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ABSTRACT. In this paper we give some properties of balanced
labeling, prove that graph (m? + 1)C; is balanced, and also
solve balanceness of snakes Cr, (n).

1 Introduction

Let G = (V, E) be a simple graph and g: V — {0,1,...,|E|} be an in-
jection. Define an induced map g*: E — {1,2,...,|E|} by g*(w) =
|g(u) — g(v)] for uv € E. If g* is a bijection, then g is said to be a graceful
labeling of G, and the graph G is said to be graceful.

Graph G is said to be balanced if G is graceful (g is its graceful labeling)
and there exists a number ¢ (is called character of g), such that g(u) < ¢,
g(v) > cfor all uv € E. g is called balanced labeling (a-valuation) of G.

Rosa [1] has defined a triangular cactus (let n be a number of triangular
blocks). He also conjectured that they are graceful for alln = 0,1 (mod 4).
D. Moulton [2] proved that every Ap-snake (triangular snake) for n con-
gruent to 0 or 1 modulo 4 is graceful. Triangular snakes are the particular
cases of snakes Cr,(n). C(n) is the connected graph which n blocks are
the cycles C,, and blocks cutpoint graph is a path.

Graph nCy, is the disjoint union of n cycles C,,. J. Abrham and A.
Kotzig [4] proved m2C, and (m? + m)Cy are balanced. In this paper we
give some properties of balanced labeling, and prove that, for all positive
integer m and n, Cym(n) and ((m+1)2+1)C; are balanced, and Csm43(n)
and Cypm41(n) are not.
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It is convenient to use the following notation

[a,b) ={z€Z:a<z b}
[a,b}o ={z € Z: z € [a,b], z=a=0 (mod 2)}
[t ={z€Z:z€[ab), z=a=1 (mod 2)}

Where a,b € Z and Z is the set of all integers.

2 The properties of balanced graphs

It is evident that character c of balanced labeling g is min{g(u), g(v)} where
g*(uww) = 1. If g is balanced labeling of graph G and c is its character, let
X ={urueV(@G),g(u) <c}, Y ={u:u € V(G),g(u) > c}, then G is
bipartite and (X, Y) is a bipartition of vertex set.

Lemma 1. Let h be a balanced labeling of graph G, its character be c.
If f is a graceful labeling of graph H and [V(GNH)| =1, then GU H is
graceful.

Proof: Let X = {v: h(v) < c,v € V(G)}, Y = {v: h(v) > ¢,v € V(G)},
h(vo) = max{h(v): v € X}, V(GN H) = {vo}, f(vo) = 0. Let

h(v), ifve X
gw)= h(v)+|E(H)|, ifveY
h(vo) + f(v), ifveV(H)\ {wo}

then g is a graceful labeling of graph GU H.

Indeed, since h(y) + |E(H)| > f(v) + h(vo) > h(z), for every z € X,
yeY,veV(H)\ {vw}, and both f and h are injections, it follows that g
is an injection.

If z € X, y € Y, by definition, we obtain

9*(zy) = |h(y) + |E(H)| — h(z)| = |E(H)| + h(y) - h(z)|

and

|E(H)| < |E(H)| + |h(y) — h(z)| < |E(H)|+ |E(G)I.
When zy € E(H), g*(zy) = |(f(z) + h(vo)) — (f() + h(w))| = |f(z) -
f@)| < |E(H)I.

By count, we can obtain |g*(E(GU H))| = |E(G) + |E(H)|, hence g*
map E(G U H) onto [1,|E(G)| + |E(H)|]. ]
Theorem 1. Let G and H be two balanced bipartite graphs. If [V(G N
H)| =1, then GU H is balanced.

Proof: Suppose that f is a balanced labeling of H, its character is c.
Let X' = {u: f(u) < d,u € VH)}, V' = {u: f(u) > d,u€ V(H)}. In

284



the proof of lemma 1, let X” = XU X', Y” =Y UY"’, then (X",Y") is
bipartition of V(G U H), g is a balanced labeling of G U H. The character
ofgisc+c. O
Lemma 2. Cycle C,, is graceful if and only if n = 0 or 3 (mod 4). (see
3

Let the vertices of C,, be denoted by z,z,...,z, successively. The
graceful labeling of Cyy, is as follows:

(1 -1)/2, iel,2m -1}
9@)={(+1)/2,  i€[2m+1,4m—1} (*)
dm+1-i/2, i€ [2,4m]o
Gra.ceful ]abeling of C4m+3 is as follows:
(i -1)/2, i€[l,4m +3];
g(z)={am+4-i/2, i€[2,2m+2)
4m+3-i/2, i€ [2m+4,4m+2)

Theorem 2. Cycle Cy,, is balanced while Cyp 3 is not.

Proof: (x) is a balanced labeling of Cy4m, with a character of g is 2m. By
contradiction. Suppose that g is balanced labeling of Cyy43, ¢ is character
of g. There exists u € V(Cym43), such that g(u) = 0. Without loss
of generality, let g(z1) = 0, then g(z2) > ¢, g(zs) < c,...,9(Tam+2) >
¢, 9(4m+3) < ¢, g(z1) > c. This contradicts g(z;) =0 < c. o

Theorem 3. If g is a balanced labeling of Cy,, and [0, |E(Cym)) -
{9(u): u € V(Cym)} = a, then a = m or 3m.

Proof: Let the character of g be ¢, X = {u: g(u) < c,u € V(Cym)}, Y =
{u: g(w) > ¢,u € V(Cam)}. If g(z1) =0, then X = {z;: i € [1,4m —1];},
Y = {z;i: i € [2,4m]o}. We may easily see ¢ =2m — 1 or 2m.
When ¢ = 2m - 1, there is a > c. The sum of all edge-labels is 1 +2 +
2---+4m = 2m(4m + 1). On the other hand,
2m(4m + 1) = |g(z1) — 9(zn)| + lg(z2) — g(z1)| + - -+ + |9(2n) — g(zn—1)|
=2{2m+(2m+1)+.--+4dm—a] - [1+2--- 4+ (2m - 1)]}
= 2{4m? 4 4m — a},
hence a = 3m.
When ¢ = 2m, there is a < ¢,

|9(z1) — g(2a)| + lg(z2) — g(1)| + - - - + |9(zn) — 9(Zn—1)]|
=2{[Cm+1)+---+4m| - (1+2+--- +2m —a)} =2{4m? + a}

hence a = m. (m}
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Corollary. If g is a balanced labeling of nCym, then [0,|E(nCym)|] -
{9(v): v € V(nCym)} = mn or 3mn.

The same method of theorem 3 can be used to prove the corollary.

3 Applications

In what follows, we will denote the 2n — 1 vertices of snake C,(2) by
Z1,Z2, ..., Tn,- -+, Ton—1 Successively. The vertices on the path are z,,
Zn,T2n-1-

Lemma 8. Graph Cyn,(2) is balanced.
Proof: The balanced labeling of Cym(2) is as follows:

(i -1, ie[1,2m]
g(mzi_1)=ﬁ6m—i' i€2m+1,3m—1]andn > 2
6m—1—4, i€[3m,4m 1]

4m, i=4m

(8m+1—i, i€[l,2m—1]
om+2+i, i€2m,3m—1]andn>2

9@%) =Y om1 344, ic[3m,4m—2]
Aam+1, i=4m-1
(8m+2—2i, i€[l,2m—1]
2m + 3, i=2m

g'(xg;zgg_1) ={2-4m+2i, i€[2m+1,3m-1]
4-4m+2i, i€ [3m,4m -2
|[2m+1, i=4m -1
(8m+1—-2i, i€(l,2m—1]
3-4m+2i, i€[2m,3m—2]

9" (z2iz2i41) = § 2m + 2, i=3m-1
5—4m+2i, i€ [3m,4m -2
1, i=4m -1

\
g*(z1Tam) = dm + 2, g*(TamTam—-1) = 2. Let X = {z2i_1: 4 € [1,4m]},
Y = {z2: i € [1,4m — 1]}, then the character ¢ = max g(X) = 4m.

The fundamental idea to label Cy,, (2) is as follows: Vertex-label is greater

than 4m and vertex-label is not greater than 4m are alternate. The set of
edge-labels consists of a few continual integer sections. ]

We can get that Cym,(4) is balanced by theorem 1. If g is a balanced
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labeling of Cy, (2), then a balanced labeling of Cy,,(4) is as follows:

g9(z), rze X
f(z)=48m+g(z), z€Y
4m+g(z), =€ V(Cim(2))

Graph Cyys(2n) is partitioned n graphs Cy,, (2). The jth Cyyn(2) is noted
by Cam,;(2). Let V(Cym,j(2)) = {zi;: i € [1,8m—1]}, where z;; correspond
to z; € V(Csm(2)). By induction, we can obtain balanced labeling of
Cym(2n) is as follows:

4m(3 — 1) + g(z:), e X

f(x1])={4m(2n_j_1)+g(x'), €Y j=1,2,..-,n-

Let

X'={zij:i€[1,8m —1],j € [1,n],z; € X}
Y’={zi,-: i€ [1,8m—1],j € [l,n],zg € Y}

then (X’,Y”) is a bipartition of V(Cym(2n)).
By the above conclusion and theorem 2, we obtain a balanced labeling h
of C4m(2n + 1) is as follows:

f(@), veX’
h(v) = { f(v) +4m, veY’
4mn + s(v), v € V(Cym)

where s(v) is a balanced labeling of Cyp,.
To sum up,we obtain this result:

Theorem 4. Graphs Csm(n) are balanced for all positive integer m and n.
Theorem 5. For all positive integer n and m, Cym43(n) and Cymys1(n)
are not balanced.

By contradiction and theorem 2, we can obtain the conclusion. m]

Now, the balanceness of snake C,,(n) has been solved completely.
Lemma 4. kCy has a a-valuation for 1 < k < 10, k # 3. Let k be
a positive integer, then k*Cy, (k? + k)C, are balanced, and if kC4 has
an a-valuation, graphs (4k + 1)Cy, (5k + 1)Cy, (9% + 2)C4 also have an
a-valuation. (see [4])

Theorem 6. When n = (m + 1)2 + 1 (m is arbitrary positive integer),
every nCjy is balanced.
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Proof: Vertices of ith C, are denoted by zi; (j = 1,2,3,4). Let t =
m(m+1)/2. We express (m+1)2+1 as 2t +m+2. The balanced labeling
of nCj is as follows: g(z11) = 4n, g(z12) =0, g(z13) =4n — 1, g(z14) =2,
g(z.+1,1) =2n+2, g(zt+1,2) =2n -2, 9($t+1,3) =2n+1, 9($t+1,4) = 2n,

(4n — k(k+1)/24+1—-4, j=

4n — k(k+3)/2 -1, i=3
k(2k + 3) + 2 — 2, i=2
| k(2k + 5) +4 — 2i, i=4

(2n+ k(k+3)/2+1+i, j=1
2n+k(k+1)/2 +14, ji=3
on—k(2k+5)—4+2, j=2
(2n —k(2k+3)—2+2i, j=4

9(1'-':‘) = 4

9(Terig) = 4

where k(k+1)/2+1<i<(k+1)(k+2)/2,1<k<m-1.

(3n+m+2—i, ifj=land0<i<m+1

3n —i, ifj=3and0<i<m+1

n+2m+4-2i, ifj=4and1<i<m+1
9(“'”“”):}7;-1, ifj=4andi=0

n+1, ifj=2andi=m+1

(n—2-2i, ifj=2and0<i<m

g(V(nCy)) = [0,4n] — {n}, character of g is 2n.
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