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Abstract. An oriented triple systems of order v, denoted OTS(v), is said
to be d—cyclic if’ it admits an automorphism consisting of a single cycle
of length d and v—d fixed points, d22. In this paper we give necessary
and sutlicient conditions for the existence of d—cyclic OTS(v). We solve
the analogous problem for directed triple systems.

1. Introduction

A cyclic triple. denoted C(a,b,c). is the digraph on the vertex set {a,h,c}
with the arc set {(a.b).(h.c).(c.a)}. Notice that C(a,h,c)=C(h,c,a)=C(c,a,b). A
transitive triple, denoted T(a.b,c). is the digraph on the vertex set {a,h,c} with
the arc set {(a,h).(b.c).(a.c)}. An oriented triple means either a cyclic or a
transitive triple. Let D,, denote the complete symmetric digraph on v vertices.

An oriented triple system (also called an ordered triple system) of order v,
denoted OTS(v). is an arc—disjoint partition of D,, into oriented triples. An
OTS(v) exists if and only if v=0 or 1 (mod 3) [9]. An OTS(v) in which the
oriented triples are all cyclic triples is a Mendelsohn triple system of order v,
denoted A/7S(v). A MTS(v) exists if and only if v=0 or 1 (mod 3). v#6 [10].
An OTS(v) in which the oriented triples are all transitive triples is a directed
triple system of order v. denoted DTS(v). A DTS(v) exists if and only if v=0 or 1
(mod 3) [8].

An automorphism of an OTS(v) based on D,, is a permutation 7 of the
vertex set of D,, which fixes the collection of triples of the OTS(v). The orbit of
a triple under an automorphism 7 is the collection of images of the triple under
the powers of .

An OTS(v) admitting an automorphism consisting of a single cycle is said
to be cyclic. A cyclic OTS(v) exists if and only if v=0,1.3.4.7 or 9 (mod 12),
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v#9 [11]. A cyclic MTS(v) exists if and only if v=1 or 3 (mod 6), v=9 [4]. A
cyclic DTS(v) exists if and only if v=1.4 or 7 (mod 12) [3].

An OTS(v) admitting an automorphism consisting of a fixed point and a
cycle of length v-1 is said to be rofational. A rotational OTS(v) exists if and only if
v=0 or 1 (mod 3) [11]. A rotational MTS(v) exists if and only if v=1,3 or 4
(mod 6). v=10 [2]. A rotational DTS(v) exists if and only if v=0 (mod 3) [3].

An OTS(v) admitting an automorphism consisting of a single cycle of
length d and v-d fixed points, ¢>2, will be called d-cyclic. Obviously, a
v—cyclic OTS(v) is a cyclic OTS(v) and a (v-1)—cyclic OTS(v) is a rotational
OTS(v). In [7] Hoffman determined those pairs (v,d) of integers for which
there exists a d—cyclic MTS(v) 1

The purpose of this note is to present necessary and sufficient conditions
for the existence of d—cyclic D7S(v)s and d—cyclic OTS(v)s.

2. Necessary conditions for the existence of d—cyclic OTS(v)s

In this section, we give necessary conditions for the existence of d—cyclic
OTS(v)s and d—cyclic DTS(v)s.

Lemma 2.1. The fixed points of an automorphism of an OTS(v) form a
subsystem.

Proof. Let a;. a; be two fixed points under the automorphism 7. The ordered
pair (a;. aj) occurs in exactly one trfple of the OTS(v), say ¢. So ¢ is fixed under
7 and the fixed points form a subsystem. Q

From Lemma 2.1 it follows that if a d-cyclic OTS(v) exists, then
f=v—=d=0 or 1 (mod 3). Further, since in a d—cyclic OTS(v) the automorphism 7
has a cycle of length v—f. using the standard idea of difference methods we
have v—f~12f therefore v22f+1.

These facts give us:

Lemma 2.2. If a d—cyclic OTS(v) exists, then v=0 or 1 (mod 3), f=0 or |
(mod 3) and v22f+1. where f=v—d.

We now consider a d—cyclic DTS(v). In this case we have w=v-2/~1=0
(mod 3). But if v=0 (mod 3) and /=0 (mod 3), then w=2 (mod 3), and if v=1
(mod 3) and /=1 (mod 3), then w=1 (mod 3). It follows that:

Lemma 2.3. If a d—cyclic DTS(v) exists, then v22f+1 and, further, v=0 (mod 3)
and f=1 (mod 3) or v=1 (mod 3) and f=0 (mod 3), where f=v—d.

3. Constructions of d—cyclic DTS(v)s.
In this section, we construct d-cyclic DTS(v)s with vertex set
Zd U {a;.a....ar}, where aja....ay are the fixed points of the

! We notice that there does not exist a Steiner triple systems of order v with an
automorphism consisting of a simple cycle of length 2 and more than one fixed point
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automorphism 7 and f=v—g>2.

We require the use of two structures. An (4,n)-system is a collection of
ordered pairs (a,,b,) for 7=1,2,... n that partition the set {1,2,....2n} with the
property that b, = a, + r for =1,2.....n. It is proved that an (4,n)-system exists
if and only if #=0 or 1 (mod 4) [13, 6]. A (B.n)-system is a collection of
ordered pairs (a,.b,) for r=1,2,...,n that partition the set { 1,2,...2n-1,2n+1}
with the property that b,=a, +r for r=1,2,..n It is proved that a (B,n)-
system exists if and only if n=2 or 3 (mod 4) [12, 6].

Theorem 3.1. 4 d-cyclic DTS(v), with f~v—d>2, exists if and only if v22f+1
and, further. v=0 (mod 3) and f=1 (mod 3) or v=1 (mod 3) and =0 (mod 3).
Proof. From Lemma 2.3 the conditions are necessary. We now prove that the
conditions are also sufficient. Let w=v-2f-1. Since v=0 (mod 3) and =l
(mod 3) or v=1 (mod 3) and =0 (mod 3), we have w=0 (mod 3). We consider
four cases for w.

Case 1: w=0 (mod 12), say w=12t.

Let 7={T(0,r,b,+41): r=1,2,....4¢ and b, are from an (4,4t)-system (omit these
triples if t=0)} U {7(0,@,w+i): i=1.2..../}.

Case 2: w=3 (mod 12), say w=121+3.

Let I={T(0.r.b,+41+1): r=1,2,...,4t+]1 and b, are from an (4,4t+1)-system} U
U ATO,a,w+i): i=1,2,...,/}.

Case 3: w=6 (mod 12), say w=12¢+6.

Let I'={T(0.r.b,+4t+2): =12....,4t+2 and b, are from a (B.4t+2)-system} U
U {T0,a;.w)} v {700,a,w+i): i=2,3,... f}.

Case 4: w=9 (mod 12), say w=12¢+9.

Let I={T(0.r.h,+4t+3): r=12....,4t+3 and b, are from a (B,4t+3)-system} U
wA{T(0,a,.w)} U {T0.q;w+i): i=2.3....f}.

In all cases, the union of orbits of all triples of 7~ and of the set of triples of a
DIS(yon {a;.a......ar ) form a d—cyclic DTS(v). Q

4. Constructions of d—cyclic OTS(v)s.

In this section, we determine the spectrum of d—cyclic OTS(v)s.

A d-cyclic MTS(v), when f=v—d>2, exists if and only if v22/+1, v=0 or 1
(mod 3), /=0 or 1 (mod 3), v#6, f£6 and (v,/)=(12,3) [7].

From this and Theorem 3.1 it follows that:
Lemma 4.1. A d-cyclic OTS(v), with f=v—d>2, exists if v22f+1, v=0 or 1
(mod 3), /=0 or 1 (mod 3), (v,)=(12,3) and, for any integer k25, (v fy=(3k,6).

In the following lemmas we construct d—cyclic OTS(v)s with vertex set
Zd v {al*a:»,...,af }. where @ a,...,ay are the fixed points of the

automorphism 7 and f=v—d>2.
Lemma 4.2. 4 9—cyclic OTS(12) exists.
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Proof. Let I={C(0,3.6), C(0.6,3), T(0.1.5). C(,.0.2), C(a,.0.7). C(a3.0.8)}.
The union of orbits of all triples of /" and the set of triples of an O75(3) on
{a,,a.,a;} form a 9—cyclic 075(12). O
Lemma 4.3. For every v=0 (inod 3), v215, a (v—6)—cyclic OTS(v) exists.
Proof. Let v=0 (mod 3). v215, and w=v-7; we have w=2 (mod 3), w>8. We
consider four cases for w.
Case 1: w=2 (mod 12), say w=12+2.
Let I={T(0.rb+41): r=12,.. .4t and b, are from an (4.41)-system, with
r#4t-3, 4t-4, and therefore b=41-2, 81—2 respectively} w {C(0,41+1,8t+2),
C(0,8t+2,41+1). C(;,0,41-3), C(,,0,8t-2), C(a3,0,4t-4), ((a,,0.121-2),
C(a5,0,121+1), C(ag.0,124+42)} if £>1, and I={C(0,5,10), C(0,10,5), C(;.0.1),
C(,,0,6), C(a3,0,3), C(ay,0,7), ((as,0,13), C(ag,0,14), 7(0,2,11), 7(0,4, 12)}
if =1,
Case 2: w=5 (mod 12), say w=12£+5.
Let I={T(0,r.b,+4t+1): r=1,2,..,4t+]1 and b, are from an (A4,4t+1)—system,
with r#41-1, 4t-2, and therefore bz4t, 8t+1 respectively} u {C(0,41+2,8¢+4).
C(0.8t+4,41+2), C(ay,0,4t-1). C(a,,08t+1), C(a3,0,4t-2). C (@4,0,121+2),
C(as5.0,12t+4), C(ag,0,121+5)}.
Case 3: w=8 (mod 12), say w=121+8.
Let 7={T(0,r,b+4t+2). r=1.2,...,41+2, and b, are from a (B.4t+2)-system, with
r#4t, 4t-1, and therefore bz4t+1, 81+3 respectively} U {C(0.41+3.81+6),
C(0.81+6.41+3), C(a;,0.41). C(@,,0.8t+3), C(a3,0,4t-1), C(a,.0.12t+5), Clas.
0.121+6), C(ag.0,12+8)} if t>1; I={T(0,1,9), T(0,4.15), T(0.5,17), 7(0,6,19),
C(0,7,14), C(0,14,7), ((,.0.2). C(a,.0,3), C(3,0.10), C(a4,0,16), C(as.0,
18), C(ag,0,20)} if £=1; I={C(0.3,6), C(0.6,3), C(a;,0.1), C(,0,4), C(a3.0.
2), C(a,.0.7), C(as.0,5), C(ag,0,8)} if +=0.
Case 4: w=11 (mod 12), say w=121-1.
Let 7={T(0,r.b,+4t-1): r=1.2,.. 411, and b, are from a (B,41-1)-system, with
r#41=3, 41-4. and therefore h,=4t-2, 8t=3 respectively} U {C(0.41.8f), C(0.81.
41), C(@},0,41-3), C(ay.0,81-3), C(a3,0.40-4), C(ay,0,121-4). C(as,0. 126-3),
C(ag,0.12t-1)} if £>1, and I={C(0,4.8), C(0,8,4). C(,.0,1), C(ay,0,5), C(a,
0,2), C(@4,0.6). C(a5,0.9), C(e,0,11), T(0.3,10)} if =1

In all cases. the union of orbits of all triples of /"and the set of triples of
an OTS(6) on { &; .a>.....a} form a (v—6)—cyclic OTS(v). Q

The results of this section and Lemma 2.2 combine to give us:
Theorem 4.1. A d—cyclic OTS(v) exists if and only if v22f+1, v=0 or 1(mod 3)
and =0 or 1 (mod 3), where f=v—d>2.
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