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ABSTRACT. Let G be a 2-connected simple graph with order
n (n > 5) and minimum degree §. This paper proves that if
|[N(w) UN(v)] > n— § + 2 for any two nonadjacent vertices
u,v € V(G), then G is edge-pancyclic, with a few exceptions.
Under the same condition, we prove that if »,v € V(G) and
{u,v} is not a cut set and N(u) N N(v) # ¢ when uv € E(G),
then there éxist u — v paths of length from d(u,v) ton — 1.

We consider only simple undirected graphs. Let n = |V(G)| > 5, G is
said to be pancyclic if for every k (3 < k < n), G contains a cycle of length
k. Let K ¢ N = {3,4,...,n}, G is said to be K~-edge-pancyclic (K-
vertez-pancyclic) if for any edge e (vertex z) and any integer k € N\ K, G
contains a cycle of length k containing e(z). When K = ¢, G is called edge-
pancyclic (vertez-pancyclic). If K = {k}, G is called k~-edge-pancyclic. G
is called panconnected if for every two vertices u,v there exist paths from
u to v of length from dg (u,v) to |V(G)| — 1. For simplicity, we call a
cyc_l’e of length ¢ a t-cycle. Suppose C = vyvs.. - U1 is a t-cycle, we use
v; C vj to denote the path v;v;,; ...v;_1v; on C, v; C v; to denote the path
Vi¥i—1%—2...Y;417; on C and A; to denote N(v;)\ V(C) (i =1,2,...,¢).
Other terminology and notation follow [1] and [2].

Pancyclic graphs were first considered by Bondy in [3]. Since then, many
sufficient conditions for a graph to be hamiltonian have been proved to be
sufficient conditions for a graph to be pancylic. In recent years, people
began to consider vertex-pancyclic graphs. For example, in [4] and [5] the
authors gave sufficient conditions for vertex-pancyclic graphs which involve
degree sum or neighborhood intersections.

In [7], Faudree, Gould, Jacobson and Lesniak conjectured that if G has
order n, connectivity ¢, minimum degree § and for any two nonadjacent
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vertices u, v of G there holds [N(u) U N(v)| > n —t with § > ¢t + 1, then
G is vertex-pancyclic. In [6], Song reproposed this conjecture in the form
that if each pair of nonadjacent vertices u and v in a 2-connected graph of
order n and minimal degree § satisfies |[N(u)UN(v)| > n—6+1, then G is
vertex-pancyclic. Obviously, Song’s conjecture can imply the conjecture by
Faudree et al. In [8], the authors solved Song’s conjecture. Our purpose in
this paper is to prove that if G satisfies the neighborhoods union condition
with |N(u) U N(v)| = n — 6§+ 2, then G is edge-pancyclic unless G belongs
to some special graphs.

Before giving the theorem we first describe three families of special graphs:
M 1s M2 and M3.

G € My, if and only if V(G) = {'01,'02} USiUSUT, vyirg € E(G),
N(’v1) =5 U{'v2}, N('vz) = SU {'vl} and G[Sl USQUT] is any graph with
Nw)NnS;#¢(i1=1,2) (weT).

G € M, if and only if V(G) = {v1,v12} US1 US UT, v1v2 € E(G),
G[S1 U {v1}] and G[S2 U {v2}] are complete graphs. And ujuz ¢ E(G) for
any u; € S, up € Sy. Foranyw € T, Nw)NS; # ¢ (1 =1,2), G[T] is
any graph.

G € Mj; if and only if V(G) = {v1,v2} UAUT, viv, € E(G), G[A]
and G[T] are complete graphs. G[A U {vy,v2}] and G[T U {v;,v:}] are
2-connected graphs. For any u € A and v € T, wv ¢ E(G).

Obviously Ms C M;.

Theorem 1. Let G be a 2-connected simple graph of order n (n > 5) and
minimum degree §. If |N(u) U N(v)| > n — 6 + 2 for any two nonadjacent
vertices u,v, then G is edge-pancyclic, unless G € M or Mjs.

Proof: If §(G) < 3. Suppose u,v € V(G) then wv € E(G). Otherwise, if
uv ¢ E(G), then [N(u)UN(v)| £ n—2 < n—§+2, a contradiction. Thus
G is a complete graph. Obviously Theorem 1 holds. Hence we can assume
§>4.

Suppose e = vivp is an arbitrary edge in G. We will show that e lies
on a 5-cycle. If e lies on a 3-cycle vyvovsvy. Let w3y € A;. Suppose
AINA3 =ANAz3 =¢ = N(‘ul) N A;. Then IN('u.l) U N(‘03)| <n-26.
Hence N(u1)NA2 # ¢ or AjNA3 # ¢ or A2NA3 # ¢. Ineachcaseeliesona
4-cycle. Suppose that e lies on v1vav3v4v1. Let ug € Ag. If N(ug)NAgs=¢
and A3NA; = A3N Ay = ¢ then |[N(uz)UN(v3)] < n—2—|Ay| < n—-6+1,
a contradiction. Thus N(u2) N Ay # ¢ or AsN Ay # ¢ or AaN Az # ¢, and
e lies on a 5-cycle.

If there exists no 3-cycle containing e. Let Sy = N(v1) \ {v2}, S2 =
N(vg)\{vl}, T= V(G)\(SIUSQU{’Ul,“Uz}). For any w € T, if N(w)n.S'l =
&, then |[N(w)UN (v2)| < n—6, contradiction. Thus N(w)NS; # ¢, similarly
N@w) N Sy # ¢. Thus G € M. If there exist z € S, y € Sz and that
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zy € E(G), then e lies on a 4-cycle. From the discussion above, e lies on
a 5-cycle. If for every z € S; and y € Sy, zy ¢ E(G), then for every two
vertices 1, x2 € Si, from [N(z;) U N(v2)| < n — 6, we have z1z2 € E(G),
i.e. G[S51] is a complete graph. Similarly, G[So] is a complete graph. For
an arbitrary w € T, from [N(w) UN(%)| <n—-6+1 (i = 1,2), we have
N(w)NS; # ¢ (i=1,2). Obviously G € M, and e must lie on a 5-cycle.

Below we will prove that if e lies on an I-cycle (5 <! < n) then e lies on
an (I + 1)-cycle.

Suppose C = vyvy ... 9w is an l-cycle containing e. Obviously there ex-
ists u € V(G) \ V(C) such that dc(u) > 0. Let No(u) = {v;,,vi,,. .., }
(1 <iz <--- <igp)and B = N@)\V(C), Cj = {vi;41,Vi;42, -+ - Vijpy -1}
Assume e is on the path v;, c vj,. Obviously |C| > 1 (j=2,3,...,m).

We divide the remainder of the proof into three cases.

Casel: m>6—1

If {vi;—1,%i5—1, % —1,- -, %, —1} U {u} is an independent set, then
[N (vi,—1) U N(vi;—1)] € n— 6+ 1, a contradiction. Hence there exists
s,t # 2 such that v;,_jv;,—1 € E(G), obviously e lies on an (I + 1)-cycle.

Case 2: 3<m<§-2

For any y € B, v;, 2y ¢ E(G) (k # 2), otherwise v;,__oyuv;, C vy —2 is
an (I + 1)-cycle containing e. Clearly {vi, —2,vi;_2,...,%,—2} is not an in-
dependent set (otherwise |N (v;, —2)UN (vi;—2)| < n—86+1). Without loss of
generality, we assume v;, _ov;;,—2 € E(G). Because {v;; 1, %ig—1,--, Vi, -1}
is an independent set, there must exist ¥ € B such that yv;,_; or yv;,_; €
E(G) (otherwise |N('u,1 1)U N(’u,,_l)l <n-6+1). If yv;; 1 € E(G),
then v;, ovi;—2 C Vi, —1 YUy C Viy—2 is an (! + 1)-cycle containing e; If

Yvis—1 € E(G), then v;, _ovi;—2 c Vi, UYVig—1 c vi,—2 is an (I + 1)-cycle
containing e.

Case 3: m <2

Let R = V(G) \ V(C), obviously |R| > 6§ —1 > 3. Without loss of
generality, we assume |N¢g(u) < 2 for every u € R.

Suppose that, |Ng(u)| = 2 for some u € R. Suppose Ng(u) = {v;,v,},
without loss of generality, we assume e € v;, 6 v,. If |Cy| > 3, by sym-
metry we can assume e # vj,¥;;,—1 OF ¥i,—1V;,—2. The proof follows as in
case 2: by considering {vi1—27062—2} and {vh—la viz—l}' If ICII = 2 and
e = v; 9,41 (Or vi,v,_1), similarly we can prove e lies on an (I + 1)-
cycle. Suppose e = %;v;;. By the discussion above, we have Ng(u) € Q =
{{vi, vig1}, {vi-1, vig2}, {vi, vis2}, {vi-1,vi+1}}. The argument is split into
three cases.
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Case3.1: I>6+1

Let uy, u2 € R. Ifujus ¢ E(G), then |[N(u;)UN(ug)| <n—2—-(1—-4) <
n — &+ 1, a contradiction. Hence u us € E(G), that is, G[R] is a complete
graph.

Since G is 2-connected, there must exist at least four different vertices
v;,v; € V(C) and y;,y; € R such that vy, v;9; € E(G). We can assume
i <jandeew Cvj. Firstsupposei+1# jand i j+ 1 (modulo ),
and e # v;41v; without loss of generality.

If there exists y;4.2 € R such that vj2y542 € E(G) then v;y;yj42v542 5
v; is an (I + 1)-cycle containing e (Clearly by Nc(y;) € Q we have y;y 2 #
y;). Hence we can assume Ng(vj42) = ¢. Similarly we can assume
Nr(vj43) = ¢ (notice that G[R] is a complete graph and |R| > 3). If
Ngr(vj+1) # ¢. It is easy to prove that Np(v;j+4) = ¢. Thus vji2vj44 €
E(G) (otherwise, IN('v_,-.l,z) U N('Uj+4)| <n-6+ 1). If NR(‘U,'+1) # @,
suppose ¥i+1 € R such that vi11y;41 € E(G). Clearly v # %41 and
ViYiYir1%i+1 C Vjt2vi4a C v; is an (I + 1)-cycle containing e. Hence we
can assume NR(v.'.;_l) = ¢ Thus clea.rly Vi1Y5+2 € E(G) and Vi4+1Vj42 C
v%¥iy;v; C vit1 is an ({+ 1)-cycle containing e. If Nr(vj+1) = 4, it is clear
that Vj+1Vj43 € E(G), thus NR(‘IJ.'+1) = ¢. Similarly Vit1Vj42 € E(G) and
so e lies on an (I + 1)-cycle.

Ifi+1=jori=j+1 and except for v;,v; there is no vertex on

C that is adjacent to vertices in R, then a similar argument shows that
G[V(C)\ {vi,v;}] is a complete graph. Thus G € M3.

Case 3.2: 5<1<$

Since I < 6, we have |Ng(v;)| = 1 for any v; € V(C).

If | = 6, suppose e = v;v;4+1 and there exist y;,%:-2 € R such that
v;—2¥i—2 € E(G). Obviously y; # y;_2 (otherwise No(¥:) € Q). If yaws—2 €
E(G) then e lies on an (I+1)-cycle. If %52 ¢ E(G), since |[No(%:i-2)| <1
we have |[N(%) U N(yi-2)] < n— (1 —3) —2=n—§+1, a contradiction.
Hence we can assume that 5 <1 < 6.

Since | < 6 we have |A;| > 6§ —1+1 > 2. Suppose e = vyva. If 1 > 7,
Az N Ay = A2N Ag = A4 N Ag = ¢ (otherwise there exists u € R such that
Nco(u) ¢ Q). Suppose y2 € Az and ys € As. Then if yoys € E(G) there
exists an (I+1)-cycle containing e. Hence we can assume that yoys ¢ E(G).
Since |N(y2) U N(ys)| = n — 6 + 2, there are at most § — I + 1 vertices in
R\ {2,4} that are nonadjacent to both vertices y and y4. (Notice that
|Nc(ya)| < 1). Because |Az| > 6§ — 1+ 1 there exists y5 € Az such that
yauh or yayh € E(G). If yayb € E(G) we have an (I + 1)-cycle containing
e. Hence we can assume 335 € E(G). This together with |Ag| > 6 —1+41
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shows that there exist ys, 5 € As such that yg and y are adjacent to y or
ya. If ysyq or yzys € E(G) we obtain an (I + 1)-cycle containing e. Hence

we may assume ysyz, Ys¥2 € E(G). Let C' = viv2yby0y6vs 6 v1. Then C’
is an I-cycle containing e. Notice that Ne»(yg) 2 {vs,v2}. If [Ner(v)| > 3,
a similar argument to that of Case 2 shows that e lies on an (I 4 1)-cycle.
If [Ner(yg)| = 2, the fact that No(yg) ¢ Q contradicts the discussion at
the beginning of Case 3.

If ] = 5. We can assume A; N Ay # ¢ (The discussion of the case
A1N A2 = ¢ is similar to that of > 7). Suppose y2 € A;N A3 and y4 € A4,
We have y2y4 ¢ E(C) and there are at most §— 141 vertices in R\ {y2,vs}
that are nonadjacent to y; and y;. Hence there exist - € Az and 71 € Ay
such that yo5 € E(G), y1y2 € E(G) (y1,y5 may be identical). It is obvious
that A3 N Az = ¢. Thus there exist y3, 33 € As such that both y3 and 4
are adjacent to ys or ys. If y3ys or y3y2 € (G) then vivovsys(¥h)yeyivs
is a 6-cycle containing e. Hence we assume yays, yy4 € E(G). Similarly
there exists ys,y5 € As such that ysys, yfys € E(G). Thus vyvs ¢ E(G)
(otherwise vy v2v3y3y4v4v; is a 6-cycle containing e). Similarly vovs ¢ E(G).
Hence |A4| > § — 2. Clearly N(v3) N Ay = ¢ and N(y2) N A4 = 4. Since
A3NAz = ¢ we have vay; ¢ E(G), but |N(v3)UN(32)| < n—2—|A4| < n—6,
a contradiction.

Ifl=6. As 1 < & we have § > 7. Clearly v3y, ¢ E(G) and N(v3)N Ay =
N(vs) N As = N(y2) N Ag = ¢. If N(y2) N As = ¢, then |[N(vs) U ()| <
n—2—|A4| - |As| <n—6—2(6§ - 5) <n—§+1, a contradiction. Hence
N(y2) N As # ¢. Suppose yoys € E(G). By the discussion above we
have there exists y5 € Az such that ya35 € E(G). We obtain the 7-cycle
V125 Yo YsUsUsy; Containing e.

This completes the proof of Theorem 1.

Corollary 1. Let G be a graph satisfying the conditions of Theorem 1,
then G is {3, 4}-edge-pancyclic, unless G € M.

Corollary 2. Let G satisfy the conditions of Theorem 1, then G is 3~-
edge-pancyclic, unless G € My or Mjs.

Theorem 2. Let G be a 2-connected simple graph with order n and
minimum degree §, if |[N(u) UN(v)| > n— §+2 for every two nonadjacent
vertices u and v, then for every two vertices u,v € V(G), there exists paths
between u and v of length from d(u,v) to n — 1, unless {u,v} is a cut set
of G or wv € E(G) and N(u) N N(v) = ¢.

Proof: For any two vertices u,v € V(G). If uv € E(G), by the assumptions
of Theorem 2, we have N(u) N N(v) # ¢ and {u,v} is not the cut set of
G. By the proof of Theorem 1, there exist cycles of length from 3 to n
containing wwv, thus there exist paths of length from 1 to n — 1.
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If uv ¢ E(G). Let G’ = G+wv. Obviously G’ is subject to the conditions
of Theorem 1. {u,v} is not a cut set of G'. If Ngr(u) N Ng/(v) # ¢ then
there exist cycles of length from 3 to n containing uv thus there exist paths
of length from 2 to n — 1 between u and v. If Ng/(u) N Ng(v) = ¢, then
d(u,v) = 3 or 4. Thus G’ is 3~-edge pancyclic or {3,4}~ -edge pancyclic.
In both cases the result holds.

This completes the proof of Theorem 2.
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