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Abstract. Let G be a graph. A vertex subversion strategy of G, S, is
a set of vertices in G whose closed neighborhood is deleted from G. The
survival-subgraph is denoted by G/S. The vertex-neighbor-integrity of G,
VNI(G), is defined to be VNI(G) =S<I:13&;) {|S] + w(G/S)}, where S is any

vertex subversion strategy of G, and w(G/S) is the maximum order of the
components of G/S. In this paper, we evaluate the vertex-neighbor-integrity
of the powers of cycles, and show that among the powers of the n-cycle,
the maximum vertex-neighbor-integrity is [2¢/n ] — 3 and the minimum
vertex-neighbor-integrity is [n/(2|n/2] + 1)].

1. Introduction

In 1987 Barefoot, Entringer, and Swart introduced the integrity of
a graph to measure the “vulnerability” of the graph. [1] [2] We have
developed a graphic parameter, called “vertex-neighbor-integrity” [4], in-
corporating the concept of the integrity [1] [2] and the idea of the vertex-
neighbor-connectivity [6].

Let G=(V,E) be a graph and u be a vertex in G. N(u) = {v € V(G)|v #
u, v and u are adjacent} is the open neighborhood of u, and N[u] = {u} U
N(u) denotes the closed neighborhood of u. A vertex u in G is said to be
subverted if the closed neighborhood N[u] is deleted from G. A set of vertices
S = {uy,u2,...,um} is called a vertez subversion strategy of G if each of the
vertices in S has been subverted from G. Let G/S be the survival-subgraph
left after each vertex of S has been subverted from G. (If N[S] = V(G),
where N[S] = UuesN[u], V(G/S) is empty.) The vertex-neighbor-integrity
of a graph G, VNI(G), is defined to be
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VNI(G) = s&i(nc){lsu +w(G/S)},

where S is any vertex subversion strategy of G, and w(G/S) is the maximum
order of the components of G/S.

Example 1: K, is a complete graph of oder n. VNI(K,;) = 1. [4]

Example 2: K, m, where n > 1 and m > 1, is a complete bipartite graph
with a bipartition (X,Y), where [X| = n and |[Y| = m. VNI(Kn.m) = 2. [4]

In this paper, we evaluate the vertex-neighbor-integrity of a family of
graphs — powers of cycles, and show that among the powers of the n-cycle,
the maximum vertex-neighbor-integrity is [2y/n ] — 3, and the minimum
vertex-neighbor-integrity is [n/(2[n/2] + 1)]. [z] is the smallest integer
greater than or equal to x. |] is the greatest integer less than or equal to
z.

II. Vertex-Neighbor-Integrity of Powers of Cycles

We list the following known results which will be used later in the
paper.

Lemma 1 [2): For positive integers, n and m, if n is fixed, then the function
g(m) =m + [Z] has the minimum value [2/n ] at m = [/n ].

Lemma 2 [4]: Let P, be a path of order n > 1. Then

[2vn+31-4, ifn>2

VNI(P,) = {
1, if n=1.

Let C, = (vo,v1,-.-,vn~1) be an n-cycle. The k-th (1 < k < |n/2])
power of the n-cycle, C¥, has the vertices vg, vy, ..., v5—1, and two vertices
v; and v; are adjacent if i — k < j < i+ k (where the addition is taken
modulo n). The notation will be used throughout the paper.
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We first discuss the vertex-neighbor-integrity of an n-cycle, a special
case of the powers of n-cycle.

Theorem 3: Let C, be an n-cycle, where n > 3. Then
[2yn] -3, ifn>4
VNIK(C,) =1 2, ifn=4;
1, ifn=3.
Proof: If n = 3, it is clear that VNI(C,,) = 1.

If n > 4, let S be a subset of V(Cy,) for which VNI(C,,)=[S| + w(Cn/S),
and v be a vertex in S. Then C,/{v} = Pn_3, and the remaining [S| — 1
vertices of S must be chosen from V(P,_3) to minimize

N , n
(11— D+ [Tlu] = Isk+[ g -4
and
VNI(P,_5) = min (IS'|+w(Pn-3/S")
. (n-3)-3m
= min (e [£57]
. n—3(m+1)
= miy (m+ [ 222
. n
= min (m+l+[—— ) -4
m>0 m+1
Therefore
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VNI(P 1, ifn>4
VNI(Cn)={1, (Fa-a)t ;fz;:s.

141, ifn=4
1, ifn=23. (By Lemma 2.)

{f2\/(n—3)+3'|—4+1, if n > 4;

ifn=4,

2ynl-3, ifn>4
2,
1, ifn=3 QED.

To evaluate the vertex-neighbor-integrity of the k-th power of n-cycle,
we need to use the following lemmas.

Lemma 4: For any positive integer n, if > /n, then
Fl<leml+
z z+1

z>vn=>22>n,

Proof: Since

we have
P4rzr>n+vn>n

Then
n<zltre=

nx+n—:r2—:z:<n:l:<=>

n—=I

n
z <:::+1
z-lslzql =

HEF e

=

QED.
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Lemma 5: For any positive integer n, if £ > (y/n—1)/2 and h is a
nonnegative integer, then

[E/}"i_l] =T§'&([2k+';z+1] +h)'

Proof:

k> \/’—’2'1=>2k+12\/5.

Let 2 = 2k+h+1, where h is any nonnegative integer. Thus z > 2k+1,
and hence z > \/n. By Lemma 4, we have

[2Ic+7;z+1] S[2k+’:z+2] +1,

and then
T

1
2k+(h+2)] +(h+1),

[zl <l

where h is any nonnegative integer. Hence we know that if k > (v —1)/2,
then f(h) = [n/(2k+h+1)]+h is an increasing function for all nonnegative
integer h, and therefore f(h) has the minimum value [n/(2k +1)] at h =
0. QED.

Using the above result, we can show the vertex-neighbor-integrity of
the powers of n-cycle as follows:

Theorem 6: Let CE be the k-th power of the n-cycle, where n 2 3 and
1 <k < |[n/2]. Then

2y/nl-(2k+1), if1<k< =L

VNI(Cf) =
|25 ]. if 3L <k < |3

Proof: By the definition,

VNI(C)= mi S CE/S)}.
(C) sg'{}}'é:)“ | +w(Cy/S)}

Let S* = {U,’l,v,'?,....’l),‘m}. where 0 < il < iy S .. < im S n— 1, be a
subset of V(CE) for which VNI(C¥) = |S*|+w(CE /S*). If n—(2k+1)m > 0,
then iy + n—im > 2k+ 1 or ij —ij—1 > 2k+1, for some j = 2,3,...,m, and
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w(Ch/s") 2 [P

Hence

vNI(CE) 2 i {me [ G |

m

=iy {m [} -+

=[2vn] - (2k+1), (1)
where m = [\/n ]. (By Lemma 1.)
Since
n—(2k+1)m=n—(2k+1)[vn] >0,
we have
iy

2

Let /n = i +d. where i is a positive integer and 0 < d < 1.

(i) If d = 0, then /n = i and 2y/n = 2i = [2/7 ]. Let
§' = {vo, vy, va.yms - Y ym-1).ym}- Then

w(G/S)=(vVrn-1)=2k=n—-(2k+1)

and
IS'l + w(G/S") = (VR =14+ 1) + Vo — (2k + 1)

=2-\/5—(2k+l)=r2\/ﬁ-|—(2k+1).

(u) f0<d<(1/2), then2.|\/nf=2iand [2y/n] =[2i4+2d] =2i+1
L\/_J+1 Let S'= {”0"’1\/_J’L2L\/—J" NP l.\/_J} Then

w(G/S') = (LVa] = 1) - 2k = [VA] — (2k+ 1)
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and

'] +w(G/S') = (LVal + 1)+ (LV7] - (2k +1))
=2 |V +1-(2k+1)=[2va] - (2k+1).

(iii) If (1/2) < d < 1, then |v/a] = i, [vA] = i+1, and [2y/A ] = [2i+2d ]
;h21+2 = I_\/EJ + r\/ﬁ] + 1. Let S’={vo,vw;1,112,[\/;],....0[\/,—,].[\/,—,]}.
en

W(G/Sy = ([Val-1)-2k=[Va]-(2k+1)

and
15+ w(G/S) = (LVa] + 1)+ ([VA ] = (2k+ 1)) = [2v/] = (2k +1).

Therefore
VNI(CF)= min {|S|+w(C5/S)}
SCV(Ck)
<18+ w(G/S))
=[2v/n] - (2k+1). (2)
Combining (1) and (2), therefore

Va1
—

VNI(CE)=[2vn ] — (2k+1), if 1<k<

If k> (VA —1)/2, let |S| = m and w(CL/S) = h > 0.

n<(2k+1)m+mh=mQ2k+1+h),

hence

m 2l
Thus
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VNI(CF) = i, (|S| +w(Ck /S))
CV(C

> iy ([ s7 ] +4)

=[ n ] (By Lemma 5.)

Let S* = {vo, Vak41,Va(2k41)s - U[n/(2k+1)) )2k+1)}» then G/S™ = @,
and

VNI(CE) < 8] +w(G/S") =[5 |-

k+1
Thus
ky _ n . \/ﬁ—l
VNI(Cn)_[—2k+l], if k> Y
Therefore

2val-(2k+1), ifl1<k< B2
VNI(Ck) = 1
Ezit if oL <k < (3.

QED.

Let’s consider the following examples of CX, where 1 < k < |n/2],
Vn=1i+d,iis a positive integer, and 0 < d < 1:

Example 3: The k-th power of the 64-cycle, C¥,, where 1 < k < 32.
(V64=8,s0d=0.)

Let S} be a subset of V(C§,) for which VNI(C%,) = |S;| + w(CE,/S}).
Since (y/n — 1)/2 = (V64 — 1)/2 = 3.5, by Theorem 6,

[2v64] - (2k+ 1) =15-2k, ifk=1,2,3;
VNI(Cg,) =

Bk if4<k<32
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By the proof of Theorem 6, we can find S} and w(C%,/S}), where
1 <k <32, as follows:

»” " o
ST =S5 = 83 = {vo, vs. 16, V24, V32, Va0, Vas, V56 )},

and

w(Ce4/SI) =3, w(C§4/S )=3, w(C 4/83) =1L

Sk = {vo, v2k+1,V22k41), --» V|6a/(2k+1))(2k+1)}, Where 4 <k < 32,

and
for 4<k<32 w(CE/Si)=0, since Ck,/S;=0.

Example 4: The k-th power of the 50-cycle, C¥,, where 1 < k¥ < 25.
(v/50 ~ 7.07, soO<d<(l/2))

Let S} be a subset of V(C¥,) for which VNI(C¥y) = |S;| + w(CE,/S})
Since (v/n —1)/2 = (V50 — 1)/2 ~ 3.04, by Theorem 6,

[2v50] - (2k+1)=14—2k, ifk=1,2,3;

VNI(CE,) =
% ENE if4<k<25.

By the proof of Theorem 6, we can find S} and w(C£y/S;). where
1 < k <25, as follows:

S1 = S5 = S3 = {vo, v7, V14, Y21, V28, U35, V42, Va9 },

and

w(Cs0/S;) =4, w(C%/S3) =2, w(C%/S3)=

Sk = {vo, vak+1,Va(2k41), - V[50/(2k4+1))(2k41)},  Where 4 <k <25,

and
for 4<k <25, w(Ck/Sp)=0, since Cky/S;=0.
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Example 5: The k-th power of the 95-cycle, C¥;, where 1 < k < 47.
(V95 =~ 9.75,s0 (1/2) < d < 1.)

Let S} be a subset of V(C%;) for which VNI(C5) = |S;| +w(Ck/Sp).
Since (y/n — 1)/2 = (V95 — 1)/2 ~ 4.37. by Theorem 6,

[2V95] — (2k+1) = 19— 2k, ifk=1,2,3,4;
VNI(CE) =

[2,%] if5 < k <47,

By the proof of Theorem 6, we can find Sj and w(C§5/S;), where
1 < k <47, as follows:
S} =83 = S3 = S5 = {vo. v10, v20. V30, V40, U0, Y60, V70, V80, ¥90},

and

w(Ces/S}) =7, w(C35/S3) =5, w(C3s/S3) =3, and w(Cds/S3) = L.

St = {v0, V2k+1,Va(2k41)s - V[os/(2k+1)j(2k+1)}, Where 5 <k <47,
and

for 5< k<47, w(Ck/S;)=0, since Ck;/S; =0.

Next, we find the maximum and minimum VNI among the powers of
the n-cycle.
Lemma 7: Let n and k be two positive integers. If & = |(y/n—1)/2], then
n
- >2|l—.
2V ] - (2k+1) 2| =]
Proof: If (v/n— 1)/2 is an integer, then \/n = 2k + 1,

(2R - (2k+1)=(4k+2) - (2k+1) =2k +1,

and
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2
[21:13] =[4k 2:ik3+ 1] =[26- 1+ ﬂ%ﬁ] = 2.
Therefore
[2vn ] —(2k+1>>[2k’;3 .

If (\/n—1)/2 is not an integer, then let \/n = i+d, where i is a positive
integer and 0 < d < 1. Thus

k_l\/ﬁ—l]_l(i_l)+dj_ i_T?', if 7 is even;
2 2 i1 if i is odd,
and

i—1, ifiis even;
%+1= {z if i is odd.

k= |(vVa-1)/2],s0 k+1=[(v/r—1)/2] > (Vr—1)/2,and 2k+3 > V/n.
This implies that o N
[2k+3] 5[777] =Vl

[2v/m ] —(2k + 1)—[%';—3]

>

{[2\/1_1]—(1'—1)—[\/5]. if i is even;
lya]—i—[val, if i is odd

>

{25—(i-1)—i, if d = 0 and then /n =i is even;

Qi+1)—i—(i+1), fd#0

> 0.

‘Therefore

vl - (2k+ 1) 2555

QED.
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Corollary 8: Among the powers of the n-cycle (for any fixed positive
integer n > 3), the n-cycle. C,, has the maximum vertex-neighbor-integrity
[24/n] -3, and the [n/2]-th power of the n-cycle, ci*¥ | has the minimum
vertex-neighbor-integrity [n/(2|n/2] +1)].

Proof: By Theorem 6,

S 2va]-(2k+1), if1<k< ¥t
Bl if Bl <k < (3.

n is a fixed positive integer. so VNI can be considered to be a function
of k. When 1 < k < (y/ — 1)/2. the function VNI(C¥) = [2y/n]~(2k+1)
is decreasing with respect to k, and when (v/n —1)/2 < k < [n/2], the
function VNI(CE) = [n/(2k + 1)] is also decreasing with respect to k.

If k = |(v/n —1)/2], then by Lemma 7,

VNI(CE) = [2v ] — (2 +1) 2 = VNI(CE*Y).

rEmEl
2(k+1)+1
Therefore the function VNI is decreasing with respect to k, where 1 < k <
|»/2], and hence the function VNI has the maximum value [2¢/n ] — 3 at
k = 1 and the minimum value [n/(2|n/2] + 1)] at k = |n/2]. That is,
among the powers of the n-cycle, the n-cycle, C,,, has the maximum vertex-
neighbor-integrity and the |n/2]-th power of the n-cycle, ci*® | has the
minimum vertex-neighbor-integrity.  QED.

II1. Discussion and Open Questions

A spy network can be modeled by a graph whose vertices represent
the stations and whose edges represent the lines of communication. If a
station is destroyed, the adjacent stations will be betrayed so that the
betrayed stations become useless to the network as a whole. The vertex-
neighbor-integrity is to measure vulnerability of the representing graph of a
spy network. It seems reasonable that for a connected representing graph,
the more edges it has, the more jeopardy the spy network is in. Hence we
present a criterion as follows:

Criterion (*) — Let G be a connected graph. If H is a connected spanning
subgraph of G, then VNI(H) > VNI(G).
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The family of powers of an n-cycle, CE, satisfies the criterion (*), since
for any fixed integer n > 3, Ck is a connected spanning subgraph of C5*!,
and VNI(Cf,) > VNI(C:‘;“), where 1 < k < |n/2| — 1. However, not all of
graphs satisfy this criterion, see the following example:

Example 6: The graphs H and G are shown in Figure 1 and Figure 2.
VNI(H) = {u1} +w(H/{w1}) = 2, and VNI(G) = {uy, w2} +w(G/{u1, w2})
= 241 = 3. H is a connected spanning subgraph of G, but VNI(H) <
VNI(G).

Uy

[ vg

Wy

Figure 1

Uy

w4

Figure 2
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Therefore some interesting questions are raised: For a fixed number of
vertices,

1. What graphs satisfy the criterion (*) of the model of a spy network?

2. What are the minimum and maximum numbers of edges of graphs with
prescribed order and prescribed vertex-neighbor-integrity?

It is clear that if VNI = 1 and the number of vertices = n, then the
complete graph with n vertices, K,,, has the maximum number of edges
= n(n — 1)/2, and the null graph with n vertices, K,, has the minimum
number of edges = 0.

3. What are the maximum and minimum VNI's among a family of con-
nected graphs with prescribed order?

We have shown that among the trees of order n > 1, the maximum
VNI = [2y/n+3 ] — 4 and the minimum VNI = 1 [4], and among the
powers of the n-cycle, the maximum VNI = [24/n ] — 3 and the minimum
VNI = [n/(2|n/2] +1)].
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