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What is the 2-packing number of the l X m x n complete grid graph?
Fisher solved this for 1 x m x n grids for all m and n. We answer
this for 2 x m x n grids for all m and n, and for 3 x3 xn, 3 x4 X n,
3xTxn,4%x4xnand 5 x5 xn grids for all n. Partial results are
given for other sises.

Given a graph G, a 2-packing is a subset of its nodes with disjoint closed
neighborhoods. Following Chang and Clark [1], nodes of a 2-packing will
be called “stones” (as in the game of Go). Let P;(G) (the 2-packing number
of G) be the maximum cardinality of a 2-packing of G. Let P, (note the
unfortunate notational clash) be a path on nodes 1, 2, ..., n with node ¢
adjacent to node j if |: — j| = 1. Then Py, x P, is an m X n grid of nodes
with node (g, h) adjacent to node (j, k) if g — j| + |h — k| = 1. Fisher [2]
found P3(Pp X Pp): he showed that for all m < n,

([(m+1)n/6] fm<3
[6n/T] ifm=4and n# 1 (mod 7)
[6n/T] +1 ifm=4and n=1 (mod 7)
Py(Pp x Py) =< 10 if (m,n) = (7,7) (1)
[(mn+2)/5] if5<m<7and (m,n)#(7,7)
17 if (m,n) = (8,10)
\ [mn/5] if m > 8 and (m, n) # (8, 10).

Here we try to extend these results to a third dimension. Let Pyx Py X Py,
(the I x m x n complete grid graph or just the I x m x n grid) be the graph
on an ! x m x n grid of nodes with node (f, g, h) adjacent to node (3, 7, k)
if |f =i+ |9 — j| + |h— k| = 1. Let ai,mn = Pa(Pt X P x Pn). “Layers”,
“columns” and “rows” refer to 1 x m xn, I xm x 1and I x 1 X n subgrids,
respectively. Figure 1 shows a 2-dimensional diagram of a 2-packing of a
3-dimensional grid. An i in square (j, k) indicates that node (3,7, k) is a
stone.

Figure 1. Above is a 2-packing of the 3 x 5 x 7 grid with 18 stones
and its 2-dimensional representation. Thus as s,z > 18.
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Lemma 1 is implicitly used throughout this paper.

Lemma 1. Let k, I, m, n be positive integers with k < n. Then ajymn <
A mn-k + Qmk-

Proof. A maximal 2-packing of an I x m x n grid has at most a;m, & stones
in the first k columns and @y, n-k Stones in the remaining columns. B
2 xm x n Grids

In proving (1), Fisher relied on a computer to find the 2-packing number
for numerous 2-dimensional grids. Surprisingly, the 2-packing number of
any 2 X m X n grid can be found without citing computational results.

Theorem 2. For all2 < m < n,
{n+l ifm=3 and n is odd
a2,m,n =

[mn/3] otherwise.

Proof. Figure 2 shows agmn > [mn/3]. Figure 3 shows az3, > n+1
when n is odd. Thus the above formula is a lower bound for az m n.

1 1 1

1 1 1

Figure 2. A 2-packing of 2 X m x n grids. If we start in the top left
corner, it is easy to verify that the 2-packing has [mn/3] stones.

2 1 2 1 2 1

1 2 1 2 1 2

Figure 8. A 2-packing of 2 X 3 x n grids with n 4 1 stones for odd =.

To show equality, we need a number of cases. First let m = 2. From (1),
we have a3 2,; = 1 and hence a3,3,3 < 2a3,3,1 = 2. Suppose the 2x2x3 grid
can have 3 stones. Then one layer has at least 2 stones which must be in
opposite corners. This precludes stones in the other layer, a contradiction.
So az,2,3 = 2 and hence a3,3,n = [2n/3] for n < 3. For n > 3, induction
gives az2n < G2,2,3 + 63,2,n-3 = 2+ [2(n — 3)/3] = [2n/3].
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Next let m = 3. We already have az3,31 = 2 and a333 = 2. For n > 2,
induction gives a3 3 s < 3,32 +a23n-2 =2+ n—2=nif nis even, and
a23n < a332+a23n-2=24+n—-1=n+1 if n is odd.

Now let m = 4. We already have az,4,1 = 2, az42 = 3 and @343 = 4.
So az,4,n = [4n/3] for n < 3. For n > 3, induction gives az4n < G234 +
@2,4n-3 = 4+ [4(n — 3)/3] = [4n/3].

The m = § case is more difficult since a3 5, > [5n/3] for n = 1 or 3.
We already have aa 5,4 = 7. For n = 5, suppose the 2 x 5 x 5 grid can have
10 stones. Since az5,1 = 3 and a3 54 = 7, Column 1 has 3 stones. Also
since az5,2 = 4 and az53 = 6, Columns 1 and 2 together have 4 stones
implying Column 2 has 1 stone. However, 3 stones in Column 1 precludes
stones in Column 2 (see Figure 4), a contradiction. So az5s = 9. For
n =6, we have a3 56 < a32,6+a32,36 = 4+6 = 10. For n = 7, an argument
similar to the n = 5 case shows that a3 5,7 = 12. For n = 8, we have
azs,8 < az,28+azas = 6+ 8 = 14. For n = 9, suppose the 2 x 5 x 9
grid can have 16 stones. Since az52 = 4 and a3,5,7 = 12, Columns 1 and
2 together have 4 stones. Since a3 53 = 6 and a3 56 = 10, Columns 1 to 3
have a total of 6 stones. So Column 3 has 2 stones. Since no column has 4
stones, and 3 stones in one column and 1 stone in the adjacent column is
impossible, Columns 1 and 2 also each have 2 stones. Since a3 3; = 2 and
@2,3,4 = 4, Rows 1 and 5 each have 2 stones in the first 3 columns. However,
this allows only one stone in Column 2 (see Figure 5), a contradiction. Thus
a3,5,9 = 14 and hence az 5, = [5n/3] for 4 < n < 9. For n > 9, induction
gives az5n < G356 + a3,5,n—6 = 10 + [5(n — 6)/3] = [5n/3].

2

1

2

Figure 4. Placing 3 stones in Column 1 of a 2 X 5 X n grid precludes
stones in Column 2.

1 2 2 1

or

1 2 1 2

Figure 5. Two stones each in the first 3 columns of the 2 x 5 x 9
grid is impossible. If Columns 1, 2 and 3 each have 2 stones, there
are 2 stones in the first 3 columns of Row 1 and 2 stones in the first
3 columns of Row 5. But then Column 2 can have only one stone.
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For m = 6, we already have az62 = 4, az63 = 6 and az64 = 8.
Thus a3 = 2n for 2 < n < 4. For n > 4, induction gives az6,n <
a32,6,3 -+ 32,6,n-3 = 6+ 2(17. - 3) = 2n.

For m = 7, we already have a3,74 = 10, az75 = 12 and a3,76 = 14.
For n = 7, we have aa,7,7 < a3,2,7 + aa2,5,7 = 5+ 12 = 17. For n = 8, we
have a3 78 < az,;38 + az,48 = 8+ 11 = 19. For n = 9, we have a3,79 <
az,2,9+a2,59 = 6+15 = 21. Thus az7,n = [Tn/3] for4 <n < 9. Forn > 9,
induction gives az,7,n < G2,7,6 + 62,7,n-6 = 14 + [T(n — 6)/3] = [Tn/3].

For m = 8, we already have az832 = 6, az g3 = 8 and azg4 = 11.
Thus azsn = [8n/3] for 2 < n < 4. For n > 4, induction gives az,8,n <
83,83+ 62,8,n-3 = 8 + [8(n — 3)/3] = [8n/3].

For m = 9, we already have a3 94 = 12, az9,5 = 15, az 9,6 = 18 and
az97 = 21. Thus az9n = 3n for 4 < n < 7. For n > 7, induction gives
a3,9n < G294+ G29n—4 =12+ 3(n — 4) = 3n.

We have shown agmn = [mn/3] for4 <m< 9and n>4. Form > 9
and n > 4, induction gives 63 mn < 62,6,n+82,m-6,n = 2n+[(m — 6)n/3] =
[mn/3]. W

3 xm xn Grids

We could not find general formulas for the 2-packing number of 3 x m x n
grids. Previous sections found a3,,» and a3 2. We find a3 3 n, a3,4,n and
a3,7,n, and partial results for other values of m. For m > 4, these results
use a computer to implement an exhaustive branch-and-bound search.

Theorem 8. For alln > 0, we have a3 3n = [57/3].

Proof. Figure 6 shows a3 3. > [5n/3]. Equation (1) shows a3 31 =2 and
hence a3 32 < 2a3,3,1 = 4. Suppose the 3 x 3 x 3 grid can have 6 stones.
Since as 3,1 = 2, each column has 2 stones. The first two columns of Figure
6 shows, up to symmetry, the only way to put 2 stones each in Columns
1 and 2. However, this only allows 1 stone in Column 3, a contradiction.
Thus a3 3,3 = 5 and hence a3 ;3n = [5n/3] for n < 3. For n > 3, induction
gives a3 3, < 6333 + 633n—3 =5+ [5(n —3)/3] = [6n/3]. W

113 1}3 113 113

311 3|1 3|1 3|1

Figure 6. A 2-packing of 3 x 3 x n grids with [6n/3] stones.
Theorem 4. For n > 3, we have a3z 40 = 2n.

Proof. Figure 7 shows az4n > 2n. Theorem 2 gives a3 4,2 = 4 and
@344 < 2a34,2 = 8. Suppose the 3 x 4 x 5 grid can have 11 stones.
Since a3 4,2 = 4 and a3z4,1 = 3, Columns 1 to 5 have 3, 1, 3, 1 and 3
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stones, respectively. Figure 8 shows the only patterns (up to symmetry)
for Column 3. One pattern precludes Columns 2 and 4 from each having
a stone. The other pattern allows this. Up to symmetry, the right side of
Figure 8 shows the only way for this to occur. But this precludes 3 stones
in Column 5, a contradiction. Thus a3 4,5 = 10. For n > 5, induction gives
83,40 < 63,42+ 834n-2=4+2(n—2)=2n. W

3|1 2 3|1 2 3|1 2 31 2

1)3 2 1]3 2 1]3 2 1]3 2

Figure 7. A 2-packing of 3 x 4 x n grids with 2n stones.

2 1]3
or 2

3 3

1 1

Figure 8. The only ways, up to symmetry, of placing 3 stones in
Column 3 of the 3 x 4 x 5 grid.

Trying to find a3 5, proved frustating. Theorem 5 summarizes the
computer results. Figure 1 gives the only known 3 x 5 x n grid with more
than [(33n + 6)/14] stones. Figure 9 shows a maximal 2-packing typical of
3 x 5 x n grids. We conjecture a3 5,» = [(33n + 6)/14] for all n > 19. Note
that so far, upper bound arguments have been simple because for some &
and ng, we had GLm,n = Gi,mk + Qlm,n—-k for all n > nyo. However if the
conjecture is true, this does not happen for 3 x 5 x n grids.

1 M 3 1]3 1]s 3 3] s 1]s 113 3 311 sl 3 1|3 1|3 1 2 L] 113
2 3 3 3 3 1 2 3 1 2 3 2 3 3 1 2 32
3 1 113 1 31 1 3 31 3 1|s 3 1 1{s b 31 1 3 s1
1 3 3 a2 3 2 1 2 2 1 3] 12 3 3 2 1
E] 1 31 3j1 2 1]s 113] j2]| [s]2 31 3 3 1 3|2 3]1 ] 113 1] 3

> [te

Figure 9. A maximal 2-packing of the 3 x 5 x 50 grid. Note the
alternating 14 column patterns, one an inversion of the other.

Theorem 5. For 5 < n < 500, we have
[(33n+6)/14] =1 ifn=16 or 19

G3,5,n = [(33n + 6)/14] +1 1fn =7
[(33n + 6)/14] otherwise.

We found what appears to be an exact lower bound for asz e n (the 2-
packing in Figure 10 proves the first part of Theorem 6). Figure 11 shows
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the only known 3 x 6 x n grid with n > 6 has more than [(14n + 2)/5]
stones.

Theorem 6. For all n > 6, we have agen > [(14n+ 2)/5). Further for

alln < 500 ezcept n = 8, the inequality is an equality. Also aze,s = 24.

3|1 3{1{ [3]1) I3]1 3|1] |3[1] |3]1 3[1] 13]1 311] |2] I3/1] |2

311 2 2 3|1 2 2 31 2 2 3l 11 3] |1
1 3] [1]3] |31 3] 1113] 11 3 113 1 2] |1] I3
3] 1113] |1 3] [1]3] [1 3] [113] |1 3] [1]3 3] 12
2 2 3|1 2 2 3|1 2 2 3{1 2 2| |1 1
1] 13]1] |3]1 311] 13]1] [3]1 3i1] I3]1] I3]1 3 1] {3]1] [3] {2] i3

Figure 10. A 2-packing of 3 x 6 x n grids with [(14n + 2)/5] stones.
When n = 0 (mod 10), repeat the first 10 column as many times as
needed and then add the last 10 columns. When n = 5 (mod 10), skip
the first 5 columns, repeat the next 10 columns as often as needed
and then add the last 10 columns. Otherwise, repeat the first 10
columns and truncate.

Figure 11. A maximal 2-packing of the 3 x 6 x 8 grid with 24 stones.
Unlike the previous two cases, we found a3 7 n.
Theorem 7. For alln > 3, we have a3 7o = 2 [5n/3].

Proof. Figure 12 shows a3 7,n > 2 [5n/3] for all n. The computer showed
a37n = 2[5n/3] for 4 < n < 9. For n > 9, we have a3,7,n < a3 76 +
83.7.n-6 = 20 +2 [5(n — 6)/3] = 2[5n/3]. m

3|1 3|1 3|1 3|1 3|1

113 143 1]3 113 13

3|1 31 3|1 3|1 3|1

113 1|3 1]3 113 113

Figure 12. A 2-packing of 3 x 7 X n grids with [5n/3] stones.

The status for 3 x 8 x n grids is the reverse of that for 3 x 6 x n grids in
that we appear to have an exact upper bound. To show equality, we must
find a 2-packing of 3 x 8 x n grids with [70n/19] stones for all n > 57.
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Theorem 8. For 8 < n < 500, we have
ifn=09,10,11, 12, 13, 14, 16, 17
aue = ] T70/19]+1 19,20, 21, 23, 24, 26, 27, 29, 32
3.8,n = 35, 36, 38, 39, 42, 51, 54 or 57
[70n/19] otherwise.
Further for n > 57, we have aggn < [T0n/19].

Proof. A computer gives the result for n < 500. For n > 133, induction
gives a3,8,n < @3,8,n-76 + 3,876 = [70(n - 76)/19] + 280 = [70n/19]. ]

Theorems 9 and 10 summarize the computer results for 3 x 9 x n and
3 x 10 x n grids.

Theorem 9. For 9 < n < 100, we have a3, = [(41n +11)/10].
Theorem 10. For 10 < n < 26, we have a3,10,» = [49n/1 1] +2.

For 3 x 11 x n grids, the computer gave the following. The 2-packing in
Figure 13 matches the formula for n > 14.

3|1 31 3|1 31 3(1 1]3 2 1
2 2 2 2 2 1 3
1]3 1]3 1]3 1{3 1]3 3 3|1
1 2 2
31 31 3|1 3|1 3|1 3 13
2 2 2 2 2 1 1
113 1]3 113 113 1]3 2 3
1 3|1
31 3|1 31 3|1 3|1 3(1 2
2 2 2 2 2 2
113 1]3 113 1]3 1|3 1]3 113

Figure 13. A maximal 2-packing of the 3 x 11 x 21 grid. Except
for the last 6 columns, this repeats every 3 columns. A 2-packing of
3 x 11 x n grids with 5n 4 2 stones (if n = 2 (mod 3)) or 5n + 1 stones
can be formed by repeating the 3 columns as many times as needed
and if » = 0 (mod 3) adding the last 6 columns.

Theorem 11. For 11 < n < 500, we have

a _l5n+2 ifn=2(mod 3), orn=120r13
3iLm 5n+1 otherwise.

Further for all n, the above formula is a lower bound for G3,11,n-

We may ask: What is the asymptotic densily of a mazimal 2-packing on
a3 x m x n grid? In other words, what is a3 = limm,n— 00 a3,m,n/(3mn)?
The 2-packing in Figure 14 proves Theorem 12. It is maximal for3x 3 xn
and 3 x 7 x n grids, and appears almost maximal for 3 x 11 x n grids.
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Figure 14. A 2-packing of 3 x m x n grids.

5
Theorem 12. If m = 3 (mod 4), then a3 mn > m_4_+1 [-32] .

Theorem 12 show a3 > 5/36 ~ 0.138889. However, Figure 15 shows an
asymptoticly denser 2-packing. It and its 90° rotation give Theorem 13.

1]3 2 1]3 2 113 2

2 1|3 2 1]3 2 1)3

Figure 15. A denser 2-packing of 3 x m x n grids.

[222] +1 if {m,n}={1,2}
Theorem 13. For allm and n, a3 mn > { [ama] otheruise.

Theorem 13 shows a3 > 1/7 ~ 0.142857. Though the 2-packing in
Figure 15 is asymptotically denser, Figure 14 has more stones for rather

252



large grids. For example on the 3 x 47 x 47 grid, the pattern in Figure 14
has 948 stones, while Figure 15 has 947 stones.

We can also finds upper bounds on a3. By dividing the 3 x m x n grid
into 3 x j x k subgrids, Lemma 1 shows that for any j and k, we have
a3 < a3,;,k/(3jk). Among the results in this paper, the best upper bound
is found by using a3 10,20 = 99 giving a3 < 3/20 = 0.15.

4 x m xn Grids

We also could not find a formula for the 2-packing number of 4 x m x n
grids. However, we found @4,4,n» and partial results for m = 5, 6 and 7.

411 3 14| 241 14| |24 14 2|4 2|41
2 4 3 3 2 3 1]3 3 113 3
3 1 2 412 4 2 4 4(2
14 24 41 14 1{3 2| |14 411 3|1 14

[y
—

14| |2(4 2 41 14 |24 1]14]2 4(2
2 3 1 41 3 2 3 113 3|1
4 114 2 2 4 1(4 2 14
1]3 2 4113 14 1]3 2 14| |3 2]4]1

Figure 16. Maximal 2-packings of 4 X 4 X n grids with [5n/2] + 1
stones for n = 4, 5, 6, 8, 10 and 12.

3[1(4 1)4(2 3(1]4 1]4]2 3|1)4 114(2
2 3 14 2 3 14 2 3 14
2 14 3 2 14 3 2 14 3
4(1]3 2{4]|1 4113 2141 411]3 2|41

Figure 17. A 2-packing of 4 x 4 X n grids with [5n/2] stones.
Theorem 14. For alln > 4, we have

_JI5n/2]+1 ifn=4,5,6,8, 10 or 12
G4,4,n = [5n/2] otherwise.

proves the result for n < 26 (see Figure 16). For n > 26, induction gives
G4,4,n < G4,4,14 + Q4 4,n-14 = 35 + [5(n — 14)/2] = [5n/2]. B

Theorem 15, 16 and 17 summarizes the computer results for 4 x 5 x n,
4x6xn and 4x7xn grids. Figure 18-21 gives examples of these 2-packings.

Proof. Figure 17 shows that a4 4ys > [6n/2] for all n. The computer

Theorem 15. For 5 < n < 500, we have

a _{3n+1 ifn=25,6 or 10
450 = 13n+2 otherwise.
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14 2 3|1 3 2 412 2 3|1 3 2 2
3(1}4 1|4 411 4(1 1[4 4 4|1 411|3
2 2 3 1|3 2 2[4 2 3 1|3 2 14
4(1]3 14 2|4 1]4 1|4 13 14 2|4 114 1{4]2

[

Figure 18. A maximal 2-packing of the 4 x 5 x 30 grid.
Theorem 16. For 6 < n < 100, we have
[(46n +23)/13] -1 ifn=28,9,10,12 or 16

as6n =< [(46n+23)/13]+1 ifn=2 (mod 13)
[(46n + 23)/13] otherwise.

1]412] b4 [3]1] I3] [1]4] 11]3]| n4f [214] }2] |4]1] [4]2] [4 [3{1] I3] {2(4] |2
3 3{ [2] 14l 1114] 2] (4] [2[ |3] J1] 142l |3] J1f [3] |2] [4f |1]4] |13
2|4]1] 14i2] i3] |2 3[ |1]4] 124l {2] 13 2| |4]1] j4]1] |3} |2 14
14 2] |3] [1]4) |1]4] |2 3] |3]| |4]1] |4]1] 13 2] |3] Jii4] 1]4]2
3[1] [ala] (4] [2] I3] [2] Jal 214l f2] I3] [2] |4] 11] 14f1] 4] [2] {3 3
2] [4]2] 3] |13 4 [2]4] [113] 2] J4[2] p4 [3]1] |4]2] 13] |113] A4 [2]4]1

Figure 19. A maximal 2-packing of the 4 x 6 x 41 grid.
Theorem 17. For 7 < n < 100, we have
[(33n+ 18)/8] -1 ifn=17,15 or16

a4,7n =< [(33n+18)/8] +1 ifn=19 or20
[(33n + 18)/8] otherwise.

4{1]3 14 2|4 214 113 14 2/4|1

14 2 2|4 4|2 2 14

1[{4(2 14 3|1 4(2 412 14 3(1]4

Figure 20. A maximal 2-packing of the 4 x 7 x 20 grid.

»
-
)

14 3|4 2|4 113 14] 12]4 3|¢ 113 14] 2|4 2|4 113 14} 2|4

3{1]4 1]4 1§s 1|14 1l4 1]s 114 114 1|3 1|4
3 4 2 a4 4|13 2 3|4 413 2 24 413 2 3 4
2|41 411 3|1 411 1 31 4

-
-
4

-
-
»
o
L
-
-
-
»
™
L

1(4]3 14] |3]12 4|3 4]2 14] |S]2 4|2 4|2 14/ [3]2 4/3 4/3 14] |3(1]4¢

Figure 21. A maximal 2-packing of the 4 x 7 x 42 grid.

We may also ask: What is og4 = limpmn—oo Ga,mn/(4mn)? The 2-
packing in Figure 22 and its 90° rotation gives the following result.
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Theorem 18. For all m and n,

[#22] +1 if {m,n} ={1,2} or {2,6} (mod 7)
G4mm 2 { [#]l otherwise.

Theorem 18 then shows ay > 1/7 =~ 0.142857. An upper limit can be
found by dividing a 4 x m x n grid into 4 x j x k subgrids. Then for any
j and k, Lemma 1 shows that a4 < a4,;,%/(4jk). Among the results in this
paper, the best limit uses a4,7,94 = 390 to give oy < 145/1316 ~ 0.148176.

113 2|4 1]3 2[4 1{3 2|4
4 4 13 214 1]3 2
2|4 1]3 2|4 1{3 2|4 1{3
3 2|4 1(3 2|4

-
w
~N

[
w
N
el

113 214 1]3 2|4

-t
w
N
(-3

2[4 13 2|4 1(3 2|4 13
Figure 22. A 2-packing of 4 X m x n grids.

Larger Grids
We found the 2-packing number of 5 x § x n grids.
Theorem 19. For alln > 4, we have a5 5, = 4n.

Proof. Figure 23 shows a5 5, > 4n. The computer showed that a5 54 =
16, as,5,5 = 20, as;5,6 = 24 and as5,y = 28. For n > 7, induction gives
a55n < 8554+ A55,n-a =16+ 4(n—4)=4n. W

5/1|3|5|1|3|5|1]|3|5|1|3
2|4 214 2]4 2|4
15 15 15 15
412 412 4|2 412
115)3f1|5|3|1|5|3|1]|6|3

Figure 28. A 2-packing of 5 X 5 X n grids with 4n stones.

Theorem 20 gives asymptotically exact bounds on Glm,n-
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Theorem 20. For all l, m and n, we have

lr:n <aimn < Imn + 2(ai,m,1 -;01,1,n + a1,m,n) )

Proof. We can 2-pack an ! x m x n grid with [lmn/7] stones by repeating
the 7 x 7 x 7 subgrid in Figure 24 and truncating. This gives the lower
bound. The cardinality of the closed neighborhood of a node is 7 minus
the number of faces on which the node lies (e.g., corner stones lie on three
faces and have 4 nodes in their closed neighborhood). Since at most ay,p,4
stones are on a p x ¢ face, the result follows. B

512(6(3|7|4

oW r|=

[P EIEICArS

=i =3|
W (R =D

(|||
N = ||| =
||| =W

Figure 24. A 2-packing of the 7 x 7 x 7 grid. Repeated use of this
block forms a 2-packing of I x m X n grids with at least Imn /7 stones.

Equation (1) gives a1 mn < [(mn + 2)/5] < (mn+6)/5 forall m,n > 5.
Thus am,n € [Imn/7, (Imn+0.4(Im+In+mn+18))/7) for all |, m,n > 5.
Let o = limp 00 Gl;m,n/(Imn). Then 1/7 < o1 < 1/7 + 2/(351) for all
1> 5. Also the asymptotic density of a maximal 2-packing of 3-dimensional
grids is & = lim;_, o, a7 = 1/7.

Final Note

Two-dimensional complete grid graphs have been widely studied. The inter-
est is understandable: it is a natural formulation that is surprising resistant
to easy answers. This paper, as far as we know, is the first “expedition” of
its type into 3-dimensional complete grid graphs. Much of the work on 2-
dimensional grids could be extended (undoubtably some with more success
than others) into three dimensions.
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