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The purpose of this paper is to extend the well-known
concepts of additive permutations and bases of additive permutations
to the case when repeated elements are permitted; that means that the
basis (an ordered set) can become an ordered multiset. Certain
special cases are studied in detail and all bases with repeated
elements up to cardinality six are enumerated, together with their
additive permutations.

1. Introduction.

The concepts of A-basis (basis of additive permutations) and of an additive
permutation were introduced by Kotzig and Laufer [6] and later generalized by
Kotzig [S]. An ordered set of relatively prime integers X = (x,, x;, ..., X,) is
called an A4-basis if there exists a permutation ¥ = (y,, y,, ..., y,) of X such that
the vector sum X+Y = (x;+y,, x;+¥,, ..., X,+Y,) is again a permutation of X.
The purpose of this paper is to generalize the above concepts to the case when
X is a multiset. A number of references concerning additive permutations can
be found, e.g., in {3, 4].

In every combinatorics course, permutations are one of the first topics
discussed, usually followed by permutations with repeated elements. We
decided to try this approach for additive permutations, and, as the reader will
see, we have obtained some interesting results. For example, it is well known
that there is no A-basis of cardinality four, but we will show that there is a
unique A-basis of cardinality four with repeated elements. We have also found
a family of such A-bases for all cardinalities n = 3 where we can, for each n,
give the exact number of additive permutations (which grows exponentially with
n). These results suggest that further investigations of A-bases with repeated
elements would be worthwhile. Some new results for additive sequences of
permutations with repeated elements will follow in a separate paper.

Let X = (x,, X5, ..., X,), Wwhere x; < x, < ... < x,, be a muitiset of relative-
ly prime integers. Then X is called a basis of additive permutations with repeti-
tions (repetitive A-basis, RA-basis) if there exists a permutation ¥ = (y,, y3, ...,
¥,) of X such that the vector sum X+Y = (x,+y,, x,+y,, ..., x,+y,) is again a
permutation of X. Then Y will be called an R-additive permutation of X.

As in the case of A-bases, we could prove the following simple statement:
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Theorem 1. If X = (x,, X, ..., x,) is an RA-basis, then X, x, = 0.

It is clear that, for every n, (0, O, ..., 0) is an RA-basis; this RA-basis will
be called rrivial and will always be excluded from our consideration.

It is well known that there exist no A-bases of cardinality 2 or 4. Obviously,
there is no nontrivial RA-basis of cardinality 2, but there exists a unique
nontrivial RA-basis of cardinality 4: X = (-1,0,0, 1). If weput¥ = (0, 1,
0, —1), we have X+Y = (-1, 1, 0, 0).

In [1, Theorem 1] it was proved that any A-basis of cardinality n = 4 has at
most n—3 positive elements and at most n—3 negative elements. When reading
the proof of this theorem, the reader will realize that the above statement re-
mains valid for RA-bases as well. In particular, for n = 4, we get that an RA-
basis of cardinality 4 contains at most one positive element and at most one ne-
gative element; if it is nontrivial, it will contain exactly one positive and exactly
one negative element. Theorem 1 and the requirement that the elements of X
be relatively prime imply then that X = (—1, 0, 0, 1). It follows from Theo-
rem 4 below that the RA-basis (—1, 0, 0, 1) has exactly four R-additive permu-
tations, enumerated in Sec. 3.

We can extend the result of Theorem 1 in [1] in the following way:
Theorem 2. Let X be an RA4-basis of cardinality n = 4 with at least two positi-
ve elements. Then X also has at least two negative elements. (The number of
negative elements does not have to be equal to the number of positive elements.)
Proof. For n = 4, we have seen that no RA-basis with two positive elements
can exist. So we can assume that n = 5. Let X = (x;, X, ..., x,) be an RA-
basis with only one negative element: x, < 0 =x, = ... = x, < x,,; < X,,,
<..=<x,where2 <r < n-2. LetY = (y, ¥ ..., y,) be an R-additive
permutation of X. We will first identify the subscripts i for which x;+y, = 0.

Since X, x, = 0, we have x,+X. . x, = 0, and thus x,+x, < O, for j =
r+1, ..., n. This implies that x,+y, = 0 can only be true if 2 < i < r. Then
either y, = x, (impossible) or y, = x, , with r+1 < i < n (also impossible).

We should now add that, in general, a higher lower bound on the number of
negative elements of X cannot be obtained; this is proved, for every n = 7, by
the following example:

X=(-2"%-1,-250,1,1,2,4,..,27, 275 2" %+1),
Y=(2"%+1,2"% -25-1,0,1, 2,4, ...,2"77, 1, =279,
X+Y=(-2"%0, —2"°%-1,1,2,4,8, ...,2"5, 25+, 1).

One more remark will be useful. If X = (x,, x,, ..., x,) is an A-basis and if
Y = (1 y2 ..., ¥,) is an additive permutation of X, and if y; = x;, for some /,
J» i # j, then y, # x. This result is not valid for RA-bases and RA-
permutations, as the following example shows: X = (-1, —-1,0,0,1, 1), ¥ =
1,0, —1,1,0, —-1).
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As we will see below, a comparatively rich class of R4-bases with an even
richer class of R-additive permutations can be obtained using only certain simple
classes of multisets of integers.

2. Symmetric and Elementary RA-bases

An RA-basis X = (x, x,, ..., X,) will be called symmetric if x,,,_, = —x,,
i=1,2,..,n Symmetric A-bases have been studied in [2] but the results
obtained there cannot be directly extended to RA-bases; the main result related
to them (Theorem 3, below) is not an extension of any of the results obtained
in [2]; it states that any ordered multiset X = (x,, x,, ..., x,) of integers (x; <
X, £ ... £ x,) which satisfies the symmetry condition x,,,_, = —x, i = 1, 2,
..., 1, is an RA-basis if it contains a sufficiently large number of zero elements.
However, this condition is not necessary: it is violated in Examples 1, 2 and 3
given below.
Theorem 3. Letp, < p, < ... < p, be relatively prime positive integers. Let
X = (=pw» —Pi-ts ++» —P1s0, 0, ..., 0, Py, Py, ..., p) be a multiset in which
0 has multiplicity m. If m = k, then X is an RA-basis. Moreover, X has at

m! .
-y 2*ifp, ...,

least (';: 2* R-additive permutations. This lower bound is

P are all different.

Proof. Let m = k. Let us define an R-additive permutation ¥ = (y,, 33, ...,
Yu+m) s follows. We form the triples (x;, X;.4, Xx4m+1-) Of elements of X; each
such triple is really the A-basis (—1, 0, 1) of cardinality three multiplied by x;
= Pyyrp 1 < i < k. The A-basis (—1, 0, 1) is known to have exactly two
additive permutations, viz., (0, 1, —1) and (1, —1, 0). To the three elements
(1> Xisks Xaeems+1-) Of X we let correspond in Y the triple (¥, Yirkr Yorem+1-1)s 1
< i < k, which is one of the additive permutations of (—1, 0, 1) multiplied by
Pivioie Weputy, =0,i=2k+1, ..., k+m. Then Y = (3, ..., Yor+n) i an
R-additive permutation of X. In this way we can generate 2* R-additive
permutations of X. Instead of taking the first k positions corresponding to zero

elements of X, we can select any k such positions, and this can be done in( 'Z)

ways. The middle elements of the triples (¥, ¥,.x» Ya+m+1—;) can be placed in
these positions in k! ways if the numbers p,, ..., p, are all different. W

We observe that the number of R-additive permutations can increase if some
of the sums p,+p, or some of the differences p,—p, are in X.

As an example, let us observe that the R4-basis X = (—s, —r, 0, 0, 1, 5),
where r, s are positive integers, r < 5, s # 2r, hasm = k = 2, and the lower
m! k _ -
B 2% = 2x4 = 8; this
is also the true number of its R-additive permutations; they will be enumerated

later.

bound for the number of R-additive permutations is
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In Theorem 3 we have seen that, in the symmetric case, the multiset X =
(X1, X3 ..., X,) is always an RA-basis if it contains a sufficiently large number
of zero elements. We will now present some examples showing that the
condition involving zero elements is not necessary.

Example 1. The vector X = (-2, —1, —1, 1, 1, 2) is an R4-basis with no
zero element; ¥ = (1, 2, —1, 1, —2, —1) is an R-additive permutation of X.
Example 2. We will show that, for every positive integer n = 6, there exists
a symmetric RA-basis X, of cardinality #n which has at most three zero elements
(so that the number of zero elements does not satisfy the condition imposed on
the RA-basis in Theorem 3). In the construction, we will distinguish two cases
according to whether n is even or odd. The cases n = 6 and n = 7 will be
dealt with separately.

a) Let n be even, n = 2m. Y,, will denote an R-additive permutation of the
RA-basis X,, defined by

X, = (=273, =24 ., =24, -2, -1,-1,0,0, 1, 1, 2, 22, ..., 2",
2m-3),
Y, = ("3, =274, ..., =22, -2, -1,0, —-1,1,0, 1,2, 2%, ..., 2",
23,
Xont+ Yo = (0, =2773, ..., =2%, =22, =2, -1, -1, 1,1,2,2%, 2, ..,
273, 0).

b) If n is odd, n = 2m+1, we construct X, ,, and Y,,,, as follows. We take
X,,, and Y,, and insert a zero between the m-th and the (m+1)-th terms of both
X,, and Y.

c) Form =3 wegetX, =(-1,-1,0,0,1,1), X, = (-1, -1,0,0,0,
1, 1); these RA-bases will be discussed, in a more general form, in Theorems
4 and S below.

To conclude this part of Section 2, we will present an infinite family of
nonsymmetric RA-bases. '

Example 3. Forn = 7, we put
X =(-2v5 -27%0,0,1,1,2,2,..,2"7, 2",
Y, =(0,2"% -2%1,1,0,2,2, ..,2"7, -2"9),
X+Y, =(-25%0, -2%,1,2,1,2%, 25, ..., 2"%, 0).

Next, we will study the special case of symmetric R4-bases which we will
call elementary bases. They are symmetric bases for which p, = p, = ... =
p =1
Theorem 4. The multiset

X=(1-1,..,-,00,..0,1,1,..,1),
where —1, 0, 1 appear k, m, k times respectively, is an R4-basis if, and only
if,l <k <sm
Proof. The sufficiency part follows from Theorem 3; we only have to prove
that the condition m = k is necessary.

Let us assume that the above multiset X is an RA-basis and let ¥ = (y,, y,,
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...» ¥,) be an R-additive permutation of X. Clearly, yy = Oor 1fori = 1, 2,
..., k. Let r and k—r be the number of 0’s and of 1’s in the multiset {y,, y,,
...y y3) respectively; 0 < r < k. Similarly, y, = 0 or —1 for i = k+m+1,
k+m+2, ..., 2k+m. Let s and k—s be the numbers of 0’s and 1’s in the
multiset (Verme1s Yeomezs «++s Yoram) T€Spectively; 0 < s < k. Then the multiset
Vir1s ++s Yesm) coODtains r elements equal to 1, s elements equal to —1 and
m—r—s elements equal to zero. Hence r+s < m.

This implies that the multiset X+Y contains r+s elements equal to —1.
From this we conclude that r+s = k. Since r+s < m, wesee thatk < m. W
Theorem 5. If m = k, then the RA-basis described in Theorem 4 has exactly

6

Proof. If0 < j < k, there are (k) ordered multisets {y,, y,, ..., y;} consisting
J

additive permutations.

of j elements equal to 0 and k—;j elements equal to 1. Then there are (':) ways

J
ways to place j elements equal to 1 into the remaining of the positions k+1, ...,

k+m. The positions still left free among y;.,, .., Y4m Will be occupied by —1;

in which we can place m—k zeros into the positions k+1, ..., k+m, and(k)

their number is k—j. Finally, we bhave (f) ways of putting j elements equal to
—1 into the remaining k positions; the free k—j positions will be occupied by

zero. For a fixed j, we have ( k) (:) (k) (k) possibilities. Summing over j
J JJ\J
yields our statement. Wl

We should mention here that, according to Herbert Wilf [8] and Gilbert

k 3
Labelle [7], there is no simple formula for 2 (k) . Ifk=1,n=23andm
Jj=o J
= np—2, then X = (-1, 0, ..., 0, 1) has 2n—4 R-additive permutations. In
k 3
general, a lower estimate for E (f) can be obtained using the well-known
j=0

(K (2
formula ¥ ( ) = ( ) and the Stirling formula:
=0 \J k
k k
k)? KV (2 (k) 2%
% (1% 0 (3) G "V
o \J) j\J * Tk
for k sufficiently large.
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3. Enumeration of R-additive Permutations of Small Cardinalities

It is clear that there are no nontrivial RA-bases of cardinalities 1 and 2. It
is easy to verify that, for n = 3, there is only one R4-basis, X = (-1, 0, 1),
which has two additive permutations, (1, -1, 0) and (0, 1, ~1).

It is known that there is no additive basis of cardinality four. Now any RA-
basis of cardinality n = 4 contains at most n—3 positive elements and at most
n—3 negative elements. For n = 4, this implies that any nontrivial basis has
exactly one positive and exactly one negative element. The only such basis is
X = (-1,0, 0, 1). According to Theorem 4, X has 2n—4 = 4 R-additive
permutations. They are (0, 1, 0, 1), (0, 0, 1, —1), (1, 0, ~1, 0) and
1, -1, 0, 0).

For n = 5, we have a more interesting situation. An RA-basis of cardinality
5 contains at most n—3 = 2 positive elements and at most 2 negative elements;
that means that it must contain at least one zero. Since we can assume that the
number of negative elements does not exceed the number of positive elements
(otherwise we would replace the RA-basis X by —X), we will consider the
following two cases (in which 7(X), »(X) will denote respectively the number of
positive and of negative elements of X):

L 7)) =vX) =1, 2. n(X) = vX) =2.
The case w(X) = 2, »(X) = 1 is eliminated by Theorem 2.
Case 1 obviously yields only one RA4-basis, namely X = (-1, 0, 0, 0, 1) which,
according to Theorem 4, has six additive permutations: (1, —1, 0, 0, 0), (1, O,
-1,0,0),(1,0,0, —1,0), (0, 1,0, 0, -1), (0,0, 1,0, —-1), (0, 0, 0, 1,
-1).
Case 2. In this case, X = (x;, X3, X3, Xy, X5), Where x; < x, < x; =0 < x, <
xs. If the sum x; in X+ Y were obtained as x;+x; = x;, then (x;, x;, X4, X5)
would be an RA4-basis of cardinality 4, and thus would be of the form (—1, O,
0, 1), contradicting our assumption. So there is an i and a j such that x,+x; =
x; = 0, i.e. x; = —x;. By Theorem 1, we may conclude that x, = —x; and x,
= —x,, i.e. that every RA-basis of Case 2 is of the form (—a, —b, 0, b, a),
with a, b positive integers. Moreover, 0 is either a—a or b—b.

Suppose first that the sum O is obtained as a—a. If the sums —a and a were
obtained as 0+a = a and —a+0 = —a, then b and —b would be obtained as
sums of b’s and —b’s, which is not possible. So we must also have a = 2b.
If the sum O is obtained as b—b, a similar reasoning leads to the same
conclusion. In other words, the only possible R4-basis in Case 2 is X = (-2,
—1, 0, 1, 2). By [2, Theorem 2], this RA—basis has exactly six additive
permutations. They are

Y,=@2,0 -2,1, -1), ¥ =(,2, -1, 1, -2),

Y2 = (0! l: 2’ _2’ _l)’ YZ’ = (l’ 2’ _2» _1’ 0)’

Y, =@, -1,1, -2,0), ¥y’ = (1, -1, 2,0, =2),
where Y’ is the inverse permutation of Y.
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For n = 6, we have found by complete search the following RA-bases and
their R-additive permutations.

1. X=(-1,0,0,0,0, 1). According to Theorem 5, X has the following
eight R-additive permutations:

0,1,0,0,0, -1) 0,0,0,1,0, -1) (1, -1,0,0,0,0) (1,0,0, —-1,0,0)
©,0,1,0,0,-1) (,0,0,0,1,~-1) (1,0,-1,0,0,0) (1,0,0,0, —1,0)

2. X=(-1.-1,0,0, 1, 1). According to Theorem 5, X has the following
ten R-additive permutations:
©,o0,1,1,-1,-1 (©,1,-1,1,-1,0) (1,0,1, -1,0, -1) (1,0,-1,1,0, —1)
©1,1,-1,-1,0 (©1,1,-1,0,-1) (0, 1,-1,1,0,-1) (1,1, -1, —1,0,0)
(o,1,-1,-1,0 (1,0, ~-1,1,-1,0)

3. X=(-4, -2,0,1, 2, 3). According to [1], X has the following two
additive permutations: (0, 2, 3, 1, —4, -2), (2,3, —4, 1, =2, 0).

4, X = (-4, -3,0, 1, 2, 4). According to [1], X has the following two
additive permutations: (0, 4, -3, 1, 2, —4), 4,0, —4, 1, 2, —3).

5. X=(-3, -1,0, 1, 1, 2). X has the following four R-additive
permutations:
©2,1,-1,1,-3) ©,21,1,-1,-3) 2,1,-3,1,0,-1) (2,1,-3,0,1, —1)

6. X=(-2, -1,0,0, 1, 2). X has the following twelve R-additive
permutations:
©, 2, -1,0,1,-2) (,00 -2,1,-1) (1,2, -2,0,-1,0) (1, -1,0,2,0, -2)
©,2,0,-1,1,-2) (0,1,0,2,-2,-1) (1,2,0,-2,-1,0) (2,-1,0,1,-2,0)
2,0, -2,0,1, =1) (0,1,2,0, =2, =1) (1, -1,2,0,0, =2) (2, ~1,1,0, =2, 0)

7. X = (—r-s, ~s, —r, r, 5, r+s), where r < s are relatively prime
positive integers. According to [1], X has the following four R-additive
permutations (confirmed by complete search):

(r, —r, r+s, s, —r—s, —s) (s, =r, r+s, —r—s, r, —)

(s, r+s, =8, —=r—s,r, —=r) (r, r+s, —s, s, —r—s, —r)
For r = s = 1, we obtain the symmetric R4-basis (-2, —1, -1, 1, 1, 2)
mentioned in Example 1; it only has the four corresponding R-additive
permutations.

8 X = (-5, —1 0,0, r, 5), where r < s are relatively prime positive
integers. This a special case of the RA4-basis mentioned in Theorem 3. For r
< s, § # 2r, X has the following eight R-additive permutations:
©,r, -r,s50, -s) (50, —-s,r,-r,00 (0,0,r,s —-r,-s) (s,r,—-r,—s0,0)
©,r,s, =r,0, —=s) (s5,0,7, =5, —r,0) (0,0,s5,r, —r, —s) (s, r, —s, —r,0,0)
For s = 2r, we obtain the RA-basis #6. For r = s, we obtain the RA4-basis #2.

For n 2 7, the problem of enumerating the RA4-bases and their R-additive
permutations is still open.
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