Construction and Enumeration of Pandiagonal magic squares
of order n from Step method

Yung C. Chen
Tonetex Enterprises Co. LTD. P.O. Box 67-1296,
Taipei, Taiwan, Republic of China
and
Chin-Mei Fu
Department of Mathematics, Tamkang University
Tamsui, Taipei Shien, Taiwan, Republic of China

Abstract

A Pandiagonal magic square (PMS) of order n is a square matrix which is an
arrangement of integers 0,1,...,n%1 such that the sums of each row, each column
and each extended diagona! are the same. In this paper we use the Step method
to construct a PMS of order n for each n > 3 and n is not singly-even. We
discuss how to enumerate the number of PMSs of order n constructed by the
Step method, and we get the number of nonequivalent PMSs of order 8 with the
top left cell 0 is 4,176,000 and the number of nonequivalent PMSs of order 9
with the top left cell 0 is 1,492,992.

1. Introduction

The Natural square N = [n(i,j)] of order n is a square matrix, such that n(i,j) = n-i
+j, foreach 0 <i,j <n-1. A magic square of order n is an arrangement of N
such that the sums of each row, each column and each of the main diagonal are
the same. If also the sum of each extended diagonal (diagonal of the square
mappped onto the surface of a torus) is the same, the magic square is called a
Pandiagonal magic sqrare (PMS) [4]. An Auxiliary square A = [a(i,j)] of order
n is a square matrix which is an arrangement of n* consecutive integers such that
a(i,)) = a(i,0) + a(0,j), for each 0 <ij <n-1. The Natural square can be viewed
as a basic Auxiliary square. Two squares A = [a(i,j)] and B = [b(i,j)] are
orthogonal (orthogonal mates) if every ordered pair of symbols occurs exactly
once among the n* pairs <a(i,j),b(i,j)> [3, p.154]. Two orthogonal doubly
diagonal latin squares can be used to construct a magic square of the same order
by a simple juxtaposition [4, p.206]. A Pandiagonal constant sum (PCS) matrix
is a square matrix with n’ entries of n consecutive integers, each appearing
exactly n times, and such that the sums of each row, each column and each
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extended diagonal are the same [4].

Kraitchik showed that there is essentially only one magic square of order 3 and
this is not pandiagonal, so the order of a PMS must exceed 3. Moreover, there
are no PMS of singly-even order [1,3,4]. In [1] and [4], Ball and Kraitchik
have proved that there is a PMS of order n where n is odd and n is not a multiple
of 3 by using the generalized De la Loubére's method which is the Step method.

Step Method:

Let a, b and c, d be two pairs of distinct integers and 1 < a,b,c,d <n-1,and N =
[n(i,j)] the Natural square of order n. If M = [m(i,j)] is constructed as follows:
m(ij) = n(r,s), where i = a-r + ¢-s (mod n) and j = b-r + d-s (mod n), for each 0
<rs<n-1. Then M is a PMS provided that a, b, atb, a-b, c, d, c+d, c-d and
ad-bc are prime to n, respectively.

From the construction of M, M can be viewed as a rearrangement of N where
n(0,0) is put in the cell (0,0) of M and if n(r,s) is in the cell (i,j) of M then
n(r,s+1) is in the cell (i+c,j+d), which is down c steps and right d steps of n(r,s),
and n(r+1,s) is in the cell (i+a,j+b), which is down a steps and right b steps of
n(r,s) in M. Thus we call <a,b> the Column step, <c,d> the Row step. Candy
[2] constructed PMS of some special composite order by using this Step method,
and counted the number of PMSs of order 8 and 9 which can be constructed by
this method, but he didn't give a systematic method and there is some error in the
result of order 9. In this paper we will generalize the Step method to construct
all feasible orders of PMS and give dettails of their enumeration. We obtain
the number of nonequivalent PMSs of order 8 with the top left cell 0 is
4,176,000, and the number of nonequivalent PMS of order 9 with the top left cell
0is 1,492,992.

The square matrix considered in this paper have subscripts in the range 0, 1, 2, ...,
n-1.

2. Existence of PMSs

Let N be the Natural square of order n. Then N can be expressed as N =n-R +
C where R = [r(i,j)] and C = [c(i,j)], in which r(i,j) = i, c(i,j) = j, for each 0 < i,j
< n-1, are two orthogonal square matrices. W. Proskurowski showed the
following results in [4].

Lemma 2.1.[4] A square matrix of order n, S, is a PMS if there exist two
orthogonal PCS matrices B and B’ of order n such that S =n-B + B'.
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Lemma 2.2.[4] Let m and n be two positive integers,, | <m <n-1,and q=
ged(m,n). There exists a permutation p of the integers 0,1,2,...,n-1 such that for
all values of j, 0 < j <n, z pl(im+j) mod n] = n(n-1)/(2q).

0<i<n/q

By Lemma 2.1, if we can rearrange the entries of R and C to be PCS matrices R’
and C’ respectively, then we can construct a PMS n-R’ + C’.  For convenience,
we define a step <a,b> to be effective if a, b, a+b, and a-b are prime to n.

Lemma 2.3. Let <a,b> be an effective Columnn step, and d, c+d, c-d, and ad-
be all prime ton.  Let R’ be the square matrix constructed by the Column step
<a,b> and Row step <c,d> corresponding to R.  If gcd(c,n) =t, then each row
of R’ contains t entries of R which are in the same row. Furthermore, if gcd(d,n)
= m, then each column of R’ contains m entries of R which are in the same row.
Proof. By the Step method, we know that if '(i,j) = r(u,v), then i = au+cv
(mod n) and j = bu+dv (mod n). Thus for each i,j, we have (ad-bc)u = di-cj
(mod n) and (ad-bc)v = aj-bi (mod n).  Since ad-bc is prime to n, ged(c,n) =t,
and ged(d,n) = 1, then there are n/t distinct integers in {0,1,2,...,n-1} for u to
satisfy the equation (ad-bc)u = di-¢j (mod n), for fixed i. Therefore, each row
of R( contains t entries of R which are in the same row. Similarly, we can
obtain that if gcd(d,n) = m, then each column of R’ contains m entries of R which
are in the same row. O

By Lemma 2.3, we know if <a,b> and <c,d> are effective steps then each integer
will appear exactly once in each row and each column of R', i.e. R’ is a Latin
square. Then R’ is a PCS matrix. Similarly C' is a PCS matrix. Thus n-R’
+C’ is a PMS.

Lemma 2.4. Let <a,b> be an effective step and ad-bc be prime ton. If

ged(c,n) = g, ged(d,n) = g4 and both c+d and c-d are prime ton.  Then there is

a permutation p such that if R’ is the square constructed by the Column step

<a,b> and Row step <c,d> corresponding to p(R), then R’ is a PCS matrix.

Proof. Letq=/cm{g.gs}. By Lemma 2.2, there is a permutation p such that
z pl(ig+j) mod n] = n(n-1)/(2q), for 0 <j <n.

0<i<n/q
Thus if q = g. - m,, then for each j, 0 <j <n,
X pl(igetj)modn]= Z X pl(iqtkg.+j) mod n]
0<i<n/g, 0<k<m, 0si<q

=m¢(n(n-1)/(2q) = n(n-1)/(2g.).

By Lemma 2.3, we know that each integer in the rows of R’ appears g times,
thus each row sum of R’ will equal n(n-1)/2.  Similarly, each column sum of R’
isn(n-1)/2. Since c+d and c-d are prime to n, each extended diagonal sum is
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n(n-1)/2, too. Therefore R’ is a PCS matrix. O

Theorem 2.5. Letn> 3 and n is not singly-even. Leta, b, ¢, and d be
positive integers less than n. If ad-bc is prime to n, then there is a PMS of order n
constructed by the Column step <a,b> and Row step <c,d> from the Step method
corresponding to the Natural square N.
Proof. If g,= gcd(a,n), g,= ged(b,n), g; = gcd(a+b,n), g4 = gcd(a-b,n), gs =
ged(c,n), g = ged(d,n), g7 = ged(c+d,n), and gg = ged(c-d,n).  Let q = lem{g;| i
=1,2,..,8}. ByLemma 2.2, we know there is a permutation p of integers
0,1,...,n-1such that for all values of j, 0 < j <n,
z pl(iq+j) mod n] = n(n-1)/(2q).

0<i<n/q
Let A = [a(i,j)] be a square matrix and A = n-p(R) + p(C) where p(R) = [p[r(i,j)]]
and p(C) = [p[c(i,j)]]. Let R’ and C’ be two square matrices constructed by the
Column step <a,b> and Row step <c,d> corresponding to p(R) and p(C)
respectively. By Lemma 2.4, we get R" and C’ are two PCS matrices. Let A’
=n-R"+C’. SinceR is orthogonal to C, R’ is orthogonal to C'. By Lemma
2.1, we obtain that A’ is a PMS of ordern. O

Example. Letn=8,a=1,b=2,c=3,d=1.
Since ged(b,n) =2, ged(c+d,n) = 4, we have q=4. By the proof of Lemma 2.2,
wegetp=(01237654).

R= 00000000 C= 01234567
11111111 01234567
22222222 01234567
33333333 01234567
44444444 01234567
55555555 01234567
66666666 01234567
77777777 01234567

p(R)=00000000 p(C)=01237654
11111111 01237654
22222222 01237654
33333333 01237654
777777177 01237654
66666666 01237654
55555555 01237654
44444444 01237654

R’ and C' are constructed by the Column step <a,b> and Row step <c¢,d>
corresponding to p(R) and p(C), respectively.
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We can see that R’ is orthogonal to C’, and R’ and C’ are PCS matrices.
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1 2 3 7 6 5 4 0 35 45 49 63 28 18 14
1011 15 14 13 12 26 2 8 3 37 4 5 6

17 18 19 23 2 21 20 47 52 58 30 16 11 5 33
25 26 27 31 30 9 28 13 1 39 4 5 62 24 19
57 58 59 63 62 61 60 6 27 21 9 7 36 42 A4
49 50 51 55 54 53 2 34 46 48 9 29 17 15 4
4 42 43 47 46 45 4 2 12 2 38 40 51 61 25
3 34 35 39 38 37 36 53 57 31 20 10 6 32 43

A A’

Then A is an Auxiliary square, and A’ is a PMS of order 8.

3. Enumeration

Since the properties of pandiagonal magic square mapped onto the surface of a
torus are invariant under rotation, transposition, and cyclic translation (shift of
rows and columns). We define that two PMSs are equivalent if there is any
transformation (rotation, transposition or cyclic translation) between them. The
PMS can be written with any element in the top left corner without losing its
pandiagonal magic properties. In this paper we will study the sets of
nonequivalent squares in choosing 0 as lying in the top left cell.

Let #(PMS) be the total number of PMSs of order n constructed from Step
method and consisting of the integers 0 to n>-1 which have 0 in the top left cell.
Since each PMS has 8 equivalent PMSs, the total number of nonequivalent
PMSs of order n with 0 in the top left cell is #(PMS)/8.

From Section 2, we can construct PMSs by finding permutations corresponding
to Column steps, Row steps and the Natural square. Thus a PMS constructed
by the Step method depends upon three things. First, an Auxiliary square A.
Second, the steps.  Third, a permutation p, corresponding to steps, partitions
integers that are in the first row and the first column of A into subsets, each with
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the same sum.
(1) Auxiliary squares

From the definition of an Auxiliary square, we know that any row permutation or
column permutation of an Auxiliary square is an Auxiliary square. Ifnisa
prime number then there is only one basic Auxiliary square, that is the Natural
square. If n is not prime then we can partition an n by n square into
subrectangles T = [t(i,j)], where t(i,j) = t(i,0) + t(0,j) for each i,j. For
convenience, we call such T a basic Auxiliary rectangle if t(0,j) = j and t(i,0) = i,
for each i,j. Let P = [p(i,j)] and Q be rectangle matrices of size rxs and uxv
respectively. Then the Kronecker product P®Q is defined to be the ru x sv
matrix:

[ p(0,00*Q  p(0,D*Q  p(0,2)*Q ... p(0,9*Q ]
p(LO)*Q  p(LD*Q  p(L2)*Q ... p(L,9*Q

| p(r-1,0)*Q p(r-LD*Q p(r-1,2)*Q ... p(r-1,5)*Q_

where p(i,j)*Q = [p(ij)*q(k,)] whenever Q = [q(k,))].

Lemma 3.1. Let P and Q be two Auxiliary rectangles of size rxs and uxv
respectively. If we define p(i,j)*q(k,/) = uvp(i,j) + q(k,/), foreach 0 <i<r, 0
<j<s,0<k<u,and 0</<v. Then the Kronecker product P®Q is an
Auxiliary rectangle of size ru x sv.

Proof. LetC=P®Q. Then each entry in C can be written by p(i,j) * q(k,]),
for some i,j,k,/. Since p(i,j) = p(i,0) + p(0,j) and q(k,7) = q(k,0) + q(0,), we
have p(i,j) * q(k./) = uvp(i,j) + q(k,/) = uv[p(i,0) + p(0,)] + [q(k,0) + q(0,)] =
uv[p(i,0) + q(k,0)] + uv[p(04) + q(0,N] = [p(i,0) * q(k,0)] + [p(0.) * q(0.0)].
Thus each element in C can be written as the sum of two elements one of which
is in the first column of C and the other one is in the first row of C. Hence C is
an Auxiliary rectangle of sizeru x sv. 0O

Corollary 3.2. IfP and Q are two basic Auxiliary rectangles of size rxs and
uxv respectively. Then the Kronecker product P®Q is an Auxiliary rectangle

of size ru x sv.

From Collary 3.2, we can obtain that if n is a composite number then an
Auxiliary square of order n can be represented as the Kronecker product of two
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basic Auxiliary rectangles. Thus the number of Auxiliary squares of order n
depends on the number of different ways to represent it to be the Kronecker
product of basic Auxiliary rectangles. We have the recurrsive formula to count
the number of Auxiliary squares of order n in the following theorem.

Theorem 3.3. Let N(sxt) be the number of Auxiliary rectangles of size sxt.
Then N(Ixn) = I; N(mx1) = 0; N(mxp) = 1, if p is prime; and
N(mxn)=N(lxn)+ X [ z N(px (n/q)) - Z N(pxt)]

plm,p>1 q is prime,q<n,qgjn t
where t = ged{n/ql, n/q2}, q1, q2 are two distinct prime factors of n.
Proof. It is easy to see that N(1xn) = 1 and N(mxp) = 1, when pis prime. By
Lemma 3.1, we know each Auxiliary rectangle can be written as the Kronecker
product of two Auxiliary rectangles. Let A be an Auxiliary rectangle of size
mxn. Ifm=p-u> 1, n=qv> I, then there exists two Auxiliary rectangles P
and Q of size pxq and uxv respectively such that A = P®Q. IfweletQbea
basic Auxiliary rectangle, then the total number of Auxiliary rectangles A of size
mxn is equal to the number of P.  Therefore we use the Principle of Inclusion
and Exclusion, we conclude the proof. O

For some special sizes, we can obtain the total number of Auxiliary rectangles by
recurrsively using Theorem 3.3.

Corollary 3.4. Let p, q and t be prime numbers.

() N(p’xp”) = 3.

(i) If n is a positive integer, then N(p"xp") = (2n-1)!/[n!(n-1)!].

(iii) If q # t, and n = t"q", where u and v are integers, then
N(pxn) = (u+1)(v+1)-1.

(iv) N(mxq®) = f(m), where f(m) is the number of factors of m.

(v) If p and q are distinct prime, then N(pgxpq) = 7.

Example. How many Auxiliary squares of order 12 are there?
By Theorem 3.3, we can get
N(12x12) = N(1x12) + [N(2x6)+N(2x4)-N(2x2)] + [N(3x6)+N(3x4)-N(3x2)]
+ [N(4x6)+N(4x4)-N(4x2)] + [N(6x6)+N(6x4)-N(6x2)] +
[N(12x6)+N(12x4)-N(12x2)]
= 1H(3+2-1)+(3+2-1) + [N(4x6)+3-1] + [N(6x6)+N(6x4)-1] +
[N(12x6)+ N(12x4)-1]
= 9+N(4x6)+N(6x6)+N(6x4)+N(12x6)+N(12x4).
N(4x6) = N(1x6) + N(2x2) + N(2x3) + N(4x2) + N(4x3) = 5.
N(6x6) =7. N(6x4) =N(I1x4) + N(2x2) + N(3x2) + N(6x2) = 4.
N(12x6) = N(1x6)+N(2x2)+N(2x3) +N(3x2)+N(3x3)+N(4x2)+N(4x3)+N(6x2)
+ N(6x3)+ N(12x2) + N(12x3) = 11.
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N(12x4) = N(1x4) + N(2x2) + N(3x2) + N(4x2) + N(6x2) + N(12x2) = 6.
Thus we conclude that N(12x12) = 9+5+7+4+11+6 =42. That is, there are 42
Auxiliary squares of order 12.

(2) Steps

Let a, b be two distinct integers, 0 <a,b<n. We define R;= {<a,b>|0 <a,b<n,
ged(a,n) =i, ged(i,b) = 1}, C; = {<a,b>|0 <a,b <n, ged(b,n) =1, ged(i,a) = 1}, S;
= {<a,b>|0 < a,b <n, gcd(a+b,n) = i}, and D; = {<a,b>|0 <a,b <n, gcd(a-b,n) =
i}, for each factori ofn, 1 <i<n. Ifthe step <a,b> is not effective then <a,b>
belongs to one of the types R;, C;, S;, and D; or the combination of any two types,
such as R,C;, R;S; ..., SiD;.  Since ad-bc should be prime to n, Column step
<a,b> and Row step <c,d> at least can not belong to the same type. If one of a,
b is prime to n then the step <a,b> can be written by a - <1,y>, a is prime to n, or
b-<x,1>,bis prime ton. Therefore we obtain

Lemma 3.5. The number of steps <a,b> which can be used to construct a PMS
equals @(n) times the number of the set {<1,y>, <x,1>|1 <x,y <n-1} U {<x,y>|
x,y are two distinct prime factors of n}, where ¢ (n) is the number of positive
integers which are prime to n and less than n.

(3) Permutations

After we determine the steps, <a,b> and <c,d>, we know there are several types.
(i) If <a,b> and <c,d> are both effective, then we can permute the first row or the
first column of the Natural square to get an Valid Auxiliary square. Thus there
are ((n-1)!)* Valid Auxiliary squares.

(ii) If <a,b> or <c,d> is in one of the types R;,, Cy,, S, and Dy, then we need to
partition the first row or the first column of the Auxiliary square into m subsets,
each with the same sum, T,,. For each T, we can get a set of sequences P, =
{(p[0},p[1),....p[n-1])|p[0] = 0, and for each j, 0 < j <m-1, Zogicym [(im+j) mod
n] is constant}. After we get a sequence p from T, we can permute terms in p
to generate another sequences which still in P,,.  Thus we obtain that #(P,) =
(m-1)! - (/m)H™" - (/m-1)! - #(Ty,), where #(T,) is the number of ways to
partition n integers into m subsets, each with the same sum. Therefore we have
(#(Pw))® Valid Auxiliary squares.

(iii) If Column step <a,b> and Row step <c,d> are in different types, say <a,b>
in R, and <c,d> in C,, then we need to partition the first column of the Auxiliary
square into u subsets, each with the same sum, and partition the first row of the
Auxiliary square into v subsets, each with the same sum. For each partition we
can obtain sequences to form a Valid Auxiliary square such that the first column
1{0],r[1],...,r{n-1], and the first row c[0],c[1],..., c[n-1] satisfy that r[0] = c[0] = 0,
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Zosi<ow  I[(iu+j) mod n] is constant for each j, 0 < j < u-1 and
Yosicoy  C[(iv+j) mod n] is constant for each j, 0 <j <v-1. Thus we can
generate #(P,) - #(P,) Valid Auxiliary squares.

(4) Conclusion

The total number of PMSs of order n constructed from Step method depends on
Auxiliary squares, steps and permutations to generate Valid Auxiliary squares.
We can formulate it as follows:

#(PMSs of ordern) = X Auxiliary square  #(Column steps) - #(suitable Row steps) -
#(Valid Auxiliary squares) / ((p(n))z.
#(nonequivalent PMSs of order n) = #(PMSs of order n) / 8.

From (1) we can count how many Auxiliary squares of order n. From (2) we
can count how many steps can be Column steps, but for the Row steps we need
to check which one can not satisfy the condition "ad-bc is prime ton". The
number of permutations depends on the property of the first row and the first
column of the Auxiliary square in (1) and the steps in (2). Since we doubly
count the steps and the permutations for the row and column ¢(n) times, we need
to divide twice of it. From the above discussion we can get the following
theorem.

Theorem 3.6. If n is prime, then there are ((n-1)1)’(n-3)(n-4) PMSs of order n
constructed from Step method.

If n is not prime, then the total number of PMSs of order n can not get the
general formula to calculate it, it should calculate case by case except we can
solve the following problem:

Problem. Let p and q be two integers and p,q > 2. If n = pq, how many
different ways to partition a sequence of integers containing p copies of the set

{0,1,2,...,g-1} into t parts, each with equal sum, where t is a factor of n.

If n=p? t=p and p is prime, then the answer for the above problem is equal to
the number of latin squares of order p.

4. Small cases

In this section, we will count how many nonequivalent PMSs of order 4, 8, and 9
can be constructed from Step method.

4.1 The number of PMSs of order 4
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(1) By Corollary 3.4, N(4x4) =3. Thus there are three Auxiliary squares.

o 1 2 3 0 1 4 5 0o 1 8 9
4 5 6 7 2 3 6 17 2 3 10 11
8§ 9 10 1 8§ 9 12 13 4 5 12 13
12 13 14 15 10 11 14 15 6 7 14 15

(2) There are only two types of steps: R; and C,.  And |R]=2=|C,|. If<a,b>
is in Ry, then <c,d> is in C,. Thus #(Column steps) = 4, and #(suitable Row
steps) = 2.

(3) Since #(T,) = 1 for the first row and the first column of each Auxiliary square
in(l). #Py)=2-#T,)=2.

The total number of PMSs of order 4 is (3 - (4 - 2) - 2%)/ 22 = 24, and the total
number of nonequivalent PMSs of order 4 is 3.

4.2 the number of PMSs of order 8

(1) By Corollary 3.4, we get that N(8x8) = 10. There are 10 basic Auxiliary
squares of order 8.

(2) For any two distinct integers a and b, the step <a,b> belongs to one of the
sets Ry, Cy, Ry, and C4, or one of the sets S,D, and S4D,, where S$;D; = {<a,b>|0
<ab <n, ged(atb,n) =i, ged(a-b,n) = j}. Since [Ry| =[C,| =8, [Ry| =|C4| =4,
and |S;Dy4| = |S4D2] =4. According to ad-bc is prime to n, we obtain the number
of steps <a,b> and <c,d>

(i) if <a,b> and <c,d> are in R, or C,,

#(Column steps) - #(suitable Row steps) = 16-8 = 128.

(ll) |f<a,b> and <C,d> are in Ry, C4, SzD4, or S4D2.

Since if <a,b> is in S;D4, <c,d> can not be in S4D.

#(Column steps) - #(suitable Row steps) = 8-12 + 2-4.8 = 160.

(iii) if <a,b> is in R; or Cy, <¢,d> is in Ry, C4, S;D4, or S4D,.  Or conversely.
#(Column steps) - #(suitable Row steps) =2-16-12 = 384.

(3) Corresponding to the steps discussed in (2), we need to get T;and T,. We
obtain that #(T,) = 1, and #(T,) = 4 for each Auxiliary square in (1). Thus #(P,)
=48, and #(P,) = 576.

The total number of PMSs of order 8 is {10 - [128 - (576) + 160 - (48)* + 384 -
(48 -576)]} / 4*=33,408,000. The total number of nonequivalent PMSs of
order 8 is 33,408,000/8 = 4,176,000.

4.3 the number of PMSs of order 9

(1) By Corollary 3.4, N(9x9) = 3. There are 3 basic Auxiliary squares of order
9:
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37 38 39 40 41 492 43 4 12 13 14 39 40 41 66 67 68
46 47 48 49 50 51 52 53 15 16 17 2 48 4 68 70 7
55 56 57 58 59 60 61 62 18 19 20 45 46 47 72 713 74
64 65 66 67 68 69 70 71 21 2 23 48 49 S0 75 76 T7
37475 76 T 1879 8 24 25 26 51 52 53 78 79 &0
1 2 910 11 18 19 20
4 51213 1421 22
7 81516 17 24 25 26
28 29 36 37 38 45 46 47
31 32 39 40 4 48 49 S
34 35 42 43 4 51 52 53
55 5 63 4 65 2 73 74
58 59 66 67 68 75 76 T
61 62 69 70 71 78 79 8

(In [1], Candy gave 4 Basic Auxiliary squares of order 9. That is wrong.)

(2) For any two distinct integers a,b, the step <a,b> belongs to any one of four
types R3, C3, S;and D;.  And |R;| = |C;] =[S3| =|Ds) = 12. Thus #(Column
steps) - #(suitable Row steps) = (4-12)-(3-12) = 1728

(3) Corresponding to any choice of the steps, we need to get T;.  Since #(T;) =
2 for each Auxiliary square in (1). Thus #(P;)=2- (BH%(2Y) - #(T,) = 288.

By using P;, we can generate (288)? Valid Auxiliary squares of order 9. (In [1],
Candy generated (1296)? Auxiliary squares. Since he over counted.)
Therefore the total number of PMSs of order 9 is 3 - 1728 - (288)*/ 6> =
11,943,936. The total number of nonequivalent PMSs of order 9 is 1,492,992.
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