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Abstract

In this paper, we consider total clique covers and uniform inter-
section numbers on multifamilies. We determine the uniform inter-
section numbers of graphs in term of total clique covers. From this
result and some properties of intersection graphs on multifamilies,
we determine the uniform intersection numbers of some families of
graphs. We also deal with the NP-completeness of uniform intersec-
tion numbers.

1 Introduction.

In this paper, we consider finite undirected simple graphs. For a graph
G, V(G) and E(G) denote the set of vertices and the set of edges of
G, respectively. And p, ¢ denote the cardinalities of V(G) and E(G),
respectively. A(G) denotes the maximum degree among the vertices of G.
For a vertex v, the neighborhood of v is denoted by N(v). For an edge
subset S C E(G), < S >g denotes the subgraph generated by S and for a
vertex subset S C V(G), < S >y denotes the subgraph generated by S.
Let F = {51,852,.,5,} be a family of distinct nonempty subsets of a
set X. Then S(F) denotes the union of the sets in F. The intersection
graph of F is denoted by Q(F) and defined by V(Q(F)) = F, with S;
and S; adjacent whenever i # j and S; NS; # 0. Then a graph G is an
intersection graph on F if there exists a family F such that G = Q(F). The
intersection number w(G) of a given graph G is the minimum cardinality
of a set S(F) such that G is an intersection graph on F. This concept was
introduced by P.Erdés et al. ([3]). In this paper, we deal with intersection
graphs on uniform families, where F = {5,,5,,..,S,} is a uniform family
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if #S5; = #5; for all i,j € F. As the case with families, we can define
uniform iniersection graphs and uniform intersection numbers wyi(G).
We already have some results on uniform intersection numbers in [2]. In
this paper we consider uniform intersection graphs from the point of view
of total clique covers.

In {7} and [8], we deal with antichains, that is, Sperner families, and
mullifamilies, namely its elements need not be distinct. As is the case with
families, we can define antichain intersection graphs, antichain intersection
numbers we;(G), mullifamily intersection graphs and multifamily intersec-
lion numbers wp(G). In [7], we obtained that w,,(G) = ming o tcc{#Q)
for a graph G, where for a graph G, Q = {Q,,..,Q,} is a fotal clique
cover (tcc ) of G if and only if each Q; is a complete subgraph of G,
Ui<i<a V(@) = V(G) and Ui<i<n E(Qi) = E(G). In [8] , we also obtained
that wei(G) = ming of 1cc{n(Q) + i(Q)}, where @ = {Q1,..,Qn} is a tec
of a graph G, n(Q) = #Q, i(Q) = #{So(v); (Bu # v)(Sa(v) C Sg(u))},
and Sg(v) = {Q:i;v € V(Q))}-

First we consider uniform multifamilies of nonempty subsets of a set X,
namely its elements have same cardinalities and need not to be distinct. We
can also define intersection numbers with respect io uniform multifamilies
Wmui(G), as is the case with families. In Section 2 we determine the uniform
multifamily intersection number of a graph in terms of total clique covers.
Then for the complete graph K, wyi(Kp) = 1 if ([Li;.]:.l) <p< ([.5]'_'_1) and
wmui(Kp) = 1. But for the complete bipartite graph K(p,p) = G, w,i(G) =
Wmui(G) = p?. In general winui(G) < Wyi(G) < Wmui(G) + #V(G). We
also consider the differences between wyi(G) and wmyi(G) and structures
of graphs which lead to those differences. By these structures, in Section
2 and 3 we consider the uniform intersection numbers of some graphs.
In Section 4 we consider the complexity of several intersection numbers.
Terminology and notation of combinatorics and graph theory can be found
in [1] and [4].

2 Uniform intersection numbers.

A tcc Qg of G is minimal if there exists no tcc Q of G such that Q@ C Q.
For a vertex subset Sof G, P = {P|,Ps,..., P} is a clique packing of
< § >y if each P; is a clique of < S >y whose cardinality is more than
or equal to 2 and Uj<i<iV(P) C S, and Q = {Qy,Q2, ..., Qr} is a clique
cover of < S >v if each @Q; is a clique of < S >y and Uici<kV(Qi) = S.

For afamily F = {5}, 5,, .., 5p} such that Uy <i<,S; = {a), a2, ..,a,}, we
denotes Ar(a;) = {Sj;a; € S; € F) (or A(a;) ). Similarly, for a total clique
cover @ = {Q1,..,Qn} of a graph G, put Sg(v) = {Q: € Q;v € V(Q;)}
(or S(v) ). If G = Q(F), then every Q(a;) = Q(Ax(a;)) is a clique of G
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and Q(F) = {Q(a,),..,Q(an)} is a total clique cover of G . Conversely, let
Q = {Q1,..,Qn} be a total clique cover of G, then F(Q) = {Sg(v);v €
V(G)} satisfies Q(F(Q)) = G. Therefore we can identify an element a; with
a clique @i, and {Sg(v);v € V(G)} with F according to correspondences
showing above. In the follow we often abuse these identification without
any mention. By these facts, we obtain that w,,(G) = ming.icc of ¢ {#Q}
for a graph G and the following result.

Theorem 1 Let G be a connected graph with p > 2 vertices. Then w,,yi(G)
=ming {#Qo + (#P1 + #L1) + (#P2 + #ILa) + ... + (#P1 + #1)}, where
Qo is a minimal lcc of G, P; is a cliqgue packing of < V. >v, Z; is the set
of all isolated vertices of < V; >v, V; = {v € Vi, #S’pjuz,(‘v) <
maz,ev(c){#Se0(0)}}, Spuz,(v) = {Qiv € Q € P, nz’ N and V; = {ve
V(G); #Sg,(v) < maz,ev(cy{#Se.(v)}}.

Proof. Let F = {S(v);v € V(G)} be a uniform multifamily of
nonempty subsets of a set X such that Q(F) = G, .S'(f') = {a1,..,a,}
and 7 = wmui(G). Then Q(a;) = {S(v);a; € S(v) € F} is a clique and
Q(F) = {Q(ai);a; € S(F)}isa tec of G. We assume that Q(F) is not min-
imal. Let Qo C Q(F) be a minimal tcc of G, V; = {v € V(G); #Sg,(v) <
mazuev(e){#50.(1)}} and Z; be the set of all isolated verticeson < V; >y
. Since F is uniform, Q(F) — Q, is a clique cover of < V; >y . Thus there
exists a clique packing P; C Q(F) — @,. Next we consider @, = P, UZ,.
In the following we repeat the similarly step. If Q(F)— Qo —Qy—...— Q;_,
#0,let Vi = {v € V(G); ¥jy #Sq,(v) < maz,ev(c){#S2.(v)}} and Z,
be the set of all isolated vert.lces of < V; >y . Then there exists a clique
packing P; C Q(F)—-Qy — @1 — ... — Qi_; of < S; >v . So we next
consider on Q; = P; UI, We ﬂnally get Q(F)=Q,UQ,U..UQ and
wmui(G) = Z; 0 #9j 2 "”"{Z, 0 #9;}

Conversely let Oo be a minimal fcc of G, P; be a clique packing of
< Vi >v, I be the set of all isolated vertices of < V; >;, Vi = {v €
V(G); 571 #S0,(v) < mazyev(a){#Se.(v)}}, Vi = {v € V(G); #50,(v) <
7na$v€V(G){#SQo} and S(v) = {Q;v € Q € U;=0Q;}. Then #S(v) =
#S(u) = mazyev(c){#Sg.(w)} for Yu,v € V(G) and F = {S(v) v E

V(G)} is a uniform multlfamlly and Q(F) = G. Thus w.i(G) < Z, —o#Qi
and wmui(G) < nun{z,___l #0;} 0

By the Theorem 1, we are now in a position to give numerous examples of
uniform intersection numbers. An independent set in a graph G is a set of
vertices of G, no two of which are adjacent.

Example 2 Let G be a connected graph with p > 3 verlices and q edges,
where ils mazimum degree is A(G). Then E(G) is a tolal cliqgue cover of G

227



and maz,ev(c){#SEee)(v)} = A(G). So each vertez needs more A(G) —
degg(v) elements. Thus we gel the following upper bound: wmyi(G) <

‘-Sui(G) < #E(G) + Yyev(o){A(G) — dega(v)} = A(G)xp—q ([2]).

Example 3 Let G be a triangle-free graph and the vertezx set W = {v €
V(G); degc(v) # A(G)} is an independent set. Then each marimal com-
plete subgraph of G is K, so a minimal tcc is E(G) and < V; >y is a
union of isolated vertices. Therefore wmyi(G) = wyi(G) = A(G) xp—q
if and only if G is K3 or a lriangle-free graph and the verlex set W =
{v € V(G); degg(v) # A(G)} is an independent sel. We also gel the fol-
lowing resulls. If G is a connecled triangle-free graph with p > 3 vertices,
then wnyi(G) = wui(G) = #E(G) if and only if G is regular. If G is a
connected reqular graph with p > 3 vertices, then wpyi(G) = wyi(G) =
#E(G) if and only if G is triangle-free ([2] ). O

3 General results.

We next consider some structures of graphs which lead differences between
wyi(G) and wnui(G). We obtain the next result.

Proposition 4 Let G be a connected graph and F = {S(v);v € V(G)}
be a uniform multifamily such that Q(F) = G and #S(F) = wmui(G). For
verlices u and v with S(u) = S(v), v and v are adjacent and N(u)— {v}
= N(v) - {u}

Proof. Let S(u) = {a),..,a1} = S(v). Since each a; is a clique con-
taining v and v, there exists an edge joining v and v. If N(v).— {u} #
N(u)—{v}, then there exists a vertex w € (N(v)—{u}) — (N(u)—{v}) (or
(N(u)—{v}) — (N(v)—{u}) ) and a clique a; € S(u) (or S(v) ) containing
w . Since a; belong to S(v), v,w € a; and w € N(v) — {u}, giving the
required contradiction. O

Proposition 4 is also valid for the non-uniform cases. In [7] and [8], we
obtained the same results of Proposition 4 for the ordinary family case and
the antichain case.

The graph G of Figure 1 shows that the converse of Proposition 4 does
not hold. For vertices v and v, N(u)—{v} = N(v)—{u}, but S(u) # S(v) in
the minimal uniform multifamily F = { S(u) = { @1 = {w;,w2,u,v}, Q2 =
{w3;w4)u}l Q3 = {w4lw5:u)v} }! S(U) = {QhQ3)Q4 = {'le,‘wa,‘U}},
S(wr) = { Q1, Qs = {w, w2}, Q6 = {w} }, S(w2) = {Q1,Q4,Qs},
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Figure 1:

S(ws) = { Q2,Q4, Q7 = {wa, w4} }, S(wa) = {Q2,Q3,Q7}, S(ws) = { Qs,
Qs = {ws}, Qo = {ws} } }.

However by restricting the choice of the pair of vertices u, v of Propo-
sition 4, its converse becomes true. The next result gives a class of graphs
satisfying the condition.

Proposition 5 Let G be a connecled graph and F ={S(v);v € V(G)}
be a uniform mullifamily such that QF) = G, #S(F) = #{a1,..,an} =
wmui(G) and maz,ev(g){#S(v)} < A(G) ~ 1. For verlices u and v such
that N(u) — {v} and N(v) — {u} are independent sets, deg(v) = deg(v) =
A(G) and for each vertez w € N(u) — {v} whose degree is A(G), N(w) —
{u,v} is independent, S(u) = S(v) if and only if u and v are adjacent and
N(u) = {v} = N(v) - {u}.

Proof.  Since the necessity is true by Proposition 4 , we show the
sufficiency. Since N(u) — {v} is an independent set, there are at least
A(G) — 1 cliques in a clique cover of N(u) — {v}. So #S(u) = A(G) -1
= #S(v). If S(u) # S(v), then there exists a clique Q which belongs to
S(u) — S(v). Since N(u) — {v} is an independent set, Q@ = {u,w} and
w € N(u) — {v} = N(v) — {u}. By #S(u) = #S(v) = A(G) — 1, there
exists no {u,v,w} in S(v) and S(u). Since N(w) — {u,v} is independent,
#S(w) > A(G) — 1, giving the required contradiction. O

By Proposition 5 , we obtain some results on uniform intersection num-

bers. The 8-graph is a graph which is obtained from two triangles 71 and
Ty by identifying one vertex on T) with one vertex on T; ( see Figure 2).
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A graph G is called 8-free if G has no induced subgraphs isomorphic to
the 8-graph.

8-graph

Figure 2:

Corollary 6 Let G be K4-free and 8-free graph. If there exisls a uniform
mullifamily F such that QF) = G, #S5(F) = wmui(G) and maz,ey(6){S(v)} <
A(G) -1, then wyi(G) < wWmui(G) + ming {#Q}, where Q is a clique cover
of G such that Sg(u) # Sg(v) for all u,v such that u and v are adjacent,
deg(u) = deg(v) = A(G)

Corollary 7 Let G be K4-free and 8-free graph which has a Ky a(G) as
an induced graph. Then wyi(G) = wmui(G) + ming{v € V(G);(3u €
V(G))Sx(v) = Sx(u))}, where F is a uniform mullifamily such that
Q(F) = G and S(F) = wmui(G)-

Proof. Since G has a K a(g) as an induced subgraph, maz,ev(G){#S(v)}
> A(G). If S(u) = S(v), then there exist @ = {u,v} € S(u) = S(v), or
Ry = {u,v,w}, Ry = {u,v,w} € S(u) = S(v). In the first case, we replace
Q with Q] = {u}, Q5 = {v}. In the second case we replace R,, Ry with
R} = {u,v}, R, = {v,w}, R = {u,w}. In the both case we obtain the re-
questing uniform family, and wy;(G) = w,ui(G) + ming{v € V(G);(3u €
V(G)(S5(2) = S#(w)}. O

4 Complexity of intersection numbers.

In this section we consider the complexity of intersection numbers. In [6],
we dealt with complexity on several kinds of intersection numbers. We
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also know that the problem of determining of wm,(G) is NP-complete ([5]).
From a graph G with V(G) = {v,v2,...,%}, wa can construct the graph H
as follows: To the graph G, add new vertices u,, ua, ..., u, and new edges
{d1, 1}, {u2,v2}, ..., {14y, vp}. Clearly H has no vertices pair z, y such that
z and y are adjacent and N(z) - {y} = N(y) — {z}. Thus w(H) = wn,(H)
= wm(G) + p and w,i(H) = wim(G) + 2p- So we obtain the following fact.

Fact 8 For a given graph G and an inleger k it is NP-complete to decide
whether w(G) < k and il is also NP-complete to decide whether w,;(G) < k.

We also have the results which concern with the NP-completeness on
uniform intersection numbers. This result is based on the NP-completeness
of wm(G).

Theorem 9 For a given graph G and an inleger k it is NP-complete lo
decide whether wpy,;(G) < k and il is also NP-complete to decide whether
wui(G’) S k.

Proof. We reduce to it the problem of determining w,,(G), which is NP-
complete (see [5]). Let a graph G be given and V(G) = {vy,v2,...,vp}. The
graph H is constructed as follows: To the graph G, add new vertices z, u,,
Uz, ..., Up, Wy, W2, ..., wp, New edges {u;, v}, {uz,v2}, ..., {1p,vp} and join
the vertex z to all vertices of { uy, ua, ..., up, wy, wa, ..., wp } . Then
deg(z) = 2p. Thus wynyi(H) = wn(G) + MinF.ccaF)=e, #5(F)=wn(C)
{21«9{(21’— #Sr(vi)) + (2p—1-(2p—#S5(w)))} +2p+p(2p—-1)} =
wm (G) + minF.cc.a(7)=6,#5(F)=wm(@) {L1cicp{2P—1} +2p+p(2p- 1)}
= W (G) + 2p(2p — 1) + 2p = wi(G) + 4p?

Clearly H has no vertices pair 2,y such that z and y are adjacent and
N(z) - {y} = N(y) — {z}. Hence wmui(H) = wyi(H) = wn(G) +4p* O
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