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Abstract

We establish some basic facts about sign-patterns of orthogonal ma-
trices, and use these facts to characterize the sign-nonsingular matrices
which are sign-patterns of orthogonal matrices.

1 Introduction

Let A be an m by n matrix (with real entries). The sign-pattern of A is the m
by n (0,1, —1)-matrix obtained from A by replacing each positive entry by +1,
and each negative entry by —1. The set of all matrices which have the same
sign-pattern as A is denoted by Q(A).

There has been some recent interest in studying the sign-patterns of orthog-
onal matrices [BBS]. Determining combinatorial properties which characterize
the sign-patterns of orthogonal matrices remains a fundamental open problem.
Since this general problem appears to be quite difficult, it is perhaps useful, as
suggested by C. Johnson [J}, to place additional restrictions on the sign-patterns.
The additional constraint we consider is that of sign-nonsingularity. A square
sign-pattern B is sign-nonsingular provided every matrix with sign-pattern B
is invertible. Sign-nonsingular matrices have been studied extensively (see [BS)
for references).

In this note we characterize the sign-nonsingular matrices which are also sign-
patterns of orthogonal matrices. Using the characterization, we establish some
connections between sign-nonsingular matrices and sign-patterns of orthogonal
matrices.
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2 Results

Let B be a square (0,1, —1)-matrix. We say that B allows orthogonality provided
Q(B) contains an orthogonal matrix, that is, provided B is the sign-pattern of
an orthogonal matrix.

We now define a class of matrices slightly more general than the orthogonal
matrices. An n by n matrix A is symplectic provided A is nonsingular and the
sign-patterns of A=! and AT are the same. Symplectic matrices were introduced
in [L] where their relationship with n-body problems in celestial mechanics is
discussed (see also [LS]). Note that if A is symplectic then so is each matrix
obtained from A by permuting rows and columns and by negating arbitrary
rows and columns. We say that B allows symplecticity provided Q(B) contains
a symplectic matrix. Clearly, an orthogonal matrix is symplectic, and thus if B
allows orthogonality then B allows symplecticity.

Our first result shows that in studying symplecticity and orthogonality, one
can restrict to fully indecomposable matrices. We recall the following standard
facts from combinatorial matrix theory (see [BR]). Since symplectic matrices
are invertible, if B is an n by n matrix which allows symplecticity then B does
not contain a zero submatrix whose dimensions sum to n + 1. Let A be an n
by n matrix which does not contain a zero submatrix whose dimensions sum to

n+1. We say that A is partly decomposable, if there exist permutation matrices
P and @ such that

where B and D are square (nonvacuous) matrices. Equivalently, A is partly
decomposable if and only if there exists a p by q zero submatrix of A for some
positive integers p and g with p+ g > n. We say that A is fully indecomposable,
if A is not partly decomposable. The rows and columns of A can be permuted
to obtain a matrix of the form

BO]

A O ... O
Ay Ay -~ O

: . .. : (1)
Art Ak2 - Ag

for some integer k > 1, where each A; is a fully indecomposable (square) matrix.

Proposition 2.1 Let A be a partly decomposable symplectic matriz. Then there
exist permutation matrices P and Q such that PAQ is the direct sum of fully
indecomposable, symplectic matrices.

Proof. Without loss of generality we may assume that A has the form given
in (1). Thus in particular A and A~! are block lower triangular. Since A is
symplectic, it follows that each A;; = O, and hence that A is the direct sum of
matrices. It is now easy to verify that each of the A; is symplectic. a

290



Note that if in Proposition 2.1, A is orthogonal then PAQ is a direct sum
of orthogonal matrices. Clearly, a direct sum of matrices is symplectic (re-
spectively orthogonal) if and only if each of the direct summands is symplectic
(respectively, orthogonal). Therefore, in light of Proposition 2.1 we henceforth
restrict our study to fully indecomposable matrices.

Our next result gives a necessary condition for a sign-pattern to allow sym-
plecticity. The vectors u = (u;,u2,...,Un) and v = (v1,%2,...,v,) ellow or-
thogonality provided either (i) u;v; =0 for i = 1,2,...,n or (ii) there exist ¢
and j such that u;v; > 0 and u;jv; < 0. It is easy to verify that the vectors v and
v allow orthogonality if and only if there exist vectors & € Q(u) and ¥ € Q(v)
which are orthogonal.

Lemma 2.2 Let B be a square (0,1, —1)-matriz which allows symplecticity.
Then any two row vectors and any two column vectors of B allow orthogonality.

Proof. Let A be a symplectic matrix in Q(B). Since A~! € Q(BT), the sign-
pattern of the ith row uT of A and the sign-pattern of the transpose of the ith
column v; of A~! equal the ith row w; of B. Since AA™! = I, it follows that
for i # j, u; and v; are orthogonal vectors which belong to Q(w;) and Q(w;),
respectively. Therefore any two row vectors of B allow orthogonality. A similar
argument works for columns. o

Let A be an n by n matrix with n > 2. The matrix A is doubly indecom-
posable [BS] provided there do not exist integers p and ¢ and a p by ¢ zero
submatrix of A with p+q > n—2. Clearly, if A is doubly indecomposable, then
A is fully indecomposable. In the next theorem we show that there are essen-
tially only two doubly indecomposable, sign-nonsingular matrices which allow
symplecticity. We use the following results concerning sign-nonsingular matri-
ces. A fully indecomposable, sign-nonsingular matrix has a row or a column
with 3 or fewer nonzero entries [T]. Every 2 by 3 and every 3 by 2 submatrix of
a doubly indecomposable, sign-nonsingular matrix has at least one entry equal
to 0 [BS].

A signature matriz is a diagonal matrix each of whose diagonal entries is
either +1 or —1.

Theorem 2.3 Let B = [b;;] be ann by n doubly indecomposable, sign-nonsingular
(0,1, =1)-matriz. Then B allows symplecticity if and only if there exist permu-
tation matrices P and Q and signature matrices D and E such that DPBQE
is either

1 1 1 0
-1 1 1 -1 0 1

[11] 11 0 -1 -1 @
0 1 -1 1

Proof. It is easy to verify that the matrices in (2) are doubly indecomposable,
sign-nonsingular matrices. Since the rows of the matrices in (2) are orthogonal,
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it follows that each of these matrices allows orthogonality, and hence symplec-
ticity.

Suppose that B allows symplecticity and n > 2. As previously mentioned,
B has a row or column with 3 or fewer nonzero entries. Since B is doubly-
indecomposable, and n > 2, each row and column of B has at least 3 nonzero
entries. Thus, some row or column of B has exactly 3 nonzero entries. We may
assume without loss of generality that row 1 of B has exactly 3 nonzero entries
and that these are in columns 1, 2 and 3. Consider another row of B, say row
i where ¢ > 2. Since every 2 by 3 submatrix of B has a 0, Lemma 2.2 implies
that either a;; = ai2 = a;3 = 0 or exactly two of a;;, a;2, a;3 are nonzero. Since
every 3 by 2 submatrix of B has a 0, it follows that there are at most four rows
of B which have at least one nonzero entry in their first three columns. Hence
the first 3 columns of B contain an n —4 by 3 zero submatrix. Since B is doubly
indecomposable, this zero submatrix must be vacuous, and hence n < 4. Up to
row and column permutation and multiplication of rows and columns by —1,
the only doubly indecomposable, sign-nonsingular matrices with 4 or fewer rows
are those in (2). The theorem now follows. a

We now study the structure of fully indecomposable matrices which allow
symplecticity and which are not doubly indecomposable. Let A be a matrix,
and let a be a subset of its rows and 3 a subset of its columns. Then A(a, B)
denotes the submatrix whose row indices are not in & and whose column indices
are not in 3, and Ala, 0] denotes the submatrix whose row indices are in o and
whose column indices are in 3.

B O
4= ¢]
be an n by n symplectic matriz where B isk by k+1 and C is £ + 1 by ¢,
k+€=n-1, and k,€ > 1. Then there exist nonzero vectors  and y such that
D = zyT. Moreover, the matrices

Lemma 2.4 Let

B'=[fr] and C'=[z C|] (3)
are symplectic. If A is orthogonal, then x and y may be chosen so that both B’

and C' are orthogonal matrices.

Proof. Since A is symplectic, A~! has the form

L_[E G
A‘[OF

where E is k+ 1 by k, and Fis £ by £+ 1. For all j; and j, with 1 < j; <
J2 <k+1andall i) and i; with £+ 1 < i) < iz < n, the n - 2 by n — 2 matrix
A~Y({41,J2}, {i1,42}) contains an £ by k zero submatrix. Since k+£ =n — 1, it
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follows that det A=!({j1, 2}, {i1,i2}) = 0. By Jacobi’s identity (see [HJ]p. 21),
det A[{i1,42}, {j1,2}] = 0. This implies that D has rank at most one. Since A
is nonsingular, D # O, and thus D has rank equal to one. Hence there exist
nonzero vectors z and y such that D = zyT. The matrix A~! is symplectic,
since A is symplectic. Thus, by a similar argument, there exist nonzero vectors
u and v such that G = uv”. Since A is symplectic, we may assume that u and
v are chosen so that u and y have the same sign-pattern and v and = have the
same sign-pattern. Since AA~! = I, we see that

BE =I1,Buw” =0, and zyTE = 0. (4)
Since v is nonzero and z is nonzero, we conclude that
Bu=0and yTE =0. (5)

It is easy to verify that since A is invertible, the matrix B’ in (3) is invertible,
and since A~! is invertible the matrix E' = [E,u] is invertible. By (4) and (5)
we see that I o ]

0 yTu
Since both B’ and E’ are invertible, this implies that yTu # 0 and thus
®"t=[E %],

BIEI= [

Since A is symplectic the sign-patterns of E and BT are the same, and since y
and u have the same sign-pattern so do y and ;#;. Hence it follows that B’ is
symplectic. A similar argument shows that C’ is symplectic.

Now suppose that A is orthogonal. Then we may take u = y and v = z.
The sum of the squares of the entries in the first k¥ + 1 columns of A equals
k + 1, and the sum of the squares of the entries in the first k rows of A equals
k. Thus, the sum of the squares of the entries in D = zyT equals 1. It follows
that (zTz)(y7y) = 1. By replacing = by &= and y by VzTzy, we see that
both B’ and C’ are orthogonal matrices. a

Let M be a k by k matrix, and let N be an ¢ by £ matrix. We define M x N
to be the k + £ — 1 by k + £ — 1 matrix given by

M’ 0]

man=| Mo O ©)

where M" is the k—1 by k submatrix obtained from M by deleting its last row, yT

is the last row of M, N’ is the £ by £ — 1 submatrix obtained from N by deleting
its first column, and z is the first column of N. Thus by Lemma 2.4, if A is
a fully indecomposable symplectic matrix which is not doubly indecomposable,
then (after row and column permutations) A = M x N for some symplectic
matrices M and N.
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columns of A we may further assume that O is in the upper righthand corner
of A. Thus A has the form

B O

D cCc|

where B is p by p+1, and C is ¢ + 1 by q. By Lemma 2.4, there exist nonzero
vectors = and y such that D = zyT and the matrices

M=[fr]andN=[z c]

allow symplecticity. Thus A = M * N. It is easy to verify that since A is fully
indecomposable and sign-nonsingular, so are M and N. Furthermore, the choice
of p implies that M is doubly indecomposable. Thus, by Theorem 2.3, up to
row and column permutations and multiplication of rows and columns by -1,
M is one of the matrices in (2). Arguing by induction on the number of rows,
it follows that a sequence of matrices satisfying the desired properties exists.
Since the rows of each of the matrices in (2) are orthogonal, these matrices
allow symplecticity. (Indeed, they allow orthogonality.) Thus, by Lemma 2.5
and induction on n, any matrix obtained by starting with one of the matrices in
(2) and sequentially *-ing with one of the matrices in (2) allows symplecticity.
That such matrices are fully indecomposable, and sign-nonsingular is a result

in [LMV]. m]

As we noted each of the matrices in (2) allow orthogonality. Hence we have
the following.

Corollary 2.7 A sign-nonsingular matriz allows symplecticity if and only if it
allows orthogonality.

A sign-nonsingular matrix M is mazimal [LM] provided every matrix ob-
tained from M by replacing one of its nonzero entries by 1 or —1 is not sign-
nonsingular. The matrices in (2) are maximal sign-nonsingular matrices. If M
and N are maximal sign-nonsingular matrices, then so is M «+ N [LMV]. Thus,
by Theorem 2.6 and Corollary 2.7, a fully indecomposable, sign-nonsingular
matrix which allows orthogonality is maximal.

Let S be the sign-pattern of a fully indecomposable orthogonal matrix. We
say that S is a minimal orthogonal sign pattern provided no fully indecomposable
matrix obtained from S by replacing some (at least one) of its nonzero entries
by 0’s is the sign-pattern of an orthogonal matrix. We conclude this note with a
result that relates maximal sign-nonsingular matrices and minimal orthogonal
sign-patterns.

Corollary 2.8 Let A be a fully indecomposable sign-nonsingular matriz which
allows orthogonality. Then A is a minimal orthogonal sign pattern.
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It is easy to verify that if M and N are orthogonal matrices, then M x N is
an orthogonal matrix. The next lemma shows that the analagous result holds
for symplectic matrices.

Lemma 2.5 If M and N are symplectic matrices, then M x N is symplectic.

Proof. Let M’, N’, z and y be defined as in (6), and let

M'=[E v]andN“‘:[zg].

Since MM~' =1,
ME=I,Mv=0yTE=0and yTv=1

Since NN~ = I, zuT + N'F = I. Using these facts it is easy to verify that

(M*N)[g ”};T ] -1

It follows that M is symplectic. ]

We now characterize the fully indecomposable, sign-nonsingular matrices
which allow symplecticity.

Theorem 2.6 Let A be an n by n fully indecomposable, (0,1, —1)-matriz with
n > 2. Then A is sign-nonsingular and allows symplecticity if and only if
there erist permutation matrices P and Q, signature matrices D and E, and a
sequence My, Ma, ..., M (k 2 1) of matrices such that

(i) M, is one of the matrices in (2);

(i) Fori=1,...,k—1, M; either can be obtained from M;_, be transposing
and permuting rows and columns, or after possibly permuting rows and
columns of Mi_y, M; = N;* M;_y or M; = M;_, x N; where N; is one of
the matrices in (2);

(iii) DPAQE = M,

Proof. First suppose that A is sign-nonsingular and allows symplecticity. If A
is doubly indecomposable, then by Lemma. 2.3, there exist permutation matrices
P and Q and signature matrices D and E such that DPAQE is one of the two
matrices in (2). Suppose A is not doubly indecomposable. Then there exist
integers p and ¢ such that p+¢ = n—1 and a p by ¢ zero submatrix O of A. We
may assume that p and g are chosen so that min{p, ¢} is minimal. By replacing
A by AT if necessary, we may assume that p < g. By permuting the rows and
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Proof. By the previous discussion A is necessarily a maximal sign-nonsingular
matrix. Any fully indecomposable, sign-pattern S obtained from A by replacing
some of its nonzero entries by 0 is a non-maximal sign-nonsingular matrix, and
hence S cannot support orthogonality. Therefore, A is a minimal orthogonal

sign pattern. a
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