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Abstract

Let G = (V, E) be a graph. For any real valued function f :
V-oRand S CV,let f(S) = Zu sf(u) Let ¢,d be positive
integers such that gcd(c, d) =1 and 0 < £ £ 1. A $-dominating
function f is a function f: V — {-1,1} such that f[v] > 1 for at
least  of the vertices V. The S-domination number of G, denoted
by T G), is defined as min{f(V) | f is a £-dominating function on

%Ve determine a sharp lower bound on 75 (G) for regular graphs
G determme the value of y¢ for an arbitrary cycle Cy, and show
that the decision problem PARTIAL SIGNED DOMINATING
FUNCTION is N P-complete.

1 Introduction

Let G = (V,E) be a graph and let v be a vertex in V. The open neigh-
borhood of v is defined as the set of vertices adjacent to v, i.e., N(v) =
{u|uv € E'}. The closed neighborhood of v is N[v] = N(v) U {v} For a set
S of vertices, we define the open neighborhood N(S) as U,es N(v), and the
closed neighborhood N[S] as N(S)US. A set S of vertices is a dominating
set if N[S] = V. The domination number of a graph G, denoted by v(G),
is the minimum cardinality of a dominating set in G.

For any real valued function f : V — Rand S C V, let f(S) =)_,cs f(u).
The weight of f is defined as f(V). We will also denote f(N[v]) by f[v],
where v € V. If v € V and f[v] > 1, then we say that the vertex v is
covered under f. We denote the set of all vertices of V that are covered
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under f by Cj.

A minus dominating function is defined in [4] as a function f : V —
{=1,0,1} such that f[v] > 1 for every v € V. The minus domination
number of a graph G is y~(G) = min{f(V) | f is 2 minus dominating
function on G}.

A signed dominating function is defined in [5] as a function f: V — {-1,1}
such that f[v] > 1 for every v € V. The signed domination number of a
graph G is 7,(G) = min{f(V) | f is a signed dominating function on G}.

A majority dominating function is defined in [1] as a function f : V —
{=1,1} such that f[v] > 1 for at least half the vertices v € V. The
majority domination number of a graph G is Ymqj(G) = min{f(V) | fis a
majority dominating function on G}.

Let k € Z% such that 1 < k < |V|. A k-subdominating function (kSF)
to {—1,1} for G is defined in [3] as a function f:V — {—1,1} such that
f[v) 2 1for at least k vertices of G. The k-subdomination number to {—1,1}
of a graph G, denoted by v;,''(G), is equal to min{f(V) | f is a kSF to
{—=1,1} of G}. In the special cases where k = |V| and k = [l%l], 7:.4(G)
is respectively the signed domination number and the majority domination
number.

Let k € Z% such that 1 < k < |V|. A k-subdominating function (kSF)
to {—1,0,1} for G is defined in [2] as a function f : V — {-1,0,1} such
that f[v] > 1 for at least k vertices of G. The k-subdomination number to
{=1,0,1} of a graph G, denoted by 7;,'°'(G), is equal to min{f(V) | f is
a kSF to {—1,0,1} of G}. In the special case where k = |V|, 7;,!(G) is
the minus domination number. Since every kSF to {~1,1} is also a kSF
to {—1,0,1}, we have that v;!°/(G) < 75.11(G) for an arbitrary graph G.
Let c,d be positive integers such that ged(c,d) = 1 and 0 < $<L A
§-dominating function f is a function f : V — {—1,1} such that f[v] > 1
for at least § of the vertices V. The §-domination number of G, denoted
by 7¢(G), is defined as min{f(V) | f is a §-dominating function on G}. In
the special cases where § =1 and § = 1, 75(G) is respectively the signed
domination number and the majority domination number.

In this paper, we determine a lower bound on 75(G) for regular graphs
G, determine the value of 74 for an arbitrary cycle C,, and show that the
decision problem PARTIAL SIGNED DOMINATING FUNCTION
is N P-complete.

2 A lower bound on 7:(G) for regular graphs
G

Theorem 1 Let c,d be positive integers such that ged(c,d) = 1 and 0 <
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< 1. For every r-regular (r > 2) graph G = (V, E)) of order p,

£~
I
alo

{ p(q% —1) forr odd
74(G) 2

p(qr_H —1) forr even,
and these bounds are best possible.

Proof. Let f:V — {~1,1} be any ¢-dominating function on G for which
F(V) = 74(G). Let P and M (standing for “positive” and “minus”) be the
sets of vertices in G that are assigned the values +1 and —1, respectively,
under f. Then |P|4|M| = p. Further, let P* and P~ be the sets of vertices
in P whose closed neighborhood sum under f is positive and nonpositive,
respectively. Define M+ and M~ analogously. Then P = P+ U P~ and
M = M* U M-. Further, let [M*| = aq, |P¥| = b and |P~| = c. Then,
since f is a g-dominating function, a-+b > gp. We consider two possibilities.
Case 1. a< qp—Lji

Then, since |P| = b +c¢>b> gp— a, it follows that

Pl >gp—ap=7 L2J —qp(l—rl_?_—Jl).

Hence,
1(G) =|P|—|M]|

= 9|P| -

> 2qp (1 - rLill) -p
which yields the desired result.

Case 2. a2 qp (l—%—)

Let £ be the number of edges joining a vertex of M+ and a vertex of P.
Then, since each vertex of M+ must be adjacent to at least [5] +1 vertices
of P, we have that £ > ([§] + 1) a. On the other hand, although a vertex
of P~ may be adjacent to as many as r vertices of M, each vertex of P+
is adjacent to at most | 5| vertices of M. It follows that £ < |%] b+ re.

Consequently,
([51+1)asx[g]o+re
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Hence it follows that,

IP| =b+ec
> b+ (5] + Da - [5]b) /r
=(1-:Eho+([51+1) 8
>(1-5)@p-a)+([5]+1) 2
=(1-t5Dep+2([51+ 15 +1-7)

=(1-}5)ep+ 2
Thus,

1(G) =2P|-p
>2p(1-25))+2%2-p
>2p(1-150) + HEH _p
= 2p (1 - %‘;ﬁj—l‘%ﬂ) -p
=2qp(l— rLgll) -p.

That these lower bounds are best possible, may be seen as follows. Let G be
the (disjoint) union of the graphs H; = K,,,, i = 1,...,c, and the graph
F2(d—c)Kry1. Fori=1,...,c, let M; C V(H;) with [M;]| = | ] and let
P; = V(H;)— M;. Note that |P;| = [§] + 1. Define f : V(G) — {—1,1} by
f(v) =1forv € Ui_, P; and f(v) = —1for v € (Uf=, M;)UV(F). Then f is
a g-dominating function on G in which every vertex of Ui, H; has positive
neighborhood sum under f. Hence

1(G) < F(V(G))
=c([51+1-[3)) - d=o)(r+1)

([l 41— (5] +r+1) —d(r+1)

{ e(r+3)—d(r+1) forrodd

c(r+2)—d(r+1) forr even.
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The lower bound of our theorem implies that

£(d(r + 1)),.+1 d(r+1) for r odd

’)’q(G) 2 {
Sd(r+ 1)),+1 d(r+1) for r even.

e(r+3)—d(r+1) forrodd
c(r+2)—d(r+1) forreven.

This completes the proof of our theorem. [l
In [5] and [10] the following lower bounds on 7,(G) for r-regular graphs G
of order p for r even and odd, respectively, are established.

Theorem 2 For every r-regular (r > 2) graph G of order p,

{ 2. forr odd
7:(G) 2

L
e, for r even.

Zelinka [11] established the following lower bound on ym4j(G) for a cubic
graph G.

Theorem 3 For every cubic graph G of order p, Ymqo;(G) > —5§ and this
bound is best possible.

Henning [8] generalised the result of Theorem 3 to r-regular graphs.

Theorem 4 For every r-regular (r > 2) graph G = (V, E) of order p,

(m) p forr odd
Yma;(G) 2
(5(-;'—_;17) p forr even,

and these bounds are best possible.

Note that, if ¢ = 1 in the statement of Theorem 1, then we obtain the
result of Theorem 2 and if ¢ = —%, then we obtain the result of Theorem 4.

3 The value of v;!'(C,)

Cockayne and Mynhardt (see [3]) determined 7;3" for an arbitrary path
Pn.
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Theorem 5 If n > 2 is an integer and 1 < k < n, then vy} (Py) =
2| Z4] — n.

We now calculate 75, '(Cn). We begin by noting that v,(Cn) = n — 2[2]
(cf. [5]) and that

% + 4 {r§]+k+2 if k=0 (mod 3) or k =1 (mod 3)
[ %57 -

3 [¥]+k+1 if k=2 (mod 3).

Theorem 6 Ifn > 3 is an integer and 1 < k < n—1, then
n-2 ifk=n—1and k=1 (mod 3)
ll(Cn) -

212k | —n  otherwise.

Vks

Proof. We first prove the upper bounds for 7,;11(0,,). Let P, : v,
v2,...,Un be a path on n vertices, and let C,, be the cycle obtained from
P, by joining the vertices v; and vy,.

Case 1 k =0 (mod 3).

The function f : V — {—1,1} defined by (f(v1),...,f(vs)) =
(},1,—1,1,l,—l,...,l,l,—lJ,l,—l, ...,—1) is a kSF for P, of weight

v

k
[§1 +k —n + 2 = 2| %+ — n which is also a kSF for C,. Hence
1e(Ca) < 2024 — n.
Case 2 k =1 (mod 3).
Ifk=n—1,then f:V — {—1,1} defined by (f(v1),...,f(va)) =
(1L,1,-1,1,1,-1,...,1,1,-1,1,~1) is a (k — 1)SF for P, of weight 232

-

k
but a kSF for C,. Hence v;,''(Cy) < 252
If k<n-—2, then f:V — {—1,1} defined by (f(v1),...,f(vn)) =
Q,l,—l,1,1,—1,...,1,1,—1,11,1,—1,...,—1) is a kSF for P, of weight

~

k
[£]+k—n+2 = 2| 2+ | —n which is also a kSF for C,. Hence ;,}!(C,) <
a2t
Case 3 k =2 (mod 3).
The function f : V — {—1,1} defined by (f(v1),...,f(vn)) =
(\1,1,—1,1,1,—1,...,1,1,—1,1,1J,—l,...,—1) is a kSF for P, of weight

~

k
[£]1+k—n+1 = 2| 2| _pn which is also a kSF for Cn. Hence 15} (Cn) <
2| %4 - n.
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We now prove the lower bounds for 75,''(Cy). Since (see [7])
252 ifk=n—1and k=0or 1 (mod 3)
2| &4 | —n  otherwise,

and 75,''(Cn) > 7;,'°*(Cn), the lower bound for v;'*(C,) will follow if we
can prove the following result:

Proposition 1 Ifk=n—1and k=0 (mod 3), then

- n+2
7k311(Cﬂ) Z 3 N

Proof. Let C, : vp,v1,...,Un-1,v0 be the cycle on n vertices and let
V = V(Cy). Let f be a minimum kSF to {-1,1} for C,,.

If f covers all of Cy,’s vertices, then f is a signed dominating function of
Ch, so that 75,"1(Cn) = f(V) > 7:(Cn) = n - 2| 3] = 22,

In what follows, we assume that there is exactly one uncovered vertex
under f, say v,—;. Note that f(v,_1) = 1, for if this is not the case,
then f(vo) = —1 or f(vs—2) = —1. But then we have two uncovered
vertices, which contradicts the fact that k = n — 1. Note further that
f(vo) = f(vn-2) = ~L.

For all v; # v,_2, we have that if f(v;) = <1, then f(viy1) = f(vig2) =1,
where addition is taken modulo n. If f(vi43) = 1, then we construct the
cycle C, from the cycle C,, by removing the vertex v;;1, joining the vertices
v; and v;42 and inserting v;4; between v,_s and v,.;. Note that v;,vi4;
and v; 4.2 are still covered by f, while f now covers the previously uncovered
vp—1. By relabeling the vertices of C},, we obtain a minimum kSF which
is also a signed dominating function. This case was handled previously.
This implies that f consists of a sequence of —1’s and 1’s such that each —1
is adjacent to two 1’s and each 1, except the value for v,_, is adjacent to a
—1 and a 1. In this case n = 2 (mod 3), which contradicts our assumption
that n = 1 (mod 3).

This contradiction shows that, in this case, a minimum kSF to {—1,1} for
Ch is actually a signed dominating function of C,,. Il

This result generalises the following result of Broere, Hattingh, Henning
and McRae (see [1]).

Theorem 7 Ifn > 3 is an inieger, then

'Ymaj(Cn) = Ymaj (Pn)-
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Let c,d be positive integers such that ged(c,d) =1and 0 < ¢ = § < 1. By
letting k = [q|V(C,)[], we have

S e
n—2< 1 n =n-—1an
(G ={ 3 [alV(Cal = 1(mod3)

2[3[111(%1]&] —n otherwise.

4 Complexity results

In this section we show that the problem

PARTIAL SIGNED DOMINATING FUNCTION (PSDF)
INSTANCE: A graph G, positive integers ¢, d such that ged(c,d) = 1 and
0 < § £1 and an integer k.

QUESTION: Is there a $-dominating function of weight k or less for G?
is N P-complete by describing a polynomial transformation from the fol-
lowing problem (see [6]):

DOMINATING SET

INSTANCE: A planar 4-regular graph G = (V, E) and a positive integer
k<

QUESTION: Is there a dominating set of cardinality & or less for G?

If £ =1, then PSDF is the N P-complete problem SIGNED DOMINA-
TION (see [9]). Hence, we also assume that 0 < § < 1. For convenience,
we set ¢ = 3.

We will need the following lemma.

Lemma 1 If ¢,d,p are positive inlegers such that 0 < ¢
there ezist positive inlegers £ and r such that 8 < £ < d*([§

d®([§] +4) and ¢ = 55,

Proof. Since ¢ < d, wehave ¢ > 1,d > 2andd—c > 1. Lett =
[£] + 4. Then dt(d — ¢) > 2t and cdt > 2t. However, 2t > p + 8, whence
dt(d—c) > p+8 and cdt > p. Let t be the smallest positive integer such that
di(d —c) > p+ 8 and cdt > p. It follows that ¢ < [E] + 4. Let r = cdt —
and £ = ddt — cdt — p. Note that r and £ are both positive integers such
that r,£ < ddt < d*([§] +4). Furthermore, £> 8 and ¢ = ;27 W
Theorem 8 The decision problem PSDF is N P-complete.

Proof. Obviously, PSDF is in NP.
Let G be a 4-regular planar graph, p = p(G) and k be an integer such
that k¥ < £. By Lemma 1, there exists positive integers r,£ such that

£>8and g = ?pﬁ Let H be the graph constructed from G as follows:

40



Take a complete graph F on p + £ vertices, a fixed subset U C V(F) with
[U] = 4 and an empty graph L on r vertices, and let H be obtained from
the disjoint union of F, G, and L by joining each vertex of U to every
vertex in V(G)U V(L). Since p(H) =2p+r+£< 2(p+ d*([§] +4)), the
graph H can be constructed from G in polynomial time.
We start by showing that if S is a dominating set of G of cardinality at
most k, then there is a g-dominating function f of H of weight at most
2k —2p—r — £+ 8. Define f: V(H) — {-1,1} by f(v)=1ifv e SUU,
while f(v) = —1 otherwise. If v € S, then f(v) = 1 and since G is 4-regular
and f(U) = 4, it follows that f[v] > 1. If v € V(G) — S, then v is adjacent
to some vertex u in S for which f(u) = 1. Again it follows that f[v] > 1. It
is clear that f[w] = 3 for each vertex w € V(L), so that f[v] > 1 for at least
p+7r =q(2p+r+£) = gp(H) vertices. This shows that f is a g-dominating
function of H of weight 2|S| —2p—r—£+8<2k—2p—-r—£+8.
For the converse, assume that v4(H) < 2k —2p —r — £+ 8. Among all
the minimum ¢-dominating functions of H, let f be one that assigns the
value +1 to as many vertices of I/ as possible. Let P and M be the sets of
vertices in H that are assigned the values +1 and —1, respectively, under
f. Then |P|+|M|=2p+r+£, and |P|— |M| = v,(H). Before proceeding
further we prove three claims.
Claim 1 |P| <k +4.
Proof. Suppose |P| > k+ 5. Then |M| < 2p+r+£—k — 5, so that
Yg(H) = |P|— |M| > 2k — 2p — r — £+ 10, which contradicts the fact that
Y(H) <2k -2p—7r—-£+8. 0
Claim 2 f[v] < 0 for all v € V(F).
Proof. Suppose there exists a v € V(F) such that f[v] > 1. If v € U, then,
since v dominates H, it follows that 0 < 1 < f[v] = f(V(H)) = v,(H) <
2k —2p—r — £+ 8, whence p+ § < k, which is a contradiction. Hence
v € V(F) —U. Since N[v] = V(F), it follows that more than half of the
vertices of the F' have the value 1 assigned to them under f. This 1mp11es
that |[P| > 2 = 2+ £ > 2 4 4. By Claim 1 and the fact that k <E it
follows that |P| < 2 + 4 whlch is a contradiction. O
By Claim 2, it follows that f[v] > 1 for all v € V(G)U V(L).
Claim 3 f(U) = 4.
Proof. Suppose that f(u) = —1 for some u € U. If f(v) = —1 for all
v € V(G), then f[v] < -3 for all v € V(G), which is a contradiction.
It follows that there exists a v € V(G) such that f(v) = 1. Define g :
V(H) = {-1,1} by g(w) = f(w) if w € V(H) — {u,v}, g(v) = -1 and
g(u) = 1. Note that if z ¢ N[v], then g[z] = f[z] + 2, while if z € N[v],
then g[z] = f[z]. It follows that g[v] > 1 for at least £ of the vertices of H
while the weights of g and f are equal. Hence g is a ¢- domlnatmg function
of H of weight v,(H) that assigns the value +1 to more vertices of U than
does f, contradicting our choice of f. O
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Let S = PNV(G). Since f[v] > 1 for all v € V(G), it follows that either
Jf(v) = 1 or there is a u € Ng[v] with f(u) = 1. Hence, each vertex in
G is either in S or adjacent to some vertex of S, which shows that S is a
dominating set of G. Since f(U) = 4, Claim 1 implies that |S| < k, which
completes the proof. Il
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