. r}"?r;l NN = { and there exists no

vertex u' € t'?’ﬁr,]_, such that u’ is adjacent to a vertex w’ € X\V(C).

we consider the cycle (7 = v,-Hv;...;?t‘;. we easily get either [V(C')NX]| >

V(CYnX]or [V(C'YNX]| = |V(C)N X| which contradicts to the condition
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(b) or (d). This leads to a contradiction to the choice of C". Indeed. the
assertion (1) holds.

Let u,; be the first vertex on v;'”?v,.'+1 such that either u,; € X or
uyy is adjacent to a vertex upo € X\V(C). Set &, = uyy if 4p; € X and
&y = uyps otherwise. Define uy; € v C vepy and upo. 2g similarly. We have
that
(2) wi#wj, ei2; ¢ E(G)and N(ai)ON(zj))NR=0 ije€{0.rs}

and i # j.
otherwise we contradict (a) or (d). A similar argument shows that
(3) v ¢ E(G) whenever v € v;-"z}uj'l U{z;}, i €{0.r.s}. j€ {r.s}
and i # j.

For any v; € A\{v,, vs}, set ujy = v,-+. Let ujs = u.?] if N(uijp)NR =0,
otherwise let u;» be an arbitrary vertex in N (u;1) N R. Then we obtain
(4)  2e(2e) # win, win F gz (L7 € {12, [A|}\{r.s} and i # j).
otherwise contradicting (a) or (d). Furthermore. we get that
(3) xruim € E(G) (fe {1.2.--- |4\ {r.s}: k=r. st m= 1, 2)

We can also obtain the following observations (otherwise contradicting
the choice of C'):

6) ifveuf, Crr and rov € E(G). then r.vt ¢ E(G):

(7) if v e uj’lﬁv; and z,v € E(G). then x,v¥ ¢ E(().

Let U7 = V(C)U {ap, 24} U{uiali € {1.2,---,|A]}\{r.5}}. We define a

bijection f: 1" — U as follows:

(8) if 2; # uir, then f(uj) = x; and f(x;) = uf} (i

(9) if wio @ V(C), then f(uiy) = uja and f(wj2) = v
(i € {12, |4\ {r s)):

(10) if f(r) is not vet defined as above, then f(v) = v¥.

We consider the following sets:

= r.s):
*
il

Aley) = {1'6(11,.1?14:,U{x,-}u{ltig| ie{r+l.r+2..s=1}})
| e fv) € E(G))
Alxs) = {'l‘E(11,-1?u:1U{.1:,-}U{2153| Pe{r+1l,r+2.--.5=1}})

| z2,v € E(G)}
{ve (uslt’u;, U{zJU{uje] je{s+1.s+2.---.r=1}})
| x,ve€ E(G)}
B(x,) = {ve€ (un?ur’l U{eJU{uje| je{s+1.s+2.---.r=1}})
| z.f(v) € E(G))}
D(x;) = {veV(G)\U|wiv € E(G)} i €{0.r.s}).

Set AB(x,.&q) = A(x,) U A(e) U B(a,) U B(re) and D) = D(rp)U
D(x,). Noting that f is bijection, we obtain
d(xi) = |4i] + | Bil + | Di} (i =r.s)

B(r,)

and
d(xp) = |ANN(zo)| + | D).
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Observing (2) to (7), we have that the sets A(z,), A(x,), B(x,), B(x).
D(.ro) D(z;) and Dlx,) are pairwise disjoint, and the zq, uj; (7 € {1,2.

o [A1} \{r.s}) are in none of these sets. Noting that g, z,., x, € X, we
conclude that

o3(X) < d{wo) +d(x,) +d(z,)
< [ANN(xo)| + |D(=o)| + [Azr)| + |B(2r)| + | D(y)|
+ |A(x )] + [Bas)| + | D(x,)|
|[ANN(20)] + |D(z0)| + |AB(2r, 25)| + [ D(2r, 24)]|
A+ (1H] = 1) + (IV(C)] - (|A] - 2))
+ (IV(G) = IV(C) = [V(H)])
= n+1

(11)

IAN

On the other hand, since xg, r, and r, are three pairwise nonadjacent

vertices of X. we get

(12) d(zo) + d(x;) +d(zs) > 03(X) 2 n

It follows that x¢, and hence every vertex of X NV (H), is adjacent to all

but at most one vertex in A. This implies the existence of a (vi,vj)-path

P; ; with all internal vertices in H for all 7,5 € {1,2,-- 1A} \\1th i# j,

such that P; j contains at least one vertex in X NV(H) and either one edge

in M(C') or is adjacent to at least one edge in M(C). Again using (11), we

obtain that at most one of the following assertions holds:

(13) (1). at most one vertex u;; of {uu, uan, oo wpan} \{ur,ue}
satisfving w;; ¢ X;

(ii). at most one vertex of V(G)\(V(C) U V(H)) is not in
D{ey. xy).
Without loss of ‘T(?ll(‘lalll\' we may assume that w;y € X for any i €
{1.2.-- - [4]}\{r. 5} (otherwise we easily obtain a contradiction in the sim-
ilar argument below).

C'O\\(f\(l.l, = ujy forany i€ {1.2,--..]A|}. Foreachi € {1,2,---,|A|}.
ifvexnC z,+l such that @;v € E((r) ]et uj, be the first vertex on v Cr;
such that u}; € X or «}, is adjacent to a vertex u,., € X\V(C). Set 2} = uf,
if wiy € X and &} = vj, otherwise. \We call that 2! is an i — vertex 1e>pect
to v. md\ be xi = &}, In pamrulal x; is an i- \erte\

If & is an r- \elle\ and &’ is an s-vertex, substitute z;. and 2, for x,
and x,. lhe observations (2) llnoucrh (12) still hold. Moreover, 01)591 vations
(2) through (12) actually hold for arbitrary » and s with 1 < r < s < [A].
From (11) and (12). we also deduce the follows (1 < r < s < |A|):

(14) if z; is an r-vertex and z, is an s-vertex, then at most one of the
following assertions holds:
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(i). at most one vertex of V(C)\{uili € {1,2,---, [-A[.i # j} is
not in AB(zL, z%);

(ii). at most one vertex of V(G)\(V(C) U V(H)) is not in
D(zl.2).
Without loss of generality, we may assume that z}., 2} € V(C)N X.

Now, we give some notations. For any i € {1,2,---,|A]}, let w;; be the
last vertex on vf' ?v;’ +1 such that either w;; € X or wy; is adjacent to a
vertex wi» € X\V(C). Set y; = wi; if wj;y € .X and y; = wj» otherwise.
With the similar arguments as above (in the given reverse orientation of
('), we have that y; € V(C)N X forany i € {1,2,---, ]|}

For s € {1,2,---,|A|}, we can obtain the next three observations.
(15) ifve v:'_,_l.@v, and z,v € E(G), then y,v~ ¢ E(G),
otherwise we easily construct an X-longer cycle than C'.
(16) ifv € v}, Cu, and z,v € E(G), then

(i). f N(v )NR="0or v, ¢.X, then v75v™ ¢ E(G):

(ii). if V(v")NR=0orv™ ¢ X, then yv=~ ¢ E(G).
otherwise contradicting assumptions (a) to {d).
(17) ifve vs.,.lz)u; and z.v € E(G). then

(i) yer™ ¢ E(G):

(ii). if V(e )N R=0or vy & X, then 75 0% ¢ E(G):

(iii). if V()N R =0 or v+ ¢ X, then yoott ¢ E(G).
otherwise contradicting assumptions (a) to (d).

Using observations as above. we now derive contradictions in all cases
distinguished below. If v € V(G). then by N'(r) we denote the set of
vertex @ such that there is a (v. 2)-path of length at least 1 with all internal
vertices in V(G)\V(C). In particular. N{v) C N'(v). For § C V(G), set
N(S) = Ures N (v)\S. (Noting 2 € X NV(C) for any i € {1,2,---.|4]}.

Case 1. Forallie {1,2.---.]A]}. .\"(lf??.l'i) NY(C) C r,-?)z',-.,.l U and
Ny Teyy) AV(C) € 6 C riga U A

Suppose there exist integer r, s and vertices x, y such that 1 < r < s < {A].
r € .zr,‘r—C}v,.'_H, y € 2F C'vy,, and 2y € E(G). Since by the hypotheses of
Case 1l 2,2, 2.y € E(G), we get either x,2% or z,y isin E(G), otherwise x.
y & AB(x,, ), contradicting (14). Without loss of generality, we assume
vt € E(G). So we get x.yt ¢ E(G). otherwise we get an .Y —longer
¢vele than €. Hence we obtain

(i) . If exists ¥ € N(y*) N R. then y ¢ D{x,) (otherwise we get an
X-longer cycle then C). So y.y' € AB(z,.x.}. contradicting (14).
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(it) . U N(yT)ynif = 0. then @ _/'H‘ ¢ E(G) (otherwise contradicting
assumptions (a) to (d)). So y.y* ¢ AB(.L,-,I,), contradicting (14).

This contradiction with (14) shows that in the case no edge, and similarly no
path with all internal vertices in V{G)\V (C), joins two vertices in different
sets of the collection {¢+C tig |l <7 < |4l then w(G\A) > |4] + L.
contradicting the [act that & is 1-tough.

Case 2. For ~omo i€ {1.2.--. )41} \"’(u+~»} xi) NV(C) € '1';7:)¢rf+1 ud
or N(yi Ceppy) NV(C )g ,Z’u,,,,u A

Assume, e.g. 3, € N (L+C 25). where z, E U +T Uy, 1 < s and lz*’C zr |
is minimum. Moreover. we have z,. € a} C 4. otherwise we get an X-
longer cycle than (', a contradiction. For convenience, we may assume
rezp € E(G). in the other cases we easily get a contradiction in the similar
manner.

By (3). 5, # 2. Let z be a vertexin w,‘f’?:; with a2 € E(G) such that
|z C z| is minimuin. Let x. be the r—vertex respect to :. For convenience
we suppose r. € N N V(C), maybe v, = x,. Either : = =7 or z = z,.
otherwise z.:% & AB(x,.x.). contradicting (14). So we distinguish two
subcases.
Case 2.1. = =z~

In the case. v,.zF ¢ E((). Moreover. we have

(18). .zt ¢ E(G).

In the f'ut suppose .25 € E(G). T N(zF)NR =0, we get acyele (7 =
tp Pty €2 s z,?.,.x_( T v, which satisfies either JIV{CHINX] > [V(C)N
X or V(! )ﬂ X| = V(YN X with JM(C7)] < |M(C)], contradicting
the choice of €. If =" € N(z}) N R. then x,:7, 2" ¢ E(G). otherwise
we get an N-longer eycle (7 than (. Hence 2,27 ¢ AB(x,,2) U D(x,, 24).
contracdicting (141). Imlm'(l vt e E(G).

By (13) and (17). yezF.yezs € E(G). Hence x.y, ¢ E(G) for any
i € yf?r_.,,.,. i.c.. U is not an s-vertex, otherwise =7, =% ¢ AB(r,. y.).
contradicting (14). Thus x,y. € E(G). otherwise 2.y, ¢ AB(x,.r), con-
tradicting (14).

Note that ax.z¥t ¢ E((), we have x,zt € E(G), otherwise =, z}
AB(x,. x,). contradicting (14). With the similar argument as (18), we have
ettt ¢ E(G). Using inductive method, we obtain :,~Z)v,.+l C N(z,)
and 2. C'vpgpy NN () = B, otherwise contradicting (14).

Also note that y.v7,, € E(G) and y, € X (x¢ # ys, otherwise \\e get an
X-longer cycle than ('), there exists &; € .Y ﬂr"'t’y, satisfying z, < g1 €
N(x7). Choose that ./ is the first vertex in .X na:'*'?y. satle\mrr such
condition. Moreover. we may assume that no vertex on 1“" C'{@f)™ is not
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adjacent to any vertex x € X\V(C'), otherwise we replace @ by xf and
also get a contradiction with the similar manner. For convenience. we also
assume .1:;"?(.1:{,)‘ N.X = 0. Note that, in this case. if we replace x, by
2%, then observations (2)-(18) still hold. Hence there exists exactly one
vertex on z. C vp4y which is not a neighbor of &}, otherwise there exist
w,w’ € z C vpqy which are not neighbors of &), then w. v’ &€ AB(x,,2}),
contradicting (14). So we may assume that w is only one vertex on z, ¢ vr 41
which is not a neighbor of 2.

Suppose =z’ € E(G), then z.yt ¢ E(G), otherwise we get an X-longer
cyvcle C' = x.y] ?)L,- Py ,:L,v,.,H C- 22! C ysa, C'x., acontradiction.
If yF 2! € E(G), then =7, z} ¢ AB(z,,ys), contradicting (14). If yra{ ¢

E(G), then y,.w & AB(x., %) (note y.x, ¢ E(G) in the case. otherwise the
’ - ; ) &

cycle vz C v 20 C vrgr Pry, ¢+1u+1 Ca.y, C 2 contradicts the choice

of (), contradicting (14). Indeed z2% ¢ E(G). Hence w.z ¢ AB(x,,2)). a

ronlradiction

Case 2.2. : = 2,

Case 2.2.1 v ¢ E(G) for any v € yfﬁv.«q.]

For any vertex v € y, C'vy,, we have z:v & E(G). otherwise we get an

N-longer cycle than C. In particular x.y. v v, € E(G). Hence, by (14).
Us = Uopy Moreover, we get
(19). v ys ¢ E(G).
In the fact. suppose r.y; € E(G). If there exists y' € N(y)\V(C). then
y'r. @& E(G). otherwise we get an N-longer cyele than (", Hence y,. y' €
AB (e e UD(e . x). *ontmdutlng(lfl) Thls shows that N'(y) CV(C).
So we get the cxcle 7 = x.y7 T Lyl ( Ve P g1 Ut T r. such that
[V NX] > V()N X or [F(C)YNX| = V()N Y with [V <
[V (C)]. a contradiction. Indeed v.yT ¢ E(G).

Thus yers € E(G). otherwise yo, yr € Alx..r,). Without loss of general-
ity. we may assume that y7 € X' (otherwise we find an s-vertex respect to
Y. say yh. and substitute y. for y7). i.e., y7 is an s-vertex respect to y;.
It is clear to see x.z} ¢ E(G). Moreover, we get
(20). w2}t ¢ E(G).
In the fact. suppose r.:}+ € E(G). If N(z}) C V(C'), we get an cycle 7
=, C :,“.H‘,z::((_'_" trieds CoyPryv, such that V(Y Ny > V() n X|
or V(C)Y N X| = |[V(C)N X| with [M(C')] < |M(C)]. a contradiction. If
there exists y € N (zH\V(C). then yr,,yr. ¢ E(G). otherwise we easily
get an X-longer cycle than C. Then y,,y € AB(x., ). contradicting (14).
Indeed. v::,'.""' ¢ E(G).
Recalling that x.y, € E(G), we conclude that x.zF € E(G). since
otherwise z¥.y, € A(r:..z,). Noting that N(y.) C V(C') (otherwise if
there exists y € N (y)\V(C), then y.ys € AB(2:,2,) U D{x.. x,)). we get
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yr soys 5t @ E(G). It follows that z,. 2t ¢ AB(z.,y; ), a contradiction.
Case 2.2.2 x v € E(G) for some v € y7 6z:s+1
In the case, without loss of generality, we may assume x,v,4 € E(G),
i.e.. y, is an s-veftex respect 1o veqg. It is clear to see 2.2} ¢ E(G). More-
over, we get
(21). ys2r € E(G).
In the fact. suppose y,:. ¢ E(G). If there exists z € N(z}}) N R, ‘then
we get : ¢ D(x.,y.), otherwise, we easily get an X-longer cycle than
C', so 2.z ¢ AB(x..y.). contradicting (14). If N(z¥) N R = 0, we get
Q_f AB(x:.y.), also x.ztt ¢ E(G), otherwise we get a cycle €’ =
U¢C' e, (C_L 2, C v, P, s With [V(CYNX| > > IV(C)NnX|and |M(C")] <
|M(C )[ contradicting the choice of C. So z,,z}¥ € AB(z.,y,), contradict-

ing (14). Indeed y. 2, € E(G). ]

Now. for an\ v E Yr ?U,H we have r.v ¢ E(G), otherwise the cycle
.1-,.1:(67 2rYs T Urg1 Prots+1tes1 C 22 is an X-longer than C'. Tt is clear that
ysv & E(G) for any v € J,F}l Belo“ we will show
(22). y;7 ==},

If there exists = € N(:¥) N R. we have y, = v, otherwise z,y, ¢
AB(xr.. y) U D(.z:._ :). So N(y) N R = O, otherwise if there exists y €
Ny )N Rothen =y ¢ D(r..y.) (if = = . we have yTy. ¢ E(G), then
2oyr € AB(r:.y) U D(x:.y.)). contradicting (14). Moreover, y-ys ¢
E(G). otherwise the cycle y, y,“'(_?' l',¢+1[)s+l.r+lt} ys contradicting to the
choice of C'. Hence z.y7 ¢ AB(x..y:). a contradiction. If N¥(zF)N R =0,
we have x.:}+ ¢ E(G). As the similar argument above, we get y~y, ¢
E(G). Tt follows that 3}, y7 ¢ AB(x:.y.). Hence, by (14). y7 = =F.
We now show that

— = .
(23). . connects to all vertices in ¢} C' vy by some paths whose internal
vertices in V{GH\V(C).

Assuming the contrary. let v be the vertex in &3 Z) v541 such that 2z, is
nol connected to v by a path w ho\e internal vertices in V(G)\V'(C) and
ju T Csg1] is minimum. Then ¢ € &} c vy, and zvt € E(G). Welet v° =
vT i N(e)N R =W and v™ be an arbltrary vertex in N(v)\V(C’ let - =z}
if V(zt)N R =0 and : be an arbitrary vertex in N(z})\V(C). Hence. we
easily obtain v™.z ¢ AB{x,,r,). otherwise we get a cycle contradicting the
choice of (."(note ¥ =r € E(G) by (21)). This contradiction proves (23).
Similarly we have

(24). r, connects to all vertices in 2} C v, by some paths whose internal

vertices in V(GN\V(C).

By (21). we have y,z, € E{(G). hence »r .z}t ¢ E(G), otherwise we
get an X-longer cycle than €. If there exists y € N(y7)\V(C). then
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Yy Y7y € E(G), hence y, yr ¢ -lB (zz,¥¢) U A(x:.y.). This shows that
N(y7) € V(C). Moreover, z,:F (usyr) € E( G)bv (16). Recalling that
okt ¢ E(G), we now note that for all i € {1,2,---.|4}]}\{r} the assump-
tion xi5f € E(G) or x;z}* € E(G) leads to a ronnadir‘lion by applying
the above arguments substitute s for i. Thus w;2} w23+ ¢ E(G) for all
ie{l,2.- - |41\ {r}. By (20), noting y,z, € E(G) and .x, is r-vertex. we
have .2}, x,.:}* ¢ E(G). Hence xiz € E(G) (i € {1.2,---.|4|}\{r}).
for otherwise z,,z} ¢ AB(x,,z;), contradicting (14). It now follows that
(23) remains true if s is replaced by i (i € {1,'2,--'. [AJ\{r}). By (14),
AB(xr,24) = V(O\({zr} U{zjlj € {1.2,---,]4|}\{r.i}. implying that
N2 )NV(C) C vt T U A
and
N'(@)OV(C) € vf Tuig UAULE) (€ {12, JAN{r).
Using the properties as above, we conclude that no edge, and similarly
no path with all internal vertices in V(G)\V((), joins two vertices m dif-
ferent \elx of the collection {v; o’ vl i< AL # 1) U{¢+C =7}
u{zt T tip1}- But then w(G\(AU{z})) > |[AU {z}| + 1. our final con-
ll‘ddl(‘lloll
]

Proof of Lemma 7. By assumption, X\V(C) is an independent set in
(+[X] and a standard argument shows that 4* is an independent set in
(/[.X] since € is a X-longest cycle which is X-dominating. Hence it suffices
to show that no vertex in .X\V(C)) is adjacent to any vertex in AX.
Let 11 X, x4 be the \enice\ of AX . occuring on . quppow that
exists 2’ € N\V(C) such that 2'w; € E(G) for some i € {1.2.---.|4]}.
Clearly ¢’ # vy since C is a N-longest cycle. Without loss of:'encldlny we
assume that 7 = 1, i.e. 2'xy € E(G). We counsider following sets of vertices.

.4] = {lE 1.1 |1| I s EF((:))
A = {rve 11( ‘Llr‘l | Zqv € E (G)}
By, = {ve JM|C ey | x'v e E(G)}

B, = {UGJMIC 27| .I?|A|2+ € E(G)}
D = {veVIG\V(C) | zap € E(G)}

Then we get oA} N Aa = 0. otherwise. if v € 4; N s, we can obtain a
X-longer cycle C” than C(_a~ follo“_s}

vpajrory Capape Cotaley Cepay (f veryC .IHI)
or

ULty (E.zrwr%—'xl.r'r*?q,u (if veua T "I:\l)

and we get BN Ba = 0. otherwise, if v € ByN B2, we can obtain a .X-longer
cycle € than C as follows:
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Ula Loty ?_Tl’.l".l‘lz)l]_.” (ifv=1214)
or . — — . - _
epaory Coetapy Coe’ey Copay (ifve :L"":” C'vy)
or & .
tja| oty C .L’|A|U+E"UIA| (ifve vlﬁ:ci')

Since N(2') = AT U By U {21}, then d(2’) = |4,] + | By| + 1. Similarly, we
have d(x)4)) = |D| + |A2| + | Ba]. Moreover, we obtain that

d(xq) + d(2') + d(e|a)) Al + {4+ |Bi| + 1+ | D] + |A2] + | Bs|

= |Al+ 41U+ |BiUB2|+|D|+1
Clearly, we can obtain the fact that x; ¢ 4; for each i € {1.2,---.|A|}.
otherwise we can find a X'-longer cycle C” than C. Since &y, &4, - - -. Z) 4
are independent. then x; ¢ 4, for each i € {1.2,.--,|A| = 1}. It is easy to
see that vy € By U Ba. otherwise we can find a X-longer cycle C” than C.
Thus, noting that x. ', £y4 € .Y, we obtain the following

n <a3(XN) < d{ag) +d(a’) + d(x)a)
< A+ AVIE = (A= 1) = 1) + (n = (JV(C)| = 2) + 1)
<

n—1

a contradiction. Thus we prove the lemma.
0

Outline Proof of Theorem 8. Let €' be an X =longest cycle of G which
is X-dominating. Assume C' is chosen such that max{d(¢v)jv € X\V(C)}
is maximum. If XY\V'(C') = . there is nothing to prove. Thus we assume
NAV(C) = {wo. uy. -+ u). such that d(ug) > d(uy) > --- > d(u;). Let
A = N(ug) and vy, va, - r)q be the vertices of A and x, o, -
2141 be the vertices of AN occuring on ? and, without loss of generality.
we assume that d(x;) = min{d(x;)|l < i < |A]}. From Lemma 7, we
have |X\V(C)] + |A*] € a(X). Hence |[X nV(C)| > |X| + |4%] - a(X)
= |X| + d(ug) = a(.X'). Thus it suffices to show that d(ug) > Lo3(X). It is
clearly true if t > 2.

Suppose { =1. d(uy) < 303(.X) and consider z1. Set R = V(G)\V(C).
For j € {2.3.---.|A[}. set uj; = ¢ . and let ujn = u}l if N(uj1)NR=0.
otherwise let ;2 be the an arbitrary vertex in V(uj;) N R.

Suppose yujs € E(G) for some j € {2,3,---,|.4]}, then the cycle ' =
Hyt;j %—'.1'1 u_,-;»?rl up is X —longer than C, unless uj; € X and N(u;;)NR =
#. Moreover. if u;; € X and N(uj;)NR =0, the cycle C’ is X —dominating
and has [V(C")N.X| = |V(C)NX]| but includes ug and omits uj;. However,
wo. wy. wjp are independent and belongs to X, thus d(up)+d(u1)+d(ujy) >
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o3(.X). This implies d(u;,) > %03(.\') > d(up), contradicting the choice of
C. Indeed, ryu;2 ¢ E(G) for any j € {2,3,---,]4|}.

Clearly. we have that z uj; ¢ E(G) for any j € {2,3,--,]|A|}. We
denote s = |{jluj2 ¢ V(C),j € {2,3,---,|A[}|. We note that, any distinct
two vertices of {xy,uay, u22,---, a1} have no neighbors in V(G)\V(C),
up, 1 & N(x1), wjo # uo,uy (j € {2,3,---,]A|}) and uj2 € N(x;). Since
N(z1) N V(C) € VICO\({x1} U {ujr,ujalj € {2,3.---.]4]}}), hence we
obtain th follows

d(ey) < |V(C)]| = (d(uo) + d(uo) = 1 — s) + |V (e )\V(CY)]
But then n < d(x)) + d(up) + d(u1) < d(xy) + 2d{ug) < V(C) + s +
N \V(CO)+1<n=24+1=n-1, a contradiction.

Finally, the proof for ¢ = 0 is modeled along the lines of the proof of
Theorem 5. Whenever a contradiction is obtained in the proof of Theorem
5 by finding an X —longest cycle, we now find a contradiction either in the
same way. or by finding an X-dominating cycle €’ such that |[V(C')NX| =
X =1 and vo € X\V(C’) has d(vo) > d{ug). The argument, although
quite lengthy is involved, is tedious and is thus omitted here. The full proof
can be found in the appendix of [9].

Thus we prove the theorem.
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