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ABSTRACT. The search for homometric structures, i.e., non-
congruent structures sharing the same autocorrelation function,
is shown to be of a combinatorial nature and can be studied us-
ing purely algebraic techniques. Several results on the existence
of certain homometric structures which contradict a theorem
by S. Piccard are proved based on a polynomial representation
model and the factorization of polynomials over the rationals.
Combinatorial arguments show that certain factorizations do
not lead to counterexamples to S. Piccard’s theorem.

1 Introduction

A ruler with n marks, R, is a set of n non-negative integers 0 =r; <r2 <
r3... < rn = N. The distances measured by R are all positive integers of
the form r; —r; with { < 7, counting multiplicity. This multiset of n(n-1)/2
elements is denoted AR. Two n-mark rulers, R and S, are homomeiric iff
AR=AS. Let R={r;}, i=1,2,... ,n,and let S = {s;}, i=1,2,... ,n.
R and S are distinct rulers unless either r; = s; for all i, or r; = s, — s; for
all i. R is a spanning ruler iff all n(n — 1)/2 elements of AR are distinct.
S. Piccard’s ‘theorem’ [1] asserts that two homometric n-mark spanning
rulers cannot be distinct. Bloom [2] noted that R = (0,1,4,10,12,17),
S = (0,1,8,11,13,17) is a counterexample to this ‘theorem’, and in [3]
two different two-parameter families of counterexamples were presented, all
involving six-mark rulers. Another family of counterexamples was reported
in [4] which covers both previously known families. Moreover, this family
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was shown to be the unique family of counterexamples in the case of six
mark rulers. No counterexamples to S. Piccard’s ‘theorem’ have been found
for any n # 6, and it is possible that none exist. We give an analytical
proof of the nonexistence of exceptions to S. Piccard’s ‘theorem’ with n < 6.
Exhaustive search has proven that there are no other counterexamples with
rulers having fewer than 13 marks [5].

In this paper, we associate with the ruler R = (r;) the polynomial r(z) =
Y i ,z™, and for any polynomial p(x) of degree N, we define p*(z) =
zVp (L). Letting R(z) = r(z)r*(z), the rulers R and S are homometric iff
R(x) = S(x), and R is a spanning ruler iff all coefficients of R(z) except
the coefficient of V¥ (the ‘middle coefficient’) are restricted to the values 0
and 1. The theory of possible counterexamples to S. Piccard’s ‘theorem’ is
developed in terms of the factorizations of the polynomials R(z) and S(z)
over the field of rational numbers. Certain factorizations are shown not to
lead to counterexamples to S. Piccard’s theorem.

2 The Polynomial Model

Let R = (r;) and S = (s;) be n-mark homometric rulers of length N. Thus
ry =8 =0andr, = s, = N, and with r(z) = Y., =™, s(z) = 3|, =%,
we have R(z) = S(z), where R(z) = r(z)r*(z), S(z) = s(z)s*(z), with
r*(z) = zVr(2) and s*(z) = zVs(L). The trivial solutions to r(z)r*(x) =
s(z)s*(z) are r(z) = s(z), the case of identical rulers, and r(z) = s*(z),
the case of mirror image rulers. By the unique factorization theorem for
polynomials over the rationals, any nontrivial solution, corresponding to
distinct homometric rulers, will correspond to

(r(z), s(z)) = ¢1(z), with 0 < degé1(z) < degr(z).
Let r(z) = ¢1(z)p2(x), where also 0 < degdz(z) < degr(z), then
r(z)r*(z) = ¢1(z)$2(z)9](z)d2(z) = s(z)s* ()
which forces s(z) = ¢1(z)d3(z).

Remark 1 Since n = r(1) = s(1) = ¢1(1)¢2(1), ¢1(1), $2(1) are integer
factors of n (the number of marks), both positive or both negative.

If we could show that neither ¢;(1) nor ¢2(1) can have the values +1, we
would have a proof that n must be composite in all counterexamples to S.
Piccard’s ‘theorem’.

Since all coefficients of r(z) are either 0 or 1, and r(z) = ¢;(z)¢2(z), all
coefficients of ¢1(z) and ¢2(z) are integers. However, we know from the
factorization of 1+ z + z% + ... + z"! = []; 4, Pa(z) into cyclotomic
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polynomials, that without additional assumptions, the coefficients of the
factors are not limited to {0,+1,—1}. Since also s(z) = ¢1(z)¢5(z), the
first and last coefficients of both ¢;(z) and ¢2(x) are +1. The only alter-
native is that all four of these coefficients are —1, in which case we replace
#1 and ¢2 by —¢; and —¢».

It is easy to generate homometric pairs of rulers which do not violate S.
Piccard’s ‘theorem’ because they each measure certain distances in more
than one way. For example, we get a pair of homometric 9-mark rulers by
taking

(@) = ¢i(@)da(z) = (1 +2°+2°)(1 + z° + 2%
s(z) = ¢1(x)ps(x) = (1 +2°+2")(1+2%° +27)

where we must be careful to pick a,b,c,d so that r(z) # s(z) # r*(z)
and so that all exponents in r(z) are distinct, and all exponents in s(x)
are distinct. In particular, witha =1, b=3, c =4, d =9, we get the
homometric rulers

rz) = 1+z+22+z'+2°+2" +2° +2'%+ 212
s(z) = 14+z+2°+2°+28+28 +2° + 2104 212

It can readily be checked that R(z) = S(z).

With r(z) = ¢1(z)d2(z) and s(z) = ¢1(z)¢3(z), we cannot have ¢a(z) =
@5 (z) since this would violate (r(z), s(z)) = ¢1(z). Also, the homomet-
ric rulers will not be distinct if ¢1(x) = ¢}(z), since in that case r*(z) =
#1(z)p5(z) = d1(z)p5(z) = s(x). Neither ¢;(z) nor ¢2(x) can be a mono-
mial or a binomial, for ¢;(z) = 1 has ¢}(z) = ¢i(z), and ¢;(z) = 1+ z*
also has ¢} (z) = di(z). Thus we have shown,

Theorem 1 If r(z) = ¢1(z)p2(z) and s(z) = ¢1(z)@5(z) correspond to
distinct homomeiric rulers, then both ¢1(z) and ¢o(z) must be polynomials
of at least 3 terms each, with all integer coefficients, with highest and lowest

coefficients equal to +1, and with ¢1(x) # ¢1(z) and ¢2(z) # P5(z).

Next we show
Theorem 2 If R and S are homomeiric rulers which violate S. Piccard’s
‘theorem’, with r(z) = ¢1(z)¢d2(z) and s(x) = ¢1(z)P5(x), then some coef-
ficient(s) of either ¢,(z) or ¢2(z) (or both) must be negaiive.

Proof. Suppose the contrary, namely that all non-zero coefficients of both
¢1(z) and ¢o(z) are positive. Writing

r(z) = g1(z)a(z) = A +z+... )1+ +...) = 1+ 2 +2® 420 4 ...
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we observe that no later terms can cancel any of these four, since there will
be no negative terms. But both b=b-0=(a+b)—acanda=a—-0=
(a+b)—b are distances, i.e., differences of exponents, which are measured in
more than one way, violating a hypothesis in the statement of S. Piccard’s
‘theorem’.

Note that if (z), the product of ¢;(z) and ¢2(z), has many terms, i.e.,
many marks on the ruler R, it becomes extremely difficult to avoid repeated
differences of exponents, i.e., repeated elements in R. It is this phenomenon
which may be the basis of a proof that there are no counterexamples to S.
Piccard’s ‘theorem’ for rulers with more than six marks.

Another necessary condition is the following,

Lemma 1 Let

di(z) = 1z £z ... +2, degdi(z)=am
do(z) = 1+zh 2%, +2bm deg ¢o2(z) = by

be the two factors of a ruler f(z) = ¢1(x)P2(x). Then a necessary condition
for f(z) to be a spanning ruler is for at least one of the terms z®m,zbm to
be cancelled out from the product ¢1(z)d2(z).

Proof. Assume the contrary, namely that both terms remain in the prod-
uct. Then f(z) appears as f(z) = 14...4+z% +... 4zt +.. 4z +om but
then, am — 0 = (am +bm) —bm » bm —0 = (a&m +bm) — am, a contradiction.

3 The Known Counterexamples

Two 2-parameter families of counterexamples to S. Piccard’s ‘theorem’ were
previously known [3]. In our polynomial model these families can be rep-
resented as follows,

FAMILY I
r(z) —_ ¢1 (z) ¢2(I) =1 + % + zu+v + z4u+2v + zG‘u+2u + zSu-i-Sv
s(:c) = ¢ (:c) ¢; (z) =1+4+z%+ Uty + LUty + gTut2v + LBut3v

where ¢l(x) =14z% + zSu-H" ¢2(Z) =14+ Uty _ putv + gBut2v,
The minimum-length counterexample occurs with » = 1,v = 3, and length
= 8u 4+ 3v = 17. Specifically,

rz) = (14+4z+28)Q+zt-2f+2)=14+24+24 4204224 2V
8(z) = Q+z+z1-2f+2"+2)=1+z4+2°+ 2! +2 4+ 27
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FAMILY 11

r(:c) - ¢1(:c)¢2(z) =1 +:L'a +za+t +x4a+2t +x6¢+4¢ +x83+5t
8(:1.') _ ¢1(z)¢§(z) =1 +xs+t +z5a+3t +253+4t +x7a+5t +z80+5t

where ¢;(z) = 1 4 281 4 235+2 ¢y(z) = 1 + 2° — 22+t + £5+3¢, The
minimum-length counterexample for this case occurs with s =1,¢ =2 and
length 8s + 5¢ = 18. Specifically,

rz) = Q+28+2N(1+z-z+z)=1+z+23 428 4+ 214218
(z2) = A+ +z)1-2"+204+zV)=1+23+ 2 + 2% 4+ 217 4 z18

It has been shown, though, that the above two families are not distinct.
Family I can be transformed into Family II under the linear transformation

s 11 u u 1 -1 s
=[e ] e] e [B]-e L
Yovanof [4] proved that both of the previous two families can be expressed
in terms of a single family of counterexamples, which was, moreover, shown

to be the unique family of counterexamples in the case of six mark rulers.
This unique family is given by

FAMILY N

r(z) = ¢1(2)¢2(z) =1 +$a +zb+2a + z2b—a +x2b+a +z3b—a
s(z) = ¢1(z)¢;(1:) =1 +$° +zb—2o + sz—Za +:c2b +x36—a

where, a,b € 21, ¢1(z) = 1+2°+z°, and ¢o(z) = 14-2¥20 —gb—2 4229,
Substituting a = 1, b = 6 in the above family we get the first counterex-
ample found by Bloom [2] of length 17 with R = (0,1,8,11,13,1,7) and
$=(0,1,4,10,12,17).

Notice that all these counterexamples involve the product of a trinomial
¢1(z) with three positive terms, and a quadrinomial ¢,(z) with three pos-
itive and one negative terms. The product then has nine positive terms,
three of which cancel with the three negative terms, in such a way that
among the surviving six terms there are no repeated differences. This can-
cellation is so remarkable that it appears likely that when r(z) = ¢, (z)¢2(z)
has more than six surviving terms, there will be repeated differences of these
terms. If this could be proved, it would show that S. Piccard’s ‘theorem’
has no counterexamples with rulers having more than six marks. The basic
polynomial method used here to study homometric rulers, but without ref-
erence to its possible application to S. Piccard’s ‘theorem’, is also described
in [6].

47



4 No Counterexamples with Fewer Than 6 Marks
Bloom (7] proved the following theorem.

Theorem 3 There are no homometric spanning rulers with fewer than siz
marks on each ruler which violate S. Piccard’s ‘theorem’.

It is relatively easy to prove this theorem in the case of rulers with fewer
than five marks. For the sake of completeness we present here a simplified
proof of the nonexistence of counterexamples with rulers having exactly five
marks.

Theorem 4 If two five-mark rulers measure the same set of distances, and
all 10 measured distances are distinct, then the rulers are either identical,
or mirror images of each other.

Proof. Let R and R’ be two five-mark rulers which measure the same set
of ten distinct differences. Let the distances between consecutive marks, in
order, be a,b,c,d on R and a’,V,c,d on R'. Without loss of generality
we may assume a < d and a’ < d’. A ruler is commonly represented in the
form of an array, in fact a triangle, which is called the difference triangle.
The difference triangles for the two rulers are,

R R’

a b c d a’ b? c’ d’
atb bi+c cHd a’+b? bl+c? c’+d’
atb+c b+ctd a’+b’+c’? bl+c’+d’

atbtc+d a’+b’+c’+d’

The greatest distance measured by each ruler is its total length L, and
since this must be the same for both rulers, L = a+b+c+d = o’ +b'+'+d'.
Since both rulers measure the same set of ten distances, the sum S of all
ten distances must be the same for both rulers, Y~ =4(a+d) +6(c+d) =
4(a’ + d&') + 6(’ + d'). From these two equations we have a +d = o’ + d’,
and c+d=c +d'.

The second-longest distance measured by R must be either L —a or L—d,
and since a < d, it must be L — a. Similarly, the second-longest distance
measured by R’ must be L — a’. Since the two rulers measure the same set
of distances, L —a = L —a’, so a = a'. Since a +d = o’ + d', we also get
d =d’. At this point, the two difference triangles are seen to be

AR
a b c d
a+b b+c c+d
a+b+c b+c+d
a+b+c+d
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AR
a 4 d d
a+b b+c d+d
a+b+c b+c+d
a+b+c+d

The entries in bold characters have been shown to be identical for R and
R’. Since the sets of measured distances are the same, we have the set
equality {b,c,a+b,c+d} = {¥,c,a’ +¥,¢ + d’'}. The smallest member
of the left set must be either b or ¢, and of the right set either b’ or ¢.
Since we already know b + ¢ = b’ + ¢/, we must have either b = ¥',c = ¢
or b=c,c="V". In the former case, R and R’ are clearly identical. In the
latter case, we have a’ 4 b’ = a + ¢, and this measured distance of R’ must
equal either a + b or ¢+ d of R. However, a + c = a + b gives ¢ = b, while
a + ¢ = c+ d gives a = d, each of which contradicts the assumption that
the ten measured distances are all distinct. Thus R and R’ are identical.

5 One Negative Term in Both Factors

Let f(z) = ¢1(z)$2(z) be the polynomial representation of a ruler. In this
section we concentrate on the case where one of the factors, say ¢;(z), has
all positive terms and the other one has exactly one negative term, i.e.,

$1(z) = 14zM 4z +...+2%1?
$2(z) = 1-3z" 429 4274 .. 42

We introduce some terminology which will be used in the proofs of subse-
quent theorems. Let ¢;, ¢ = 1,2, be the number of terms in ¢;(z), and
ni,pi, the number of negative and positive terms, respectively, in ¢;(z).
Since f(z) represents a spanning ruler, all negative terms should be can-
celed out with a properly chosen subset of the positive terms in the product
$1(z)$2(z).

Definition 1 We call positive differences the differences among the
terms in the product ¢(z)d2(z), which come from the multiplication of the
terms in ¢1(z) and the positive terms of ¢2(z). Similarly, we call negative
differences the differences among the terms in the product ¢1(z)d2(z),
which come from the multiplication of the terms of ¢1(z) and the negative

terms of ¢a(z).

Definition 2 We call type-i differences those ones among the positive
differences which incorporate the ezponent i from ¢o(x).

E.g., (c1 = c1 + a1) is a type-c; difference. Furthermore, let M be the
maximum number of canceled differences, T the total number of positive
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differences, and R the minimum possible number of positive differences left
uncanceled.

Obviously, t; =n; +p;i , i = 1,2, and T = pa x p1(p1 — 1)/2. In what
follows it is convenient to arrange all 2 x p1(p; — 1)/2 differences of the
exponents before any cancellation takes place in ¢z rows and p;(p1 —1)/2
columns so that all differences formed by pairs of exponents in ¢;(z) and a
fixed exponent from ¢»(z), i.e., differences of a fixed type, are in the same
row. This arrangement is best illustrated through a specific example. In
Figure 1 we depict the differences of the exponents for the product f(z) =
#1(z)d2(z), where ¢1(z) = 1+ 2% +2°+ 27, and ¢o(z) =1 —2° + 2%+ z°,
i.e., f(z) represents an eight mark ruler. Notice that each positive term
appears exactly (p; — 1) times and, moreover, it appears in the same row
in the set of positive differences. Therefore, any cancellation of a positive
term results in the cancellation of (p; — 1) positive differences. We can now
prove the nonexistence of spanning rulers with a sufficiently large number
of marks and a specific factorization of the type that we are dealing with
in this section.

0 —d e 0 f d — ¢ d — 7 e —™

—_— —
b —* bwd b — b+e b — b+f b+d—* b+f b+d—> b+d b+e—> b+f
— o

¢ —* cHd c c+e c c+f c+d—* c+e c+d— c+f c+e—> c+f
|a —>a+dHa —>a+c|la —’a+fHa+d—>a+e|la+d——a+r”:+c—>a+r
Figure 1.

The total set of differences before any cancellation takes place.

Theorem 5 If ¢1(x) has all positive terms (at least 4 terms) and $2(z)
has one negative and at least 3 positive terms and if in f(z) = ¢1(z)d2(x)
all negative terms cancel with positive terms, then in f(z) there are repeated
differences of exponents.

Proof.
CaseI:|n1=0, pr=t1 24, na=1, p2=t2—1=3|

In this case we have ps x t;(t; — 1)/2 positive differences and ¢; (¢, —1)/2
negative ones. They partition in ¢1(t;—1)/2 sets of (p2+1) equal differences
(case t; = 4 shown in Figure 1). Our goal is to equate all negative terms in
the product ¢;(z)¢2(x) with some properly chosen positive terms so that
the resultant polynomial has all formally distinct exponent differences. The
only way to achieve this is to cancel out all but at most one of the differences
in each and every stack of equal differences in the set of positive ones. We
show that this cannot be accomplished.

We have ng x p1 = p1 > 4 negative terms to cancel while we have pz =3
different types of differences. Therefore, we have to cancel at least two terms
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from a single row of differences, w.l.o.g. let’s say the row corresponding to
type O-differences. Then

wmsen- (3) - (3) e (1)

type—0 type—b type—c

S

= M <pi(p1 — 1) — 1, (recall, p; > 4) but then since R> T - M,
= (p=3) R> (”21 ) +1.
By a simple pigeonhole argument, this last inequality implies that there is
at least one pair of repeated differences that remains uncancelled in some
column in the set of positive differences. Therefore the resultant ruler will
have at least one repeated difference.

Casell:|n; =0, p1=t124, nz=1, pp=t2—1> 3|

In this case: M <p(p1 —1)

= R2p, (1921 ) —pi(py —1) = (since, p >3) R>2x (1?21 )
by the same argument, the resultant ruler is again a non-spanning ruler.

Theorem 68 A spanning ruler with the factorization: f(z) = ¢1(z)d2(z)
where

$1(z) = 14+z2 4z% 4., 271
do(z) = 1420 429 4. a2l _gh _gha_ b

exists only if p2 < 2n3+1, and only if po < 2ns in the case that nop; > po.

5.1 An Infinite Family of Counterexamples

We now utilize the polynomial model in order to derive the unique family of
counterexamples with six marks. It is worth noticing that the factorization
which gives this infinite family is the simplest possible, namely the product
of two factors one of which is a trinomial with three all positive terms, so
that ¢,(1) = 3, and the other is a quadrinomial with three positive and one
negative terms, i.e., ¢2(1) = 2. The product has 12 terms, nine of which
are positive and three negative. Our goal is to cancel the three negative
terms with three positive ones in such a way that the resulting polynomial
has exponents with all distinct differences.
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Theorem 7 If ¢1(z) has three all positive terms and ¢2(z) has one nega-
tive and three positive terms and if in f(z) = ¢1(x)d2(z) all negative terms
cancel with positive terms, then there exists a unique cancellation scheme
which gives an infinite parametric family of pairs of spanning homometric
rulers. It has the following structure:

f(a:) — 1+z:°+a:""'2° +x2b—n+z2b+o+13b—a
g(:c) = 1+za+zb—2a+z2b—2o+x2b+z3b-a

a,b € Z*, and the two factors of f(z),g(x) have the form ¢1(z) = 1+2z°+
:c", ¢2(z) =1 +z"’2° — gb—e + g2b—a b # 2a

Proof. Let f(z) = ¢1(z)2(z), 9(z) = ¢1(z)¢3(z) where ¢1(z) =1+
78 +zb, ¢ofzr) = 14+ 25—z +2° ¢8(z) =1+2°°— z°~% 4 z°,
with 0 < ¢, d<e, 0 <a <be Z. Furthermore, let ¢1(1)¢2(1) = =,
and ¢, (z), $2(x) be non-symmetric, i.e., $1(z) # ¢i(z) and ¢2(z) # o5(z).
The general expressions for f(z), g(z) are:

f@) = a®+z° 4+ 42°+2° +2F + 2P0 4o gbe o
_za+d _ xb+d
g(.'z:) = IO + z° + a:b + £t—¢ + z° + zc+e—c + xb+e—c + xa+e + zb+e

_xe—d - ma+c—d _ zb+e-d

The differences formed among the exponents before any cancellations
take place are shown in Figure 2. We try to equate the exponents of the
negative terms in these two polynomials with exactly three exponents of
positive terms in such a way that the remaining terms are all positive and
their exponents do not form repeated differences. In this assignment we
should satisfy the following constraints:

0<a<b b#2a
0<cd<e c#d
O<d<a+d<b+d<b+e

| 2 pr (p-1)2
Positive o — a 0 — b a — b
Differences ¢c —= ctallc — c+b| | c+a otb
P2 e —* e+4a e —» e+4b eta—™ e+b
Negative
Differences =% [ d —= d+a[]| d —™ dsb| | dra—> d+b

Figure 2.
Differences for a polynomial of weight six resulting
in an infinite family of counterexamples.
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The possible assignments are:

For f(z)
a c c
_ b _ e _ a+c
d b+c at+d= b+c b+d= ate
a+c b e
For g(z)
a b :—c
_ a4e—-c _ e =
e—d= bte—c } a+e—d—{ bte—c bt+e—-d= e _
b e—c ate—c

a+e

A straightforward but tedious backtrack search through the space of pos-
sible solutions provides all assignments which do not force a repeated dif-
ference. To conserve space, we skip over the details of the proof which can
be found in [4]. In the following, we only treat a few special cases indicative
of the way this proof methodology works.

Case (1):|d=a|

The assignments that we have to check now are:
For f(z): a+d={ceb+c}, b+d={c,a+c,a+e,ce}
We check all legitimate assignments for a + d.

Subcase(1.1)
d = a = d
a+d = ¢ c

We need to satisfy: b+d = {a+e, e}, e—d = {a,a+e—c, b}, at+e—d = {b, e},
b+ e — d = {a}. Solving the linear equations we get:

a
2a

b+d = a+e _
prele o o e bme (=e)
b+d = e _
b+e—d=a}=> %=a (=2>¢«)

Similarly, the remaining cases: d = a, a+d € {e, b+ c} are shown to lead
to a contradiction. Therefore d # a.

53



Case (2):|d=b|

The assignments that we now have to check are:
For f(z): a+d={c,e,b+c}, b+d={ca+c,a+e,e}.

For g(z)

a b a
e—d= :I::s a+e—d=¢ b+e—c b+e—d={ e
b e—c¢ at+e—c

Once again, tracing through all possible values for a + d and b+ d we
find two distinct assignments resulting in cancellation schemes that yield
two parametric families of pairs of spanning homometric rulers. The first
assignment for f(z) is given by: d=b, a+d=c bt+d=a+e. The
corresponding assignment for g(z) is,

#a orelse b=2a (=2<«)

e_d={ ote-c (consistent)
~ ) #b+e—c orelse b=a (=<=)

#b or else a=0 (=2<)

Similarly, we get: a4+ e—d = b, b+ e —d = e. Therefore, since all
assignments are legitimately satisfied, we have found a cancellation scheme
which gives an infinite parametric family of pairs of spanning homometric
rulers. The surviving terms in the two polynomials are

fz) = 1+z*+z* 4z 2+ zbte
g(z) = 1 +za +a:e—c +xb+c—c +zo+e + zb+e
The two factors of these polynomials expressed in terms of the parameters

a,bare: ¢1(z) = 1+z°+z°, ¢2(z) = 1+z° 22— 2>~ +2?*~%. Calculating
the products f(z) = ¢1(z)$2(z), 9(z) = d1(z)¢3(z) we get

FAMILY A
f(:L') = 1+ z° + .’cb+2“ + be—a + z2b+a + xsb—a
g(::) = 14z° +xb—2a + x2b—2a +2:2b +x36—a.

The second assignment for f(z) that yields another solution is given by:
d=>b, a+d=e, b+d=a+ c. The corresponding assignment for g(z) is,

e—d=a (consistent)

bte—c (consistent)

a+e—d={ #e—c orelse b=0 ( =2<)
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#a+e—c orelse b=a ( =2<)

bte—d= { e (consistent)

Hence, this cancellation scheme gives another infinite parametric family
of pairs of spanning homometric rulers. The surviving terms in the two
polynomials now are:

f(z) = 1+z%+2°42"¢ 4 go%e 4 ghte
g(z) = 1+ .’L‘b + zt~¢ + za+e-c + xa+e + xb-}-e

which can equivalently be expressed as

FAMILY B
f@) = 142°42%7% 4570 4 52010 4 g2bto
9(z) = 14220704 gb o300 g20+b ) ;e

In the same way we complete the backtrack search checking out all pos-
sible assignments. The only other case where an assignment results in an
infinite family of counterexamples is when: d=a+c, a+d=0b, b+d=e.
Corresponding to these substitutions the legitimate assignments for g(z)
are seen to be:

_d={ #a  orelse a=b (=2<«=)
€Te=1 b (consistent)

_J #b orelse a=0 (=2<=)
a+e—d_{ e—c (consistent)

b+e—d={a+e (consistent)

This assignment pattern gives another infinite parametric family of pairs
of spanning homometric rulers:

FAMILY C
f(I) = 14z%+ 225—6 + sz-a. + 224+b + z2b+°
g(z) = 1+ x2°"’ + zb + z3a—b + z2¢l+b + 22b+a

Obviously this last family coincides with family A. Therefore, the back-
tracking check has resulted in three sets of cancellation schemes which pro-
vide families of homometric rulers. In fact, though, all three families reduce
to a single one after relabeling and/or reversing f,g. The difference trian-
gles corresponding to the members of this unique family can be shown to
be
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FAMILY N

0 a b+2a 2b-a 2b+a 3b-a
a b+a b-3a 2a b-2a
b+2a 2b-2a b-a b
2b-a 2b 2b-3a
2b+a 3b-2a
3b-a
0 a b-2a 2b-2a 2b 3b-a
a b-3a b 2a b-a
b-2a 2b-3a b+2a b+a
2b-2a 2b-a 2b+a
2b 3b-2a
3b-a

This unique family of counterexamples can be transformed so that it
gives all counterexamples given by the two previously known families I, I1.
Family N is transformed into family I under the linear transformation

HEERIHEIHEEIN

Family N is transformed into family II under the linear transformation

s|_|-2 1 a - a| _ (11 8

t| ] 3 -1 b b| |3 2 t
after setting the elements of sets R,S in increasing order and reversing
marks in the first ruler so that it is in standard orientation. We can easily

check that under this transformation we get the rulers described by family
1L

R = {0,s+t,55+3t,5s+4t,7s + 5t,8s + 5t}
S = {0,8,s+t,45+2t,6s+4t,8s+ 5t} a, b integers
5.2 The 2xn case

We investigate now the case where one of the two factors is a trinomial
with exactly one negative term and the other factor is a polynomial with all
positive terms (at least three of them). In general when the number of terms
is fairly large the representation of all positive and negative differences
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becomes cumbersome and a more convenient one is required. The one that
we use in the sequel is best introduced through an example. Specifically we
use as the polynomial with all positive terms one with exactly eight terms.
In this case f(z) = ¢1(z)d2(x) where:

$(z) = 142°+z°+2°+ 28+ 20+ 2842/ 429
$2(z) = 1—-z%*+2z%
with0<a<b<c<d<e<f<yg, 0<a<w, w%# 2a. Then,
fz) = 242424+ 202+ 29+

xw + zw-i—a. + zw+b + zw-i-c + xw+d + mw-{-e + zw+f + zw+9
—z® — gate _ :z:a+b — gote _ potd _ rote _ za+f — gots

In Figure 3 we list all exponents of f(z) in the form of a 3 x 8 array,
indicating by circles and boxes the exponents of positive and negative terms,
respectively. Notice that, by the way these exponents are listed, the set of
exponent pairs which lie in the same row in a given pair of columns all form
the same difference.

olclelelelelele
oJololelclelote

o o+a o+b o+c | | o+d o+te o+f I o+g
Figure 3. Another way of listing the exponents.

Therefore, any 2 x 2 subarray of terms from the 2 x n array of positive
terms forms a pair of repeated differences. Our objective is to delete a
proper subset of the circled entries in such a way that no 2 x 2 subarray
is left with all its four entries non-deleted. The way this is done is by
equating n positive terms (circles) with the n negative ones (boxes). Such
a cancellation pattern for the specific example of the 2 x 8 array under
consideration is shown in Figure 4. An easy check shows that under this
particular cancellation scheme every 2 x 2 subarray contains at least one
deleted positive term.

In the more general case where one of the factors has n all positive terms
and the other one has m positive and ¢ negative ones, the aforementioned
array partitions into an m x n subarray with circles and a g x n subarray
of boxes. The number of deleted circles is now ¢ x n.
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Figure 4. A cancellation scheme which does not
automatically force a repeated difference.

The mere fact that the cancellation pattern does not automatically force
a repeated difference does not guarantee that a repeated difference will
not occur among the remaining exponents. Depending upon the specific
relationships among positive and negative terms, a repeated difference is
frequently forced among the remaining positive exponents in a way other
than the obvious one. In the sequel we shall show that this is always the
case when the two factors are such that: n =2, ¢=1, m > 8. In order to
do that we rearrange the rows of the matrix representing the polynomial
exponents so that entries in a single column occur in descending order.
A specific assignment of values to negative terms (boxes) is indicated by
joining equal terms with a line segment. Figure 5 depicts a particular
assignment for the example under consideration.

f"‘

@63@oo@ou

wal \

aJ a+a| |oc+b| |a+c

OO0 6

Figure 5. A specific cancellation pattern.

Wl

Due to the ordering relation among the terms in this configuration, cer-
tain rules apply to the way these line segments occur. It is easy to observe
that exactly one such segment emanates from each box. Furthermore, there
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are only two legitimate directions that such a vector can point to, either
to the upper left part of the array or the lower right one. Also, crosses of
these line segments are not allowed (or else the order of some two elements
would be reversed). An equation of two terms which does not follow the
previous two rules leads to a contradiction. Due to this fact, we deduce
that the terms 0,w + g (the smallest and largest ones, respectively) can
never be deleted. Now we are ready to prove the following theorem.

Theorem 8 There is no spanning ruler f(z) = ¢1(z)p2(z) when ¢1(x) has
all positive terms (at least eight terms) and ¢2(z) has ezactly one negative
and two positive terms.

Proof. Keeping in mind the relation among exponents and the repeated
differences formed by them we can altogether eliminate the labels and deal
only with the boxes and circles. We still retain the line segments connecting
associated boxes and circles. In order to further facilitate the visualization
of these relations, we use shaded circles for the deleted ones and blank ones
representing remaining positive terms. A simple pigeonhole principle shows
that we can have at most one column with two shaded circles in which case
there exists also a column with two blank ones. A second column with two
shaded circles would leave a pair of columns with four non-deleted circles,
which results in a repeated difference. One such cancellation scheme is
shown in Figure 6. We now demonstrate an algorithm which exhibits the
existence of a repeated difference independently of the cancellation scheme,
when the number of columns is more than or equal to eight.

Figure 6. A cancellation scheme

We start by identifying the single column with the two shaded circles
(in case there exists any) along with the two columns containing the two
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boxes associated with the two shaded circles. These three columns are
the ones depicted in dotted rectangles in Figure 6. Now we are left with
at least five more columns which are guaranteed to contain at least one
blank circle each. Therefore, there is one row in this configuration of circles
which contains at least three blank circles. For our purposes three such
circles are enough. After identifying any three such circles we look at the
corresponding boxes. Three vectors are emanating out of these three boxes.
At least two of them are pointing towards the same side of the row with
the boxes, either up or down. We pick any two of these vectors pointing
towards the same direction. These vectors now point towards two shaded
circles which are guaranteed to be opposite to two blank ones lying in a
single row. Obviously, the difference formed between these two blank circles
is equal to the difference formed between the pair of blank circles that we
started with. Therefore, we have shown the existence of a single difference
formed between two distinct pairs of dots, which proves the theorem.

The algorithm used in the proof of this last theorem when applied to
the specific assignment used in Figure 6 gives a pair of repeated differences
indicated by P.

5.3 Concluding Remarks: The One Negative Term Case

This section summarizes the results regarding to the existence of homomet-
ric spanning rulers with an associated polynomial possessing exactly one
negative term among the terms of its two factors ¢1(x), ¢2 (z). As we have
shown, the unique family of counterexamples with six marks falls under this
category. A proof of the uniqueness of this family based upon the polyno-
mial approach would require us to disprove the existence of homometric
spanning rulers with any other factorization such that ¢;(1)¢2(1) = 6.
Working along this line we prove the following theorem.

Theorem 9 There eists no pair of homometric rulers with 6 marks, when
the factors of the polynomials have the specific form: f(z) = ¢1(z)d2(x),
9(2) = $1(z)83(z) with $1(z) = 1+a°+z+z+2/ 429, () =1-z%+2®
where0<c<d<e< f<g € Z,and0<a<b,b#2a.

The proof of this last theorem is similar to the one for theorem 7. The in-
terested reader should refer to [4] for more details. Theorem 8 in conjuction
with the last theorem lends support to the following conjecture:

Conjecture 1 There is no spanning ruler f(z) = &1(z)d2(z), when ¢1(z)
has all positive terms (at least four terms) and ¢2(z) has ezactly one neg-
ative and two posilive terms.

The following table summarizes the results regarding to the existence or
not of homometric spanning rulers with associated polynomials assuming
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the factorization under discussion as deduced from all previously proven
theorems.

P2 | Results
3 2 | No Counterexamples (thm. 3)
3 | Infinite Family of Counterexamples (thm. 7)
4 | No Counterexample (thm. 6)
No Counterexamples (thm. 3)
No Counterexample (thm. 6)
No Counterexamples (thm. 3)
No Counterexample (thm. 6)
No Counterexamples (thm. 9)
No Counterexample (thm. 6)
7

w

w

w

No Counterexample (thm. 6)
No Counterexample (thm. 8)
3 | No Counterexample (thm. 6)

w

>3

[« ]
VoV GV olV ol v

From the above results, we see that a proof of conjecture 1 leads also to a
proof of the following more general conjecture.

Conjecture 2 If we restrict the factors ¢1(z), ¢2(z) to be of the following
Jorm: ¢1(z) has all positive terms (at least 3 terms), and ¢o(zx) has ezactly
one negative term (at least 3 terms in total), then the only counterezam-
ples to the theorem of S. Piccard are those given by the infinite parametric
Jamily, N.

6 Factors With More Than One Negative Term

The theorems already proved, where a single negative term exists in both
factors, easily generalize to the case where one of the factors has more than
one negative terms. In this section we state without proofs a few lemmas
and theorems regarding to the latter case. Detailed proofs can be found in
[4])- First we exhibit a generalization to the bound derived in theorem 6.

Lemma 2 A spanning ruler with the factorization: f(z) = ¢;(x)ds2(z)
where

$1(z) = 14+z% 2% 4., {2z
$2(z) = 142+ ... 4z —gh _gha_  _ gbm
ezxists only if

{ m(’;‘)—[gh(m—l)—(';‘)]z(’;‘)

Jor some k;’s such that Y82 ki =ping, p1 2 ki >0 Vi=1,2,...,pa.
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The next theorem covers a specific case of this type of factorization.

Theorem 10 If ¢1(x) has 3 positive terms and @2(x) has 2 negative and 4
positive terms, i.e., $1(z) = 1+z°+zb, ¢o(z) = 1-z¢—z8+z°+zf +a9,
and if in f(z) = ¢1(z)p2(z) all negative terms cancel with positive terms,

then there ezists no cancellation scheme yielding a pair of homometric
rulers.

We present now an inequality involving the number of positive terms in
the two factors in the case where each one of them possesses exactly one
negative term.

Lemma 3 Assume that ¢1(z), ¢2(z) have the form:

¢1($) = 1+za‘ +I°a +,..+z°m—l _zo
¢2(z) = 1+ 2™ +zb’+_”+$bpg—1 —zb

then a spanning ruler with the above factorization ezists only if:

prrmrm-22m-1 (%) +6-0 () @

A simple substitution of values into the inequality of the last lemma gives
us the following corollary.

Corollary 1 Assume ny =nz =1, p1 =pa. Then a spanning ruler must
satisfy:
4<p=p2 <5

Proof. (1) = 2@ -2 220 -1 (5 ) = 42m-1 =

pL=p2<5 Butpi=py<4 = ¢1(1)¢2(1) <6 in which case we
know that no counterexamples exist, hence, p1 = p2 € {4,5}.

7 Conclusion

In this paper we have applied the theory of factorization of polynomials
over the rationals to investigating the existence of homometric spanning
rulers. The existence of such homometric structures contradicts an earlier
‘theorem’ by S. Piccard. The results obtained demonstrate the power of
this approach.

In general, we associate with a pair of spanning rulers a set of two poly-
nomials r(z) and s(z) which can be factored into r(z) = ¢1(z)p2(z) and
s(z) = ¢1(z)¢5(z), where ¢z(z) and ¢5(z) are conjugate polynomials. In
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the case where both factors ¢,(z), ¢2(z) possess only one negative term
we have come very close to proving that the only counterexamples to S.
Piccard’s ‘theorem’ are those given by a unique infinite parametric family
of spanning homometric rulers with six marks.

Furthermore, we have established upper bounds on the number of positive
and negative terms that these two factors can have in many other cases.
The proof of the nonexistence of counterexamples for certain cases where
the number of terms in ¢;(z), ¢2(x) is more than 3 and 4 (as a pair),
as well as the drastically increasing difficulty with which cancellations of
repeated differences can be made as the number of terms increases, appear
to support the conjecture that no counterexamples to S. Piccard’s ‘theorem’
exist with rulers having more than six marks. More specifically the following
two conjectures of S.W. Golomb seem to be provable.

Conjecture 3 If the coefficients of ¢1(x), $2(z) are restricted to {-1,0,+1},
then the only solutions have n =6 and are those given by the aforemen-
tioned infinite family.

Conjecture 4 If, among the coefficients of ¢,(z) and ¢2(z) is a value
other than {0,-+1,—1}, then in order to get all coefficients of f(z) in the
set {0,1} this will require large n (as well as large N). But this in turn
makes it impossible to keep all differences in f(z) distinct.
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