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ABSTRACT. A graph G is maximally non-hamiltonian (MNH)
if G is not hamiltonian but becomes hamiltonian after adding
an arbitrary new edge. Bondy [2] showed that the smallest size
(= number of edges) in a MNH graph of order n is at least [3]
for n > 7. The fact that equality may hold there for infinitely
many n was suggested by Bollobds [1]. This was confirmed
by Clark, Entringer and Shapiro (see [5, 6]) and by Xiaohui,
Wenzhou, Chengxue and Yuanscheng [8] who set the values of
the size of smallest MNH graphs for all small remaining orders
n. An interesting question of Clark and Entringer [5] is whether
for infinitely many n the smallest MNH graph of order n is not
unique. A positive answer - the existence of two non-isomorphic
smallest MNH graphs for infinitely many n follows from results
in [5}, [4], [6] and [8]. But, there still exist infinitely many orders
n for which only one smallest MNH graph of order n is known.

We prove that for all n > 88 there are at least 7(n) > 3 small-
est MNH graphs of order n, where limynyo0 7(n) = co. Thus,
there are only finitely many orders n for which the smallest
MNH graph is unique.
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1 Introduction

A possible approach to studying hamiltonicity consists in trying to find
graphs that provide obstructions for the existence of a hamiltonian cycle.
This naturally leads to the main object of study of this paper: We say that
a graph is mazimally non-hamiltonian (MNH) if it is not hamiltonian but
becomes hamiltonian after adding an arbitrary new edge. In other words,
a non-hamiltonian graph G is MNH if any two non-adjacent vertices of G
are ends of a hamiltonian path in G. At a first glance, such requirement
seems to force the graph G to be “rich” (in terms of size, i.e., the number
of edges). Denoting by f(n) the smallest size of a MNH graph of order n,
the lower bound f(n) > [22] for n > 7 (due to Bondy [2]) might therefore
appear to be far from exact. Surprisingly, as we shall see, almost always it
is as exact as it can be, and this is true for all orders n > 19 (it is true for
orders 6, 10 - 13, 17, 19 as well).

Some examples of cubic (= 3-valent) MNH graphs were known at the
time when Bondy’s paper [2] was published. The two most prominent ones
have been the Petersen graph and the Coxeter graph, giving an equality
in Bondy’s bound for n = 10 and n = 28. Some years later, Bollobds
[1] suggested that equality may hold there for infinitely many values of n.
A breakthrough in determining the exact value of f(n) was achieved by
Clark and Entringer [5] and Clark, Entringer and Shapiro [6]. They proved
that the Isaacs’ flower snarks and their appropriate modifications provide
examples of MNH graphs of order n and size [32] for all even n > 36 and
all odd n > 55, showing that f(n) = [3] for almost all n. The remaining
cases of orders n were set by Xiaohui, Wenzhou, Chengxue and Yuanscheng
[8].
Clark and Entringer [5] asked whether for infinitely many n the smallest
MNH graph of order n is not unique. Combining the results from [5, 6, 8] it
can be seen that for infinitely many n there are two non-isomorphic smallest
MNH graphs of order n, but there still exist infinitely many orders n for
which only one smallest MNH graph is known.

Let p(n, k) denote the number of partitions of n into k parts, that is, the
number of distinct ways to write n as a sum of k positive integers, disregard-
ing order. It is well-known that p(n,k) = Y%, p(n — k,i). Similarly, let
?'(n, k) denote the number of partitions of n into k parts where each sum-
mand is at least two; obviously, p'(n, k) = p(n, k) — E:-;l P(n—ik—1).
Let us put Q(0) = 2, Q(1) = Q(2) = 3, Q(3) = Q(4) = 4, Q(5) = Q(6) = 5
and Q(7) =6. Let n =8a+b > 88, where 0 < b < 8andlet k =2a+1.
In this paper we prove that for all n > 88 there exist at least 7(n) =

lh—?—sg‘blj . .
i=0 P'(k—2-Q(b) — 6i,Q(b) + 4i) > 3 non-isomorphic smallest
MNH graphs of order n, where lim,—,007(n) = c0. The main ingredients

of our constructions are Isaacs’ flower snarks, again.
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2 Modifications of Isaacs’ Snarks
We first describe the construction of Isaacs’ snarks Ji, k > 3, k odd (see

(7).

Definition 1 For k > 3, k odd, the graph Ji has vertex set {vo, v, ...,
v4x-—1} and edge set EqUE,UE,UE3, where Eg = U;;&{quﬁ.‘.l, V454542,
V4jVaj43}, By = {v4j4104547 | 0< J S k= 1}, B = {v4j42v446 | 0< 5 <
k—1}, B3 = {vsj43v4545 | 0< j < k—1}.

Vek-2

vs ve vio Yak—3
Figure 1. The graph J; with its labelled vertices

Now we define two operations of “expanding a vertex to a triangle” and
“replacing an edge by a bowtie”, which we then apply to Isaacs’ snarks.

Definition 2 Let v be a vertex of degree 3 in a graph G and let vy, vs, vs

be its neighbours. Let T = K3 with vertices labeled u,, ua, us.

By G(v) we denote the graph obtained from G by replacing v by T, i.e.,
G(v) = [(G - v) UT] + uyv; + ugva + uavs.

The graph G(v) is said to be obtained from G by “expanding v to a trian-

gle”.

If each of the vertices v;,vs,...,vx is expanded to a triangle in G we
denote the resulting graph by G(v1,vs, ..., ). By N(u) we denote the set
of neighbours of u.

Definition 3 The graph 04 = K5 — ujug — ujus — uqug — u4ug, where
u;, i = 1,2,3,4,5 are the vertices of Ks, will be called a bowtie. Let G be
a graph and let v;, v; be vertices of degree 3 in G such that v;iv; is an edge
of G. By the symbol G(v;v;) we denote the graph obtained from G in the
following way,
G(v.-vj) = [(G - {v,-,v,-}) U N] + v1v; + uqv + U2vy, + uzvy,,

where vj,vk,vi € N(v;) and vi,vm,vn € N(v;). Shortly, we say that
G(viv;) is obtained from G by “replacing the edge v;v; by a bowtie”.

To be able to review known results we define further construction “ex-
tending an edge to a triangle”.
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Definition 4 Let uv be an edge in a graph G such that the degree of u
and v is 3 and let w be a vertex not in G. By G[uv] we denote the graph
obtained from G in the following way

Gluv] = [GU W] + vw + uw.
The graph G[uv] is said to be obtained from G by “extending uv to a
triangle”.

The previous modifications applied to Isaacs’ snarks yield smallest MNH
graphs. In the following Table we briefly recall these constructions. The
Table is to be read with £k = 2p+ 1 and p > 7. The cases p < 6 are solved
as well, but using different constructions. Moreover, for p > 7 these results
were achieved in [8] and [5, 6].

order | Clark et al. [5, 6} Xiaohui et al. {8] " uniqueness
8p | Jr-2(v2yv14) Jr—2(vo,v4) non-isomorphic
8p+1 | Jr—2(vi4,v26)[vore) Jx—2(vo,va)[viev18] non-isomorphic
8p+2 | Jx—2(v2,v14,v26) Jx—2(vo, v, vs) non-isomorphic
8p+3 | Jx—2(v14,v26,v38)[vov2] | Je—2(vo,v4,v8)[v16v18] | non-isomorphic
8p+4 {3 & isomorphic
8p+5 | Jx[vowz) Ji[vievis] isomorphic
8p+6 | Ji(v2) Ji(vo) non-isomorphic
8p+7 | Jx(v14)[vov2] Ji (vo)[vievia] non-isomorphic

Table 1. Modifications of Isaacs’ snarks

Our aim is to apply first two operations on Isaacs’ snarks to obtain
the required number of smallest MNH graphs. We shall need a number of
auxiliary results. The first one was proved in [5).

Lemma 1 [5] If u and v are non-adjacent vertices of Jix,k > 5, and uy,
uz and ug are the neighbours of u then each edge uu;,i = 1,2,3 lies in a
hamiltonian u — v path of J. O

The proof of the following Lemma is trivial, thus we omit it.

Lemma 2 Let G be a graph and let u and v be vertices of degree 3 in G.
(1) If G(v) ( G(uv) ) is hamiltonian, then G is hamiltonian as well.

(2) If there is 8 hamiltonian z — y path in G, where z,y # u ( z,y # u,v ),
then there is a hamiltonian z — y path in G(v) ( G(uv) ) as well. o

Let d(u,v) denote the distance between the vertices u and v.

Lemma 3 The graphs Ji, k > 5, k odd, contain hamiltonian v4i42 — v4j42
paths P(va(i+1)+2, Va(j+1)+2) and P(vai, va;) where d(vait2,v4542) 2 3,
P(va(i41)42, Va(i+1)42) = (Vai+2Va(i41)+2 - - - Va(j+1)+2v4j+2) and

P(v4i, v45) = (V4i4204i . . . VajVaj4a).
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Proof. Because of the symmetry of Jj it is sufficient to describe the fol-
lowing hamiltonian P(‘U4(,‘+1)+2, ”4(j+1)+2) and P(v.;.-, ‘qu) paths withi=0.
A list of such paths follows. Indices throughout are to be taken modulo 4k.

The construction of the path P, = P(vs, v4(j41)+2) if |{ve, v10, ..., va(j-1)42
H=2p+1, p > 1, {vagi+1)42: Vai+2)42: - - -» Va(k-1)42}| = 2m > 4 and
4|2m: Let S(i) = vgip1 V4(i~1)43 Va(i-1)-

Let R({) = vait1 V4(i-1)43 Va(i-2)41 Va(i-2) Va(i-2)42 Va(i-1)+2 Ya(i-1)
V4(i-1)+1 Y4(i-2)43 Y4(i-3)+1 V4(i-4)43 V4(i-4) V4(i-4)+2 Va(i-3)+2 Y4(i-3)
V4(i-3)+3-

Then, P, = (v2 vs ... V4(j-1)+2 V4(j-1) V4(j-1)+3 V4j+1 Y4j Vaj4+3 S(j — 1)
S(i—2) ... 5(1) R(0) R(k —4) ... R(j +9) va(j45)+1 Va(i+4)+3 Va(j+3)+1
V4(j+3) V4(j+8)+2 V4(j+4)+2 Va(i+4) Va(i+4)+1 V4(5+3)+3 V4(j+2)+1 V4(j+1)+3
V4(i+1) V4(G+1)+2 V4(5+2)+3 Va(i+2) Ya(i+2)+2 V4(i+1)+2 ”4j+2)~

The construction of the path P, = P(vs, va(j41)42) if [{vs, V10, . - -, Va(j-1)42
H=2p+1, p > 1, [{vagi41)42: VaGi+2)42: - - -» Va(k—1)42}| = 2m > 2 and
4 ﬂm: Let S(i) = V4i41 V4(i-1)43 V4(i-1)-

Let R(i) = vgiy1 Vq(i-1)43 V4(i-2)+1 V4(i-2) Y4(i-2)+2 V4(i-1)+2 V4(i-1)
V4(i-1)41 V4(i-2)4+3 V4(i-3)+1 V4(i-4)4+3 V4(i-4) V4(i—4)+2 V4(i-3)+2 V4(i-3)
V4(i-3)+3-

Then, Py = (v v6 ... va(j_1)+2 Va(j—1) Va(j-1)43 Vaj+1 V4j Vaj4s S(F — 1)
S(j - 2) cre S(l) R(O) R(k - 4) oo R()] + 7) 040+3)+1 I)4(j+2)+3 ”4(j+1)+1
V4(41) V4(i4+1)4+3 V4(i+2)+1 Va(5+2) Va(i+2)42 V4(i+1)+2 V4j42)-

The construction of the path P3 = P(vs, v4(j4+1)+2) if |{vs, v10, - . ., V4(j~1)42
} =2p,p>2and 4| 2p: Let S(i) = vai41 va; vaiqs-

Let R()) = vait1 vai41)43 Va(ie1) Va(i+1)42 V4i42 V4 V443 Va(id1)41
V4(i+2)43 V4(i+3)+1 V4(i+3) V4(i+3)+2 V4(i+2)+2 V4a(i+2) V4(i+2)+1 V4(i+3)+3-
Then, P3 = (v2 vs v10 v8 v11 Us v4 U7 V9 V15 V17 V16 V18 V14 V12 V13 V19 R(22)
R(38) - R(j - 4) S(J) S(j + 1) vee S(k - 2) V4(k-1)+1 Y3 V0 V1 V4(k-1)+43
Va(k—-1) V4(k—1)42 V4(k=2)42 - - - V4j42)-

The construction of the path Py = P(vg, v4(j4+1)+2) if [{v6, v10, - - -, va(j-1)42
} =2p,p>1and4 [2p: Let S(i) = vai41 Va(i41)43 Vais1)-

Let R(i) = vai41 V4(i41)43 Va(ie2)+1 Va(i42) VaG+2)+2 Va(i+1)42 Va(i+1)
Va(i+1)41 V4(i4+2)43 V4(i43)41 V4(i+4)+3 V4(i+4) Va(i+4)+2 Va(i+3)+2 V4(i+3)
U4(i+3)+3-

Then, P4 = (1)2 Vs V10 V8 V11 Vs V4 U7 R(IO) R(26) e R(j - 5) S(] - 1)
S(F) ... S(k - 3) V4(k-2)+1 V4(k-1)+3 V1 Y0 U3 V4(k—1)+1 Va(k-1) V4(k—1)+2
V4(k-2)42 - - - V4j42)-

The construction of the path Ps = P(vo, vs;) if |{ve, v10,- .. yVagi-1)42}| =
2}7, p2> 2 and 4 I 2p: Let S(t) = V4i43 Y4(i-1)41 Y4(5-1)-
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Let R(i) = vai41 Va(i-1)43 V4(i-2)+1 V4(i-2) V4(i-2)+2 V4(i-1)+2 V4(i-1)
Y4(i-1)+1 V4(i-2)43 V4(i-3)+1 V4(i—4)+3 V4(i-4) V4(i-4)+2 V4(i-3)+2 V4(i-3)
Y4(i-3)+3-

Then, Ps = (v2 Yo U3 Va(k—1)41 Va(k—1) Va(k—1)+2 V4(k—=2)+2 - - V4(j+1)+2
Va(j+1) Va+1)48 R(5) R(7 —4) ... R(38) va1 v19 13 v12 v15 v17 V16 V18 V14
V10 Vg V4 Us V11 Us Vg U7 V) S(k—l) S(k—2) - S(]+3) V4(j+2)+3 V4(i+1)+1
V4j+3 V4j V4j+2)-

The construction of the path Ps = P(vo, v4;) if |[{vs, v10,...,v4(j-1)42}| =
2p, p > 1and 4 [ 2p: Let S(i) = v4i43 va(i-1)41 V4(i-1)-

Let R(i) = vai41 V4(i-1)43 V4(i-2)+1 V4(i-2) V4(i-2)+2 V4(i-1)+2 V4(i-1)
V4(i-1)+1 V4(i-2)43 V4(i-3)+1 V4(i-4)43 V4(i-4) V4(i-4)+2 V4(i-3)+2 V4(i-3)
V4(s—-3)+38-

Then, Ps = (v2 ¥0 V3 Vg(k—1)41 Va(k-1) Va(k—1)+2 Va(k-2)+2 - - - Va(j+1)+2
v4(,-+1) v4(j+1)+3 R(J) R(] - 4) ces R(30) V13 V11 Vg V4 Vg V10 Vg Vg9 U7 V)
S(k - 1) S(k - 2) e S(J - 3) V4(j-2)+3 V4(j—-1)+1 V4j+3 V45 vﬁ+2). O

Lemma 4 The graphs Ji, k > 5, k odd, contain bamiltonian v4; — v4j42
patbs P(v4.‘.|.2, 04(j+1)+2) and P(v4.-+2,v40-_1)+2) where d(v4;,v4,-+2) _>_ 4,
P(v4i42, Va(i+1)42) = (Vaivaig2 - - . Va(j41)+2%45+2) and

P(v4i42, Va(j—1)42) = (Vaivai42 .. - Va(j-1)42Y4j+2)-

Proof. Because of the symmetry of Jj it is sufficient to describe the follow-
ing hamiltonian P(v4;42,v4(j4+1)+2) Paths with i = 0. A list of such paths
follows. Indices throughout are to be taken modulo 4k.

The construction of the path Py = P(v2, va¢j41)42) if [{vs, v10, - - -, VaGi-1)42
}I =2p+1,p>1and 4 I 2p+ 2: Let S(t) = V4i43 V4(i+1)41 V4(i+1)-

Let R() = vaig2 Vai41)42 Vai41) Va(i+1)43 V4i+l V4i V4id3 Va(i+1)+1
V4(i4+2)+3 V4(i+3)+1 V4(i+3) V4(i+3)+3 V4(i+2)+1 V4(i+2) Y4(i+2)+2 V4(i+3)+2-
Then, P, = (vo vz ve R(10) R(14) ... R(j — 6) v4(j—2)42 Va(j-1)+2 Va(j-1)
V4(j-1)41 Va(j-2)+3 Va(j-2) vaii-2)+1 S(J — 1) () ... S(k —3) vak-2)43
VU4(k—1)+1 Y3 Us Vg U7 V1 V4(k-1)4+3 Y4(k-1) Y4(k-1)+2 V4(k-2)+2 --- v4j+2)-
The construction of the path Pz = P(v2, va(j41)+2) if [{vs, v10, - - -, agi-1)42
H=2p+1,p>2and 4 [2p+ 2: Let S(i) = vai43 va(i4+1)41 Va(i+1)-

Let R(i) = v4it2 V4(i+1)42 Va(i+1) Va(i+1)+3 V4i+l Vai V4i43 Va(i+1)+1
V4(i4+2)+3 V4(i+3)+1 V4(i+3) V4(i+3)+3 V4(i+2)+1 V4a(i+2) Va(i+2)+2 V4(i+3)+2-
Then, Pz = (‘vo V2 Ve R(IO) R(14) e R(j - 8) V4(j-4)+2 V4(j~3)+2 Y4(j-3)
V4(j-8)+3 V4(j—4)+1 V4(j—4) V4(j-4)+3 V4(j-3)4+1 V4(j—-2)+3 Y4(j-1)+1 Y4(i-1)
Va(i-1)+2 V4(j-2)+2 Va(i-2) YaG-2)+1 S — 1) S() ... S(k = 3) vak-2)43
VU4(k—1)41 U3 U5 V4 VU7 V1 V4(k—1)+3 V4(k-1) VY4(k-1)+2 V4(k-2)+2 --- ”4j+2)-
The construction of the path Ps = P(v3, va(j4+1)+2) if [{vs, v10, - - -, a(i-1)42

=222, |{f’4(j+1)+2,04(j+2)+2,---,04(k-1)+2}| =2m+1 2> 3 and
4|2m + 2: Let S(8) = v4i43 va(i-1)41 Y4(i-1)-
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Let R(i) = vaiy1 vai-1)43 Vai-2)41 Va(i-2) Vai-2)+2 Va(i=1)42 V4(i-1)
V4(i-1)41 V4(i-2)43 V4(i-3)41 V4(i-4)+3 V4(i-4) V4(i-4)+2 V4(i-3)+2 V4(i-3)
V4(i-3)+3-

Then, Ps = (vo v2 Va(k—1)+2 Va(k-1) Va(k-1)4+3 V1 V7 V4 Vg V10 ... Va(j—1)42
v4(,-_2) 1)4(,'_2)4.1 V443 V45 V4541 S(j—l) S(j—?) oo 5(14) V11 Vs ¥3 R(k—l)
R(k=5) ... R(+7) Va(j43)}+1 Va(542)43 VAG+1)+1 V4(41) Va(+1)43 Y +2)41
Y4(j+2) Y4(j+2)+2 Va(j+1)+2 V4j42)-

The construction of the path Py = P(v,, va(i+1)+2) if [{vs, v10, . . ., V4(j-1)42
H=2p>2, Hvag+1)42, VaGi+2) 425 - - -» Vage-1)42}] = 2m +1 > 5 and
4 Pm+2: Let S(3) = vaiqs Va(i-1)+1 V4(i-1)-

Let R(i) = vais1 v4i-1)43 Va(i-2)+1 Va(i-2) Va(i-2)+2 Va(i-1)+2 Ya(i-1)
V4(i~1)+1 V4(i-2)43 V4(i-3)41 V4(i-4)4+3 V4(i-q) V4(i-4)+2 Y4(i-3)42 V4(i-3)
V4(i—3)+3-

Then, Py = (vo v2 Va(k—1)42 Va(k-1) Va(k—1)43 V1 V7 V4 V6 V1o ... V4(j-1)42
‘04(,'_2) 04(,-_2)“ Y4543 V4j LZVES] S(] - l) S(J - 2) o 3(14) Vi1 Vs U3
Vd(k—1)+1 V4(k-2)+3 V4(k-3)+1 V4(k—3) Va(k-3)+2 V4(k—2)+2 Va(k-2) R(k — 2)
R(k—6) ... R(§+8) Va(j44)+1 Va(i+3)43 Va(j+2)+1 VA(i+1)43 Va(j +1) Va(i41)41
Y4(j+2)+3 Va(j+2) V4(j+2)+2 V4(j+1)+2 V4j+2) O

3 Main Results

Proposition 1 The graph Ji (v4;, 42, V4is42, - ., Vai, +2) is MNH for k > 5,
kodd, wherem > 1,0< 4y < k—1forl=1,...,m and d(vai 42, vai,+2) > 3
forl # p.

Proof. In [5] it was shown that the graph Jj (v2) is MNH for k > 5. From
the symmetry of J; we have that Jk(vai42) is MNH for odd k > 5 and
i=0,1,....k—1.

Now we show that Ji(v4i42,v4542) is MNH where k£ > 5 is odd and
d(vait2, vg542) > 3. Let the vertex vy,s be expanded to the triangle
Ti = (ujufuf) for ! =, j. It follows from Lemma 2 that this graph is not
hamiltonian. Because of the symmetry of J, Ji (vai42), Ji(vaj42) it suffices
to show that there are hamiltonian paths joining each of the following pairs
of vertices of Ji (v4i42,v4j42) (see Figure 2).

“3

143 o} o a@+43 10 ul «? aG41)42
Figure 2.
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(i) u} and vy, u} a.nd1 045,-4.12.,.2, u} and w where w ¢ {vai, va(i+1)+2,

va(i-1)42, ¥, ud, uj,uf, 4}, (use Lemma 1),

(i) u} and uf, 1 < p <3, (use Lemma 3),

(iii) u} and v4(41)42, uf and w where w € {vai, vai+1)+2, Vai-1)42> u},
u?, u},u?, u?}, (use Lemma 1),

(iv) v} and u}, uf and u}, (use Lemma 3),

(v) uf and u}, (use Lemma 3),

(vi) u and w where u and w are non-adjacent vertices both different from
u} and u} for I = 1,2,3, (use Lemma 1).

Finding these paths using Lemmas 1-3 is trivial but time-consuming
exercise which we leave to the reader.

Assume that each Ji(v4i,+2, Vaiz 42, - ) Vain+2) iS MNH where n <m —
1< l-‘%] Let G = Jk(v4i 42, V4iz+2, - - ., V4i,.+2) Where k > 5 and d(v“’.'.g,
vaig42) = 3 for all p # ¢. The graph G is non-hamiltonian by Lemma
2. Let z,y be two non-adjacent vertices of G. Since m > 3, there is
at least one ! such that 1 <! < m and z,y # u},uf,u? (these are the
vertices of the triangle 7} by which the vertex vg4; 42 is expanded). Let
G’ = Jic(Vai 42 Viz 42y -+ » Vais_1 42 Vdigga 421 - o v4i,,+2). From the induc-
tion hypothesis there is a hamiltonian z — y path in G’, and Lemma 2
guaranties a hamiltonian z — y path in G.

The proof is complete. O

Proposition 2 The graph Ji(vai,+2,V4is42s -« +» Vaim+2) (V4im 41 +2V4i msr)
is MNH for k > 5, k odd, where m > 0,0<#4 <k-1lforl=1,....m+1
and d(vai 42, vai,42) > 3 forl # p.

Proof. First we show that the graph Ji(vsi+2v4i) is MNH for k > 5 and
0 < i < k—1. From the symmetry of Ji we can assume that i = 0 and that
the edge vyvp is replaced by the bowtie on the vertex set {uy,... ,us} (see
Figure 3). From Lemma 2, this graph is non-hamiltonian. Because of the
symmetry of J it suffices to show that there are hamiltonian paths joining
each of the following pairs of vertices of Ji(vavo) (see Figure 3):




(i) u4 and ve, u4 and ug, ug and uy, ug and w where w ¢ {vg, vax—_2, v1,
u2, u3, us}, (use Lemma 1),

(ii) us and vy, us and vs, us and w where w ¢ {v1, va, vs, vax—2, u1, Uz,
u3, u4}, (use Lemma 1),

(iii) us and v3, ug and w where w ¢ {v1, v, uy, Uy, uy, us}, (use Lemma
1),

(iv) u and w where u and w are non-adjacent vertices both different from
uw forl=1,...,5 (use Lemma 1).

Now we show that the graph Ji (v4i42)(v4j4+2v45), Where d(vaip2, vaj42) > 3
is MNH for k¥ > 5. By Lemma 2 this graph is non-hamiltonian. From the
symmetry of Ji we can assume that j = 0. Further assume that the edge
vvp is replaced by the bowtie on the vertex set {uj,...,us} and that
the vertex v4i42 is expanded to the triangle T' = (ugusug) (see Figure 4).
Because of the symmetry of Jk, Jk(vai+2) and Ji(v4j42v4;) it suffices to
show that there are hamiltonian paths joining each of the following pairs
of vertices of Ji (v4i42)(vavo)-

us ug ;
4
ug “,
u4 uy 6

4k-2 a-1)+3 us ugs  4(i+1)+3

Figure 4.
(1) u4 and ve, u4 and ug, u4 and ug, uq and w where w ¢ {vs, var—2, U1,
u2, U3, us, Us, U7, ug}, (use Lemma 1),
(i) uq and ug, ug and uz, u4 and ug, (use Lemma 3),

(iii) us and vy, us and w where w ¢ {v1, vs, u;, us, us, ug, Us, U7, ug},
(use Lemma 1),

(iv) us and ug, us and uv, us and ug, (use Lemma 3),

(v) us and v3, u3 and w where w ¢ {vy, v3, u1, u2, ug, us, ug, uz, ug},
(use Lemma 1),

(vi) us and ug, us and u7, us and us, (use Lemma 4),
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(vii) u; and ue, u; and uz, u; and ug, (use Lemma 3),
(viii) uz and us, uz and uz, uz and ug, (use Lemma 4),

(ix) ug and vai, ug and "4(.+1)+2, ug and w where w & {v4(i-1)42, V4,
Vagi+1)42s %i, 1 =1,...,7}, (use Lemma 1),

(x) u7 and v4(,+1)+2, uz and w where w ¢ {vai-1)+2, Vai» Ya(i+1)+2: U8
uj, i = .,6}, (use Lemma 1),

(xi) u and w where u and w are non-adjacent vertices both different from
u;, i=1,...,8 (use Lemma 1).

Again, finding these paths using Lemmas 1-4 is trivial but time-consu-
ming exercise which we leave to the reader. The rest of the proof can be
handled similarly to the corresponding part of the previous proof. O

We are ready to state and prove the main result.
Theorem 1 For alln =8a+b > 88,0 < b <7, there exist at least
lk-:—agm .l

14

rn)= Y. p(k—2-Q(b)-65,Q(b)+4j) >3

ji=0
non-isomorphic smallest MNH graphs, where k = 2a + 1.

Proof. For j =0,...,| =239} | it holds that k — 2 — 2j > 5, and then
by Propositions 1 and 2 there are MNH graphs

for b = 2m where m=0,1,2,3

Jk-2—2j(v4i|+2) V4iz4+2y: - av4i43+m+q+2);

for b=2m+ 1 where m=0,1

Jh—2-25(Vais 42, V4ia42, - - - » Vi pme1+2) (Vo34 mpa+2Vics4mea)s

for b=2m + 1 where m = 2,3

Jk—z—zj (véi1+2) V4ia42) v4l'43+n+3+2)(v4i4j+m+3+2v4i4j+,.+;)-

The order of these graphs is n and the size is [32], thus all these graphs
are smallest MNH. It is a matter of routine to observe that for j = 0,...,
[MJ for each partition of k — 2 — 65 — Q(b) into 4j + Q(b) parts
where each summand is at least 2, there is at least one location for the 4; +
Q(b) vertices (which are replaced by a triangle in Ji—2-2;) - the distances

between these vertices along the cycle (vavs.. 04(3_2_25_1)4,21)2) will be
equal to the values of the 4j+Q(b) summands of the partition of k—2—6;j—

Q(b). Thus, there exist at least 7(n) = ZL_T“&Q'J ?'(k-2-Q(b) -6,

3=
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Q(b) + 47) non-isomorphic smallest MNH graphs of order n. Since k > 23,
and since p/(15,6) = 3, 7(n) > 3. Obviously, lim,_, o, 7(n) = co. O
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