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Abstract

In this note, we verify two conjectures of Catlin in [J. Graph
Theory 13 (1989) 465 - 483] for graphs with at most 11 vertices.
These are used to prove the following theorem which improves prior
results in [10] and [13]:

Let G be a 3-edge-connected simple graph with order n. If n is
large and if for every edge uv € E(G), d(u) + d(v) > % — 2, then
either G has a spanning eulerian subgraph or G can be contracted to
the Petersen graph.

1. Introduction. We follow the notation of Bondy and Murty [3],
except that graphs have no loops. The graph of order 2 and size 2 is
called a 2-cycle and denoted C3, and K is regarded as having infinite edge-
connectivity. For X C E(G), the contraction G/X is the graph obtained
from G by identifying the two ends of each edge e € X and by deleting
the resulting loops. If H is a subgraph of G, then we write G/H for
G/E(H). If H is connected, then vy denotes the vertex in G/H to which
H is contracted. We say that vy is nontrivial if E(H) # 0. For an integer
i > 1, define

Di(G) = {ve V(G) : d(v) = i}.
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For a graph G, let O(G) denoted the set of vertices of odd degree in G. A
graph G is eulerian if it is connected with O(G) = 0. The following was
conjectured in [1) and was recently proved by Veldman [13].

Theorem 1.1 (Veldman [13]) Let G be a 2-edge-conencted simple graph
with n vertices. If n is large and if for every edge uv € E(G),

d(u) + d(v) > 2?" -2, 1)

then either G has an eulerian subgraph that contains at least one end of
every edge of G, or G can be contracted to K23 such that the preimage of
each of the vertices of degree 2 in this K3 3 is nontrivial. O

For 3-edge-connected graphs, the lower bound in Theorem 1.1 can be
improved with a stronger conclusion.

Theorem 1.2 (Chen and Lai [10], and Veldman [13]) Let G be a 3-edge-
connected simple graph with n vertices. If n is large and if for every edge
uv € E(G),

dlu) +d(v) 2 T - 2, 2)

then either G has a spanning eulerian subgraph, or G can be contracted to
the Petersen graph such that the preimage of each vertex of this Petersen
graph is nontrivial. O

In this note, we shall further improve the lower bound in (2) of Theorem
1.2,

Theorem 1.3 Let G be a 3-edge-connected simple graph with n vertices.
If n is large and if for every edge uv € E(G),

d(u) + d(v) > % -2,

then either G has a spanning eulerian'subgraph, or G has the Petersen
graph as its reduction (we define reduction in section 2).

Theorem 1.3 is a special case of Theorem 3.1 in Section 3. In Section 2,
we shall provide some mechanisms needed for the proof, and in Section 3,
we present the proof of the main result.

2. Collapsible graphs and reduced graphs. A graph G is supereu-
lerian if it has a spanning eulerian subgraph. G is collapsible if for every
set R C V(G) with |R| even, there is a spanning connected subgraph Hpg of
G, such that O(Hg) = R. Thus K is both supereulerian and collapsible.
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Denote the family of supereulerian graphs by SL, and denote the family of
collapsible graphs by CL. Let G be a collapsible graph and let R = @. Then
by definition G has a spanning connected subgraph H with O(H) = 0, and
so G is supereulerian. Therefore, we have

CL C SC. (3)

Examples of graphs in CL include the cycles Ca, C3, but not Cy if t > 4.

In [5], Catlin showed that every graph G has a unique collection of
pairwise disjoint maximal collapsible subgraphs Hi, Hs,---, H.. The con-
traction of G obtained from G by contracting each H; into a single vertex,
(1 £ i £ ¢), is called the reduction of G. A graph is reduced if it is the
reduction of some other graph.

Let F(G) denote the minimum number of extra edges that must be
added to G so that the resulting graph has 2 edge-disjoint spanning trees.
Catlin showed in [6, Theorem 7] that if G is reduced, then

F(G)=2|V(G)| - |E(G)| - 2. (4)

Theorem 2.1 (Catlin [5]) Let G be a graph.

(a) (Theorem 5 of [5]) G is reduced if and only if G has no nontrivial
collapsible subgraph. Thus, every subgraph of a reduced graph is also re-
duced.

(b) (Corollary 1 and Theorem 2 of [5]) If G has a spanning tree T such
that every edge of T is in a collapsible subgraph of G , or if G has two
edge-disjoint spanning trees, then G is collapsible.

(c) (Theorem 3 of [5]) Let H be a collapsible subgraph of G. Then G is
collapsible if and only if G/H is collapsible, and G is supereulerian if and
only if G/H is supereulerian.

(d) (Theorem 8 of [5]) If G & {K, K2} is reduced, then G is simple and
K3-free with 6(G) < 3, and F(G) > 2.

Let G be a graph containing a 4-cycle C = uvzwu. Following Catlin [6],
we define G/7(C) to be the graph obtained from G — E(C) by identifying
u and z to form a vertex =, by identifying v and w to form a vertex y, and
by adding an edge e, = zy.

Theorem 2.2 (Catlin, Theorem 10 of [6]) Let G containing a 4-cycle C, be
given and let G/x(C) be defined as above. If G/7(C) € CL, then G € CL. D

Lemma 2.3 The graphs Ly, Ls, L3, L4, Ls,Le and L7 defined in Figure
1 are all collapsible.
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Proof: By Theorem 11 of 6], Ly € CL. The graph L; can be obtained
from L, by contracting an edge, and so it is routine to verify that Lo € CL.
Denote C = uwvzwu in L;, for all i« > 3. Since L3/n(C) = Ls € CL and
L4/7(C) = Ly € CL, we have L3, Ly € CC, by Theorem 2.2. Denote C' =
u'v'z'w'v’ in Ls. Then (Ls/n(C))/w(C’) becomes a 3-cycle, after its par-
allel edges are contracted, and a 3-cycle is collapsible. Hence, by repeated
application of Theorems 2.1 and 2.2, we conclude that Ls € CL also. Note
that Lg/7(C) has a unique 3-cycle C3 and that every edge of (Lg/7(C))/C3
lies in a 3-cycle, and so by Theorem 2.1(b), (L¢/7(C))/C3 € CL. By (c)
of Theorem 2.1, Lg/7(C) € CL, and so by Theorem 2.2, Lg € CL. Note
that L7/7(C) has a unique 2-cycle C2 and a unique 3-cycle C3, and that
((L7/=®(C))/C2)/C3 = K3 € CL by Theorem 2.1(c). Therefore by Theorem
2.1(b), and by Theorem 2.2, L7 € CL. O

Z
Y Y w

L, Ly L3

Z

U /3
Ly
u
F4

u z v w

Lg A w Ly

Figure 1: The graphs in Lemma 2.3

Definition of F: The Petersen graph is denoted by P. Let sy, s2, s3,m, 1,1
be natural numbers with ¢ > 2 and m,! > 1. Let M = K; 3 with center
and ends a1, a2,a3. Define K 3(s1,32,s3) to be the graph obtained from
M by adding s; vertices with neighbors {a;,aiy1}, where ¢ = 1,2,3 (mod
3). Let Ko4(u,u’) be a K34 with u,u’ being the nonadjacent vertices of
degree t. Let K3 ,(u,u’,u") be the graph obtained from a K3z ¢(u,u') by
adding a new vertex u” that joins to »’ only. Hence u” has degree 1 and
u has degree t in K3 ,(u,u',u"”). Let K3 ,(u,u’,u") be the graph obtained
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from a Kp.(u,u’) by adding a new vertex u” that joins to a vertex of
degree 2 of K2 Hence u” has degree 1 and both v and »’ have degree
t in K4 ,(u,v’,u"). We shall use K3, and K3, for a Kj,(u,u',u") and
a K3 ,(u,u',u"), respectively. Let S(m,!) be the graph obtained from a
Kam(u,u’) and a K} ;(w,w’, w") by identifying u with w, and w” with u’;
let J(m, 1) denote the graph obtained from a K3 m41 and a Kg j(w,w’, w")
by identifying w,w” with the two ends of an edge in K3 m41, respectively;
let J'(m,1) denote the graph obtained from a K3 m42 and a K3 j(w,w’, w")
by identifying w,w’ with two vertices of degree 2 in K3 12, respectively.
See Figure 2 for examples of these graphs. Let

F ={Ki1, K2, Koy, Ko, Kz., K1,3(5,5',5"), S(m,1), J(m,1), J'(m,1), P},

where t, s,s’, s, m, [ are nonnegative integers.

K13(1,2,3) Ké’3(u,u',u") u Ké":,(u,u',u") u
ag ay
a2 ull u[ u” ul
u=w w’ w’
w’ W
1
S5(3,2) e J(2,2) : < - | J'(3,2)

Figure 2: Some graph§ in F with small parameters

Theorem 2.4 If G is a2 connected reduced graph with |[V(G)| < 11 and
F(G) < 3,then G € F.

Catlin conjectured (Conjecture 3 of [7]) that a 2-edge-connected non-
trivial reduced graph G with F(G) = 2 must be a K5 for some ¢t > 2, and
(Conjecture 4 of [7]) that a 3-edge-connected nontrivial reduced graph G
with F(G) = 3 must be the Petersen graph P. Theorem 2.4 indicates that
both conjectures are valid for graphs with at most 11 vertices. We need the
following to prove Theorem 2.4.

Theorem 2.5 (Chen [8]) Let G be a reduced graph of order at most 11
with «/(G) > 3, then G € {K;,P}. O

275



Lemma 2.6 (Lemma 4 in Chapter 2 of [11]) Let w ¢ V(P) be a vertex
and let H be a graph with V(H) = V(P)U {w} and E(P) C E(H). Ifw is
adjacent to at least two distinct vertices of P, then H € C£. O

Proof of Theorem 2.4: In the proofs below, we shall use the notation
in the definition of F, which is illustrated in Figure 2. Note that trees
with at most 3 edges are in F. We also observe that F(G) = 3 for G €
F — {K1, K2, K2,.}; this can be checked with the help of Figure 2, and by
observing that (4) is invariant with respected to vertex delection/addition
if the vertex has degree 2. To obtain a contradiction, we assume that

G is a minimum counterexample to Theorem 2.4. (5)

By Theorem 2.5, we may assume &’'(G) < 2. Also, by Theorem 2.1(d),
[V(G)| = 3 and G is K3-free.

Suppose first that x’(G) = 1. Let e be a cut-edge with G and G being
the two components of G — e. Thus by (4), and the hypothesis,

F(G1)+ F(G2)=F(G)—-1<2.

If F(G1) <1 and F(G2) < 1, then by Theorem 2.1(d), both G; and G»
are in {K1, K>}, and so G must be a tree with at most 3 edges, contrary
to (5). Hence we may assume that F(G;) = 0 and F(G2) = 2. The min-
imality of G implies G;, G2 € F. F(G1) = 0 and Theorem 2.1(d) imply
G1 = K. By (4), K2 is the only member in F with F having value 2,
and so we have G, = Ky, for some ¢t > 1. It follows that G = Ké,t €F,a
contradiction.

Therefore from now on we assume that «'(G) = 2. Let {ej,e2} be an
edge-cut with G; and G2 being the two components of G — {e1,ez}. Then
by (4), and the hypothesis,

F(G1)+ F(G2)=F(G) <3

Assume further that F(G;) = 1 and F(G3) = 2. By Theorem 2.1(d),
G = K. Therefore, e; and e, are independent edges (otherwise G would
not be K3-free). By the minimality of G, G2 = K3, for some t > 1.
G # K}, since «'(K35) = 1. It follows that either G = S(1,1) (when
t=1),or G e {J(1,t —1),5(1,¢),J'(t — 2,1)} (when t > 2), contrary to
(5) in any case.

Hence we may assume that F(G1) = 0 and F(G2) € {2,3} (Note that
F(G1) =0, F(G2) = 1 renders G = K3 which is not reduced). By Theorem
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2.1(d), G; = K. By the minimality of G, G3 € F. By Lemma 2.6, G, # P.
Let v denote the only vertex in V(G;) and v’,»"” the two vertices adjacent
to » in G. Since G is reduced, G has no 2-cycles and 3-cycles (by Theorem
2.1(d)), and so v’ # v"” and

v'v" g E(G). (6)

Assume first that G = K. If v’ and v” are the two vertices of degree
t in Gg, then G = K3, and so G € F, a contradiction. Therefore, by (6)
we may assume that ¢ > 3 and »' and v” are in D2(G2). However, G then
has Lg as a subgraph, contrary to the assumption that G is reduced.

The proof when G, is another member in F is similar. O

3. The main result and its proof. We shall prove a slightly more
general result than Theorem 1.3. For an edge subset X = {z;y;: (1 <i <
k)} C E(G), define

> = S do(en) + do(u).

i=1

Theorem 3.1 Let G be a simple graph with » = |V(G)| > 306 and with
«’'(G) > 3. If for every matching Mg of size 6 in G,

D (M) = n 12, (7)

G

then either G € SL or G has the Petersen graph as its reduction.

The proof of Theorem 3.1 requires some prior results and some more
lemmas. With ad hoc arguments similar to the proof of Theorem 2.5, Chen
was able to make the following improvement of Theorem 2.5.

Theorem 3.2 (Chen [9]) Let G be a connected simple graph with |V (G)| <
13 and 6(G) = 3. Then either G is a supereulerian graph with 12 vertices
and with an odd cycle, or the reduction of G is in {K, K2, K12, K13, P}.
a

As in [3], a’(G) and o(G) denote the maximum size of a matching in G
and the number of odd components of G, respectively.

Theorem 3.3 (Berge [2] and Tutte [12]) Let G be a graph of n vertices.
If

t= Sg%){o(G s)—|sl}, (8)
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-t
then o'(G) = _nT ]
Lemma 3.4 Let G be a bipartite graph with bipartition {X,Y} such
that |X| = 6 and |[Y| = 8 and such that each vertex in Y has degree at
least 3 in G. Then G is not reduced.

Proof: Assume to the contrary that G is reduced. Note that |E(G)| >
3|Y| = 24, and so by (4),

F(G)=2|V(G)| - |E(G)[-2<2. (9)

Case 1: There exist vy, ve,v3 € V(G) such that v; has degree at most
2 in G, vy has degree at most 2 in G — v1, and v3 has degree at most 2 in

G bl {'Ul,vz}.

Then by (4), F(G — {v1,v2,v3}) < 2. Since G is reduced, by Theorem
2.4, we have G — {v1,v2,v3} = K39. Since Kag is a connected subgraph of
G, X or Y has at least 9 vertices, a contradiction.

Case 2: There is a subset V/ C V(G) with1 < |[V/| < 2and §(G-V') >
3. Since G is reduced, and by Theorem 3.2, G — V' is either supereulerian
with 12 vertices and with an odd cycle, or G — V' = P. Therefore G — V'
contains an odd cycle and so cannot be a subgraph of a bipartite graph G,
a contradiction.

Case 3: 6(G) = 3 and both Case 1 and Case 2 do not hold.

By (d) of Theorem 2.1, §(G) = 3 and so there is a vertex v; of degree 3
in G. Since Case 2 does not hold, there are vertices v2,vs € V(G) so that
v has degree 2 in G — {v;} and v3 has degree at most 2 in G — {v1,v2}. By
(4), F(G — {v1,v2}) £ 3. By Theorem 2.4, G — {v1,v2,v3} € F — {K1, K2}
Let

‘7:" = {KZ,Q’ Ké,S? K£,,87K1.3(3t 3” 3”)$ (s+s,+s” = 7), J(m’l)v (m+l = 8)}
Since S(m,!), J'(m,l) and P have odd cycles, by Theorem 2.4,
G — {vl,vg,vg} € .7:”.

Since each member of F” has at least 7 vertices of degree 2 and since
there are at most 5 edges in G between V(G) — {v1,v2,v3} and v1,vz,v3,
G has at least one vertex of degree at most 2, contrary to the assumption
of §(G) > 3.0
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Lemma 3.5 Let G be a reduced graph with n = |V(G)| < 14 vertices
and with 6(G) > 3. Then

n—1

o'(G) > 7

Proof: Define t by (8). It suffices to show t = 1. Assume to the contrary
that ¢t > 2. Let S C V(G) be chosen such that t = o(G — §) — |S|.

Claim. G is connected and S # 0.

It was proved in [8, Lemma 1] that a simple 2-edge-connected graph H
of order at most 7 with §(H) > 2 and |D2(H)| < 2 is collapsible. Since a
reduced graph is a simple graph (Theorem 2.1(d)), and every subgraph of
a reduced graph is also reduced (Theorem 2.1(a)), and since G is reduced
with |V(G)| < 14 and 6(G) > 3, G must be connected. It follows that
S # 0 since t > 2. The claim is proved.

For each odd integer i, let R; be the collection of components of G — §
consisting of exactly i vertices, and let r; = |R;|. Define

Ri=UyR,V(H), and G" = G[R1 U R3 U S].
Then, by Theorem 2.1(a), G” is a reduced graph with
n = |V(G”)| =|8| + vy + 3r3. (10)

For a component H in G — §, let 3H denote the subset of E(G) such
that e € H if and only if e is incident with at least one vertex in V(H).
Since §(G) > 3, we have

|0H| > 3, for any H € R;. (11)

Since G is reduced, by (d) of Theorem 2.1, G does not have a K3 as a
subgraph, and so by §(G) > 3,

|0H| > 7, for any H € R3. (12)

For any H,H' € Ry U R3 with H # H’, since H and H' are distinct
components of G — S, dH NdH' = 0. Therefore by (11) and (12), we have

3ry + Tr3 < |E(G")|. (13)

Note that since t > 2 and S # 0, o(G — S) =t + |S| > 3. This, together
with |V (G)| < 14, implies that r; and r3 cannot be both zero. Thus, by
(13), G” & {K1,K2}. By Theorem 2.1(d), F(G"”) > 2. This and (4) now
yield

|E(G")| < 2n" — 4,
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which, together with (10) and (13), gives
3r; + Tr3 < |E(G")| < 2|S| + 271 + 673 — 4,

and so
r+r3 < 2|S| — 4. (14)

Let ¢ = o(G — S). Counting the vertices in G, we have
n>|S|+r +3rg+5(q—r1 —713), (15)
and so by (8), by (15), by n < 14 and by (14),

n — 6|S| + 4ry + 2r3

t=q—|S| < 3 (16)
< 14—6|S|;4(1‘1 +r3) < 2|S|5—2.

It follows by ¢ > 2 that |S| > 6. By ¢t > 2 and the inequality in (16), by
(14), and by ry < n — |S], we have

10

IA

n— 6|S| +4ry + 273 (17)
n —6{S| +2(r1 + 73) + 2r;

n —6{S| + 2(2|S| — 4) + 2(n — |S])

3n —4]S| -8,

IA

and so 18 + 4|S| < 3n which together with |S| > 6 and n < 14 implies
n = 14. Moreover, all inequalities used in establishing (16) and (17) become
equations yielding r3 = 0, r; = 8 and |$| = 6. Thus, G” = G[R;US] =G,
and H = G — E(G[S]) is a spanning bipartite subgraph of G with bipar-
tition R; and S satisfying the hypothesis of Lemma 3.4. Thus, H is not
reduced and so by Theorem 2.1(a), G is not reduced either, contradicting
the hypothesis and finally implying ¢t =1. O

Theorem 3.6 (Chen and Lai, Theorem 3 of [10]) Let G be a noncollapsi-

ble 3-edge-connected graph with n vertices, let G’ be the reduction of G,
and let p < a’(G’) be a positive integer. If for every matching M, of size p

in G
Z(MP) .>- n - 2}7,
G

and if n > 3p(3p — 1), then we have «'(G’) > 3, &'(G’) =p and |V(G’)| <
3p—4.0
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Lemma 3.7 (Corollary 2 of [10]) If G is a nontrivial connected reduced
V(G 4
graph with &'(G) > 3, then o/(G) > 4 3)l s

Lemma 3.8 If G is a reduced graph with «/(G) > 3 and o’(G) < 5, then
G e {K], P} a

Proof: By Lemma 3.7 with o/(G) < 5, we have |V(G)| < 11 and so
Lemma 3.8 follows from Theorem 2.5. O

Proof of Theorem 3.1: Since every collapsible graph is supereulerian
(by (3)), we may assume that G ¢ CL. Let G’ denote the reduction of
G. By the definition of contraction, we have x'(G’) > x'(G) > 3, and so
6(G’) 2 #'(G') 2 3. Then G’ # Ky, since G & CL. If o/(G’) < 5, then by
Lemma 3.8, G’ = P. Hence we assume that o’(G’) > 6. Applying Theorem
3.6 with p = 6, we have |V (G’)| < 14 and o/(G’) = 6. If |V (G’)| = 14, then
by Lemma 3.5, &/(G’) = 7 a contradiction. Hence |V (G’)| < 13 and so by
Theorem 3.2, either G € SC or the reduction of G is the Petersen graph. O

One now can easily see that Theorem 1.3 follows from Theorem 3.1.

4. Open problem. We conclude this note with an open problem. Let
G be a 3-edge-connected simple graph with n = |V(G)|. We conjecture
that if n is large and if for every edge uv € E(G),

d(u) + d(v) > % -2 (18)

then either G has a spanning eulerian subgraph, or G can be contracted to
the Petersen graph. (The Petersen graph does not have to be the reduction
of G.)

This conjecture, if true, will be best possible in the following sense.
Let B denote a Blanusa snark of order 18. (See a survey of Watkins and
Wilson [14] for snarks). Obtain a graph G(n) of order n = 18m from B
by replacing each vertex of B by a complete subgraph K,,. Then for every
edge uv € E(G(n)),

d(u) + d(v) > % -2

However, neither has G a spanning eulerian subgraph, nor is G contractible
to the Petersen graph.
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