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ABSTRACT. Let An(n, k) denote the number of permutations of
{1,...,n} with exactly & rises of size at least m. We show that,
for each positive integer m, the Am(n,k) are asymptotically
normal.

For positive integers m and n, we say a permutation o = (e(1),...,0(n))
of [n] = {1,...,n} has an m-rise at i provided o(i + 1) —o(i) > m. Let
Am(n, k) denote the set of permutations of [n] with exactly k m-rises and set
Am(n, k) = |Am(n, k)|. Hence, the A;(n, k) are the classical Eulerian num-
bers (before shifting). Comtet [1; pp. 240-246] gives recurrence relations for
the A;(n, k), as well as, recurrence relations and generating functions for
the shifted numbers By (n, k) = A;(n, k—1). Magagnosc [5) introduced the
Am(n, k) and gave several recurrence relations for them. (Many of the re-
sults therein actually refer to the shifted numbers B, (n, k) = Am(n, k-1).)
David and Barton [2; pp. 150-154] showed that the A;(n, k) are asymptoti-
cally normal by computing cumulants. In this paper we show that, for each
positive integer m, the A, (n, k) are also asymptotically normal. Our proof
was inspired by the proof of Harper [3] of a similar result for the Stirling
numbers of the second kind.

Our first result gives a recurrence relation for the A, (n, k). (For a dif-
ferent proof of a recurrence relation for the By, (n, k) see [5].)

Lemma 1. Forn>3and k>1withn+1>m+k,

Am(n, k) =(k + m)Am(n - L,k)+(n —k—m+1)An(n -1,k — 1). (1)

Proof: Let 0 € An(n—1,k) withm-risesat 1 < iy <ip < --- < ix < n—2.
Now o(i; + 1) ~0(i;) > mso that all 0(i;) < n—1-m and, hence,
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k < n—1—m. Placing an n at the beginning; after any ofn—m+1,...,n-1;
or after any of o(iy),...,0(ix) gives k + m distinct o’ € An(n, k). Next,
let 0 € An(n— 1,k —1) with m-rises at 1 < iy < iz <+ <tg1 <n-2.
Again, all o(i;) < n — 1 —m. Placing an n after any o(i) < n —m with
i & {i1,...,ik-1} gives n —k —m + 1 distinct 0" € Am(n, k). As deleting
n from o € An(n, k) gives a permutation ¢ of [n — 1] satisfying precisely
one of the above conditions, our result follows. (Similarly for k =1,n —m;
k=mn+1—mis trivial.) O
Remark. As a consequence of the first part of the proof of Lemma 1, we
have the following

An(n,k)=0 for m+k2>2n+1 with n>2,k>1.
Hence, with An(1,0) =1,
An(n,0)=n! for 1<n<m

while the first construction in Lemma 1 is valid for k=0and n > m+1
so that
An(n,0) =mA,(n—1,0) for n>m+1.

Let n
Pu(z) = Pam(@) =Y _ Am(n, k)z".
k=0
Hence, for 1 <n <m,
P,(z)=n!
and, forn>m+1,
n-—m
Pu(z)= Y Am(n,k)z*
k=0

-since Am(n,k) =0fork>n-m+1(22). Forn>m+1 with n > 3,
(1) implies

Pu(z) = [(n —m)z + m|Pa_s(z) + (z — 2°) Py (2) )

which is correct for n = 2 and m = 1 as well. Note that for n > 1,

Lemma 2. Forn>m+1,
n—-m—1
Pa(z) =miz" ™™ + Z mlaxz® + mim™ ™ € Z[z]
k=1
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and P,(z) has n — m distinct negative real roots.

Proof: By (2), both Pp,yi(z) = mlz +m - m! and Pp,.2(z) = miz? +
m!(3m + 1)z + m!m? have the desired property for m > 1. For n > m+2,
(2) implies

n—-m-—1
Ppi1(z) = [(n — m + 1)z + m] [m!z""” + z mlagz® + m!m"""]
k=1

n—-m-—1
+(z — z?) [m!(n —m)z" ™ 4 Z m!kaka:k—l]
k=1
=miz" ™ 4 m![2a,._m_1 + n]:z:"“'“
n—m—1
+ ) mln—m—k+2)ar;+(m+kai)z*
k=2

+m![(m+1a1 + (n — m + 1)m" "™z + mm™ ™! € Z*[z].
Suppose P,(z) has distinct real roots 2y < z3 < --- < zy_m < 0. Then
P;(z1),..., Pi(2n—m) alternate signs with P;,(2p—m) > 0. From (2), Pr+1(z)
= (2 — 2})P;(z) while 2 — 27 < 0 and, hence, Pn11(21), .., Pat1(2n—m)
alternate signs with Py11(2n—m) < 0 and P,;1(0) = m!m"~™+1, Conse-
quently, P,1(z) has n — m distinct real roots in (z;,0). For n — m even,
P.(z) < 0 so that P,4+1(z1) > 0 while lim;_, o, Ppt1(z) = —co and,
hence, P,+1(x) has a real root in (—o0, 21). For n — m odd, P/(z1) > 0 so
that Pp41(21) < 0 while limz—,_ o Pr+1(Z) = oo and, hence, Pp+1(z) has
a real root in (~o0, 21). (]

In what follows we assume n > m + 1. First, for n > m + 1, (2) implies

P,(z) =(n — m)Pa_1(z) + [(n - m —2)z+ m + 1] P, _,(z)
+(z —2?)P(2) ®3)

so that
Pr(1) = (n—m)Pa_1(1) + (n = 1)P,_,(1)

which upon iteration using the values of Pi(1), as well as, Py, ,(1) = m!

gives
P,',(1)=(n-1)!(""2"+1).

Next, for n > m + 2, (3) implies
P;(z) = 2(n—m-1)P,_, (z)+[(n—m—4)z+m+2] P!_, (z)+(z—=?) P! ,(z)

so that
Pj/(1)=2m-m-1)P,_;(1)+(n—2)P_,(1)
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which upon iteration using the values of Pj(1), as well as, Py, 5(1) = 2m!
gives
P(1) = (n_2)!(n—;n+ 1)3n-.';m—2

which is correct for n = m 4+ 1 as well.

Let —rp1 <+ < —Tnn—m < 0 be the roots of P,(x). Now Lemma 2
implies

Pp(z) =m! I:I (z+7n;) (4)
Jj=1
so that
Po(z) _ &~ -
Py(z) ; (-'L' + Tn,J)
and, hence,
Pu(z)Py(z) — [Pa(=))? _ Py (z) ~ _
PP (RG] Dt

i=1

We now introduce a triangular array of row independent random variables
Xn,; taking on the values 0,1, with

P(Xn,j = 0) = rn,j(l + rn,j)_ls P(Xn.j = 1) = (1 + rn,j)_l-

Let o
Su = Z Xn,j
i=1
so that
ESa)= 3 (1+7a;) ' = gg; (n—m gi)(" —m)
J=1
and
02(Sp) = Var(Sy,) = 'fa +rn )t - nz_in(l +7nj) 2
J=1 J=1
_ B, P [P
‘&m*mm [aJ
_nt- n? — 2m(2m — 1)(m — 1)n + 3m?(m — 1)2
12n2(n—-1)
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From (4) we see that the coefficient Amm(n, k) of z* in P, (z) is

m! Z H Tn,j.
KC[n—m] jgK
|K|=k
Now independence of the X, ; implies
P(Sy, = k) = P(Exactly k of the X, ; =1)

= Z H (1+47n;)"1- H T (14 Tn,5) 7

KCln—m] jeK JEK
|K|=k

n—-m

= H (1 + Tn,j)_l . Z H Tn,j
Jj=1 KC[n—m] j¢K

[K|=k

_ ml  Ap(n,k)

T P(1) m!

_ Am(": k)

Tl

Hence, the distribution function F,(z) of S, satisfies

lz]
Fa(z)=P(Sa<z)=Y W
k=0

Finally, let Gy, j(x) denote the distribution function of

Xnj — E(Xn ;)
U(Sn)

and Gn(z) denote the distribution function of

Y"" b=

~ Sn — E(S
j=1 "

Now Y,, ; takes on the values —(1 +7,;)~1/0(Sp), Tnj(1 + 74 ;)" /0(Sn)
so that |V, ;| < 671(8,). For € > 0, 0(S,) > e~ for all sufficiently large

7, so that
/ zsz,..,- =0
lz|2>e

Z/ 24Gn 5 = 0.
j=1 YI=I2e

and, hence,
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By the Lindeberg-Feller Theorem (see [4; p. 295]), Gn(z) converges weakly
to the distribution function of a normal random variable with mean 0 and
standard deviation 1. Hence, for each z € R,

L=n) z
1 1 -
] ,?=o Am(n, k) = Fy(za) = Gn(z) — E/;me /24t as n — o0
where

zp = 20(Sn) + E(Sn).
We have thus proved the following result.
Theorem 3. For each z € R,

[zn} T
1 1 _tﬁ/z
mkz_—_oAm(n,k)_)—\ﬂ_W/— e dt as n > o

where

nt —n? — 2m(2m — 1)(m — 1)n + 3m?(m — 1)1
Tn =T [ 12n%(n — 1) ]
(m-m+1)(n—m)
+ 2n )

From these results, the reader can easily derive analogous results for the
shifted numbers B, (n, k) = A (n, k—1). Finally observe that 62(S,) — oo
as n — oo for m = m(n) = o(n), hence, we need not assume m to be
constant in Theorem 3, merely that m = m(n) = o(n).
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