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ABSTRACT. A homomorphism from a graph to another graph
is an edge preserving vertex mapping. A homomorphism natu-
rally induces an edge mapping of the two graphs. If, for each
edge in the image graph, its preimages have k elements, then
we have an edge k-to-1 homomorphism. We characterize the
connected graphs which admit edge 2-to-1 homomorphism to a
path, or to a cycle. A special case of edge k-to-1 homomorphism
— k-wrapped quasicovering — is also considered.

1 Introduction

The motivation of this paper can be traced back to two sources: graph ho-
momorphisms and k-to-1 continuous mapping in topological spaces. Graph
homomorphism is a widely studied graph theoretical concept. Graph homo-
morphism is an edge preserving mapping from the vertex set of one graph
to the vertex set of another graph. There are quite a few papers considering
the computational complexities of homomorphism [2, 3, 6, 12, 21, 23, 29).
Some consider the characterizations of homomorphic preimages of a fixed
graph in terms of forbidden homomorphic preimages [13, 14, 15, 20, 26].
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Others concern the interplay of homomorphism and other graph theoreti-
cal properties [1, 4, 27, 28]. Still others concern the relationship between
graph homomorphisms and languages [11, 22, 25]. Special cases of homo-
morphisms are considered in [5, 18, 19, 24}, in which the preimages of an
edge incident to a vertex v are distributed to the preimages of the vertex
v in some pattern. It is called a double cover projection [18, 24] if it is a
2-to-1 homomorphism and equally distributed. D. W. Waller [24] found a
way to construct all the double covers of a graph by means of a spanning
tree, and M. Hofmeistar [18] found a way to count double covers of a graph.

A finite graph can also be viewed as a compact topological space, in
which any path, whose inner vertices have degree two, is a compact topo-
logical subspace homeomorphic to a real closed interval. Therefore, we can
consider a continuous mapping from one graph to another in the sense of
topological spaces. A k-to-1 continuous mapping is one for which every
inverse image consists of k points. The image graph must have a cycle in
order to have a continuous mapping for £ > 1 [7]. More recently it has
been shown that [8] a tree cannot be a k-to-1 finitely discontinuous image
of any connected graph if k > 1. The discussion of the existence of k-to-1
continuous maps between graphs when k is sufficiently large can be found
in [16].

It was also shown in [9] that any tree admits a k-to-1 finitely discontin-
uous function onto any graph with a cycle for any k > 2, but that there
cannot be a 2-to-1 finitely discontinuous function from a tree to any graph
whether the image has a cycle or not. In [10], those trees that admit a
3-to-1 continuous map onto a cycle were characterized. Those graphs that
admit a 3-to-1 continuous map onto a cycle were characterized in [17].

Note that a homomorphism is a special continuous mapping between
graphs but it still keeps more graph structures. This leads us to consider
the “Heath—Hilton” type questions on homomorphism.

All graphs considered in this paper are finite undirected graphs. Let G
be a graph. A waelk W of G is an alternating sequence of vertices and
edges vpeguie1vs - - - €x—1vk such that v; is incident with e; and e;_; for
i=1,2,...,k. A walk W is called a path if v; # v; whenever i # j. A
path W is called a cycle if vo = vx. We use P, and Cy, to represent a path
and a cycle of n vertices respectively.

Let G be a connected graph, and H a subgraph of G. We define a relation
‘~’ on E(G) — E(H) by the condition that e; ~ e if there exists a walk W
such that

1. the first and last edges of W are e; and e respectively, and

2. W is internally-disjoint from H (that is, no internal vertex of W is a
vertex of H).

It is easy to see that ~ is an equivalence relation on E(G) — E(H). A
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connected subgraph of G — E(H) induced by an equivalence class under
the relation ~ is called a bridge of H in G. A bridge which is a path
(tree) is called a path (tree) bridge. If B is a bridge, a vertex in the set
V(H)(V(B) is called an attachment of B to H. We will simply call a
bridge or an attachment if there is no confusion.

For convenience, if B is a bridge with only one attachment b (two attach-
ments by, bz), we sometimes write (B, b) ((B,b;,b2)) instead of B.

For two graphs G and H, if there is a mapping k from V(G) to V(H)
such that zy € E(G) implies h(z)h(y) € E(H), then k is called a homo-
morphism of G to H, denoted by h: G — H. Let h: G — H be a graph
homomorphism. If for each uv € E(H), h~(uv) has k elements, we call A
the edge k-to-1 homomorphism, G the edge k-to-1 homomorphic preimage,
and H the edge k-to-1 homomorphic image.

In the study of graph embeddings, B. Jackson, T.D. Parsons and T.
Pisanski [19] introduced a so called wrapped quasicovering which is also a
special kind of edge k-to-1 homomorphism. Let G and H be two graphs. An
edge k-to-1 homomorphism & : G — H is called a k-wrapped quasicovering
of G over H if for each vertex v € V(G), there is a positive integer i(v) such
that, if +' = h(v) then for each edge e of H incident to v’, there are i(v)
edges of G in h™!(e) incident to v. The number k is called the multiplicity
of h and i(v) is called the wrapping indez of h at .

If i(v) =1 for every vertex v of G, then his a covering map in the sense
of Gross and Tucker [5].

In this paper, we will characterize the graphs which admit edge 2-to-1
homomorphism to a path in Section 2, or to a cycle in Section 3, and we
will also characterize the graphs which admit k-wrapped quasicovering over
a cycle in Section 4.

2 Connected graphs admitting edge 2-to-1 homomorphisms to a
path

We need the following definitions in order to characterize graphs which
admit edge 2-to-1 homomorphisms to a path.

Definition 1 Let T be a tree and P = ugu; -+ -ux be a path of T. Assume
that all the bridges of P in T are path bridges (T, uq,), ..., (Th,w,) where
11 <ig<-ee < 1.

Ifiy = 0, and T} is of length IT5] = 4541 — 85 (Gug1 = k), forj=1,... 1,
then T is called a basic I double path with main path P.

If it =k, and T} is of length T3] = #5 —ij~1 (o =0), forj=1,... vl
then T is called a basic IT double path with main path P,

We call uo and uy the main vertices of T
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Definition 2 An even cycle Copm = UoU1 - - - UmUm+1 - - - U2m—1Uo 38 called
a basic III double path with main path P = ugu; ...un, and main vertices
uo and Um.

A basic double path is a basic I, I1, or III double path.

Definition 3 Let H be a connected graph. If there is a sequence of sub-
graphs H,, ... ,Hy of H such that

(1) HHU---UH,=H,

(2) each H; is a basic double path with main path F;,

(8) HiNHj = 0 if |i — j| > 1 and H; N Hiy is a vertez of H which
is @ main end vertez of both H; and H;;1, for i = 1,...k — 1, then H,
denoted by H = Hy o Hy 0--- o Hy, is called a double path with main path
P1P2 e Pk.

Lemma 2.1 Let f : G — H be an edge k-to-1 homomorphism. For any
vertez v € V(H), if f~1(v) = {z1,22,... ,Zm}, then d(z1) +- - +d(zm) =
kd(v).

Proof. Let ey, ... , ¢ be all the edges incident to zy, ... ,Zm. Then d(z;)+
v+ +d(zm) =1 and f(e1),..., f(er) are all edges incident to v. Since f is
edge k-to-1, I = kd(v). Therefore, d(z1) + - -+ + d(zm) = kd(v). o

Corollary 2.2 If G admits an edge 2-to-1 homomorphism to a path, then
the mazimum degree of G is at most 4, and the number of vertices in a
preimage of any vertez is at most 4.

Lemma 2.3 Let G be a connected graph admitting an edge 2-to-1 homo-
morphism f to a path Pyy1. Then G is a double path of size 2n.

Proof. Let P71 = vov1 - - vn. Suppose f(z;) =v; for ¢ =0,n. Since G is
connected, thereis a path P’ joinnig zp and z,,. Let P/ = 2oz + - Tm—1ZmZn.
We are going to prove that m = n —1. Note that z; must be mapped to v;
since f is a homomorphism. z2 must be mapped to vy or vz by the same
reason. If f(z2) = vo, then we have f(x3) = vy, implying that there are
three edges mapped to the edge vov;. Hence f(z2) = vz. Continuing this
way, we see that f(z;) = v for i = 0,1,... ,m and f(zn) = ¥m41. This
proves that m =n — 1, P/ = 5oz +--Zn_1Zn and f(z;) = v;. Let T be a
bridge of P’ in G. If T is not a path, then there is a vertex z € T such
that d(z) > 3. We have that f(z) # vo,vn by Lemma 2.1. Let f(z) = v;
for some 0 < j < n. Then d(z) + d(z;) > 5, which is a contradiction.
Therefore, in G all vertices of degree 3 and 4 are on the path P’.

Now we prove this lemma by induction on the number of degree 3 and 4
vertices in G.
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Let G have no degree 3 and 4 vertices. Then G is a path or a cycle of
length 2n since G is connected and G admits an edge 2-to-1 homomorphism
to Pnt1. If only d(zo) = 2 or d(z,) = 2, G is a basic I double path or basic
I double path. If d(zo) = d(z») = 2, then G is a type III double path or
a double path composed of a type I path and a type II path depending G
is a cycle or not. Therefore, G is a double path of size 2n.

Suppose now the lemma is true for graphs having less than m vertices of
degree 3 and 4 for m > 0. Let G have m vertices of degree 3 and 4 vertices.
We have shown that all degree 3 and 4 vertices of G are on the path P’. Let
z; be the last vertex of degree at least 3 on P’. Then i # n, otherwise G
does not admit the edge 2-to-1 homomophism f to P11 with f(z,) = v,.

Let Gy = f~'(vo---v;) and Gp = f~'(v;---v,). Then G = G; 0 G2
since f~!(v;) = {z;}. That is G is obtained from G; and G, by identifying
at z;. Note that f|G; is an edge 2-to-1 homomorphism from G; to the
path vg - --v;. Also note that G; has less than m vertices of degree 3 and
4. Hence G, is a double path by induction hypothesis. Similarly, G, is a
double path. Therefore, G = G, 0 G is a double path of size 2n. a

Theorem 2.4 A connected graph G admits an edge 2-to-1 homomorphism
to Pnyy if and only if G is a double path of size 2n.

Proof. The necessity follows from Lemma 2.3.

Sufficiency. Let Pn4; = vov; ---v,. Since G is a double path of size 2n,
the main path P of G has length n. Let P = zoz; - - - z,,. Define f on P to
be f(z;) = v;. We extend f to the rest of G as follows.

We can express G as G 0 G20 --0 Gy, where each G; is a basic double
path with main path P* which is a subpath of P. Let Pt = TpTpt1- - Tq.
If G; is a basic III double path with the bridge T', then T has attachments
Zp, Tq and length g — p. It is easy to see there is a unique way to extend f
to T. If G; is a basic I or basic II double path, let (T1,z,),... , (Tk, i, )
be all bridges with i; < i3 < --- < ix. For each T;, we let f map T; to
Vi - -V, if Gy is a basic I double path, and f map Tj tovy_, ---vy, if G;
is a basic II double path. The conditions on the lengths of Ts guarantee
such extension on T; to be 1-to-1 and onto. Therefore, f is an edge 2-to-1
homomorphism from G to P,41. 0

3 Connected graphs admitting edge 2-to-1 homomorphisms to a
cycle

In order to characterize connected graphs admitting edge 2-to-1 homomor-
phisms to a cycle we need the following definition.

Definition 4 Let H be a double path with main path P = uguy - - - uy, and
let Q=1 vm, Q' =v]---v), be two paths of same length.
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a) A graph G is called a type I double cycle if G is a cycle of even length or
G is obtained from H by identifying ug with u,,, and the cycle ug - - - un—1%0
is called the main cycle of G.

b) A graph G is called a type II double cycle if G is obtained from Q, H
and Q' by identifying vy, with uo and v} with un. Denoted by Qo Ho Q.

A double cycle of length 2n is either a double cycle of type I or a double
cycle of type II of size 2n.

Theorem 3.1 A connected graph G admits an edge 2-to-1 homomorphism
f to an n-cycle C,, if and only if G is a double path of size 2n or a double
cycle of size 2n.

Proof. Let Cp = wov1 -+ ¥n—1. Let Poy1 = wow; ---wn be a path of n
edges.

Sufficiency. Let G be a double path with main path zoz;---zn. By
Theorem 2.4, there is an edge 2-to-1 homomophism f : G — Pp4;. We can
assume that f(z;) = w; for i = 0,---n. Define F as follows: F(u) = v;
if f(u) = w; and u € V(G) — f({wo,wn}), and F(u) = v if u €
S~ '({wo, wn}). Then it is easy to see that F is an edge 2-to-1 homo-
morphism from G to the n-cycle G,.

Next, let G be a double cycle of type II. Then we can rewrite G as
G = Po H o P’, where H is a double path, P = yo---yx and P/ =
Yh -+ -y, are two paths of same length. By Theorem 2.4, there is an edge
2-to-1 homomorphism f which maps H to the subgraph vp - - - vpn—k—1 With
f(yk) =vo and f(§) = vn—k—1. We extend f by letting f(¥}) = f(yk—) =
Un—k+i—1- It is easy to see that f is an edge 2-to-1 homomorphism from G
to C,,.

Now suppose that G is a double cycle of type 1. If G = zoz1 - - - T2n—1%0
is a cycle of length 2n, let f(z;) = f(zitn) = v; for i = 0,1,2,...,n - 1.
Then f is an edge 2-to-1 homomorphism from G to C,.

Assume now G is not a cycle. Then G is obtained from a double path
H with main path P = ugu, -+ -uy, by identifying up with u,. Let u be
the vertex in G by identifying uo and u,. We have that there is an edge
2-to-1 homomorphism f from H to Cy. Define F(v) = f(v) for v # u and
F(u) = f(uo). It is easy to see that F is an edge 2-to-1 homomorphism
from G to C,.

Necessity. Let a connected graph G admit an edge 2-to-1 homomorphism
f to Ci.

Suppose that there is a cycle C in G which is mapped onto Cy,. If |C| > n,
then it is easy to see that |C| = 2n and G = C is a cycle of length 2n which
is a type I double cycle of size 2n. If|C| < n, then we have |C| = n. Let C =
Zg -+ - Tn—1 and suppose that f(z;) = v;. There is a vertex on C of degree at
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least 3, say zo. Let G' = (G — {x0}) U {=}, 2§} U {zh=, zfylz € f~1(n1),y €
FY(vn—1)}, where xp and g are two new vertices. We define g such that
9(u) = wi if f(u) = v and u € V(G') — f~Y(v); g(zh) = wo, g(zl) = wn
and g(u) = wo if u € f~!(vp) and u joins f~1(w); 9(u) = w, ifu € f~1(vp)
and u joins f~!(v,—;). Then g is an edge 2-to-1 homomorphism from G’
to Ppy1. By Theorem 2.4, G’ is a double path. But G is obtained from G
by identifying zj, and z{. Therefore, G is a double cycle of type L.
Suppose now there is no cycle in G' which is mapped onto C,. If G is
a double path, we are done. Assume not, then G is not a path. Without
loss of generality, let vov; ---v; be a longest path in C,, such that H =
f~'(wovs ... ) is connected. Then f|H is an edge 2-to-1 homomorphism
from H to the path vov; - - v;. By Theorem 2.4, H is a double path. Now
consider K = f~}(vsviy1---vn—19). K is not connected, for otherwise K
is a double path which implies that there is a cycle in G mapped onto Cn,a
contradiction. Since each component of K must join to f~1(vp) or f~1(v;)
as G is connected, and G admits an edge 2-to-1 homomorphism f to Ch,
then K has exactly two components, say K’ and K. If there is no vertex
of K’ or K” which maps to vp or v;, then we can obtain a longer path P in
C,, such that f~1(P) is connected, which is a contradiction. Therefore, we
must have f(K') = f(K"”) = vjv;4,---vo. This implies that both K’ and
K" are paths of length n — i. It is easy to see that G = K’ o H o K" and
hence G is a type II double cycle. ]

4 Graphs admitting wrapped quasicovering over cycles

The k-wrapped quasicovering is a special case of edge k-to-1 homomor-
phism. We will now give a characterization of graphs addmitting k-wrapped
quasicovering over cycles for all k. First we need the following definition.

Definition 5 Let Cin = v1v2---vknv1 be a cycle of length kn. Let V; =
{vigin:1=0,1,...,k—1} forj=1,... ,n. G is called a k-tuple cycle
if G is obtained from Chy, by identifying some vertices of V; for each j =
1,...,n.

Theorem 4.1 Graph G addmits a k-wrapped quasicovering f over an n-
cycle C,, if and only if G is a k-tuple cycle.

Proof. Sufficiency. Let C, = u;---u,. Let G be a k-tuple cycle, i.e.,
a graph obtained from Cin, = v1v2- - ¥gn by identifying some vertices of
Vj for each j = 1,...,n where V; = {Wjtin 13 = 0,1,... ,k — 1} for
J=1,2,...,n. Let V’; be the vertices of G obtained by identifying some
vertices of V;. Define f : V(G) — V(C,) by f(V';) = {u;}. It is easy
to see that f is a k-wrapped quasicovering with index i(v) = 1(232 for each
v € V(G).
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Necessity. First we show that there is an integer k; such that G contains
a cycle C of length kyn and f|C is a k;-to-1 homomorphism from C to Ch.

Let U; = f~(;). We claim that for any i and any v € Uj, there is a
w € Uj,1 such that vw € E(G), where the subscripts are taken modulo n.

We have that f(v) = u;. For edge wui1 € E(Cy), there are exactly i(v)
edges incident to v which are mapped to u;u;41 by the definition. Suppose
f(vw) = UiUi+1. Then w € Ui+1.

Now choose an arbitrary vertex »; € U;. By the above claim, we can
choose vy € Us such that vjvs € E(G), then choose vz € Us such that
vous € E(G), continuing this way, we can have vy, € Un such that v,_1vn €
E(G), then choose vn41 € Uy such that vavnyy € E(G). If vn41 = vy,
then we are done and k; = 1. If not, then choose vp42 € Us such that
Vpt1Vns2 € E(G), ...... . At last, we must have a vertex vmnti € U; such
that Upmn4i is the first vertex we meet which was already chosen, that is
Umn+i = Vinti where ! < m. Now C = Vin+iVinti+l °° * Umnti—1Vmn+i is
a cycle of G which has length (m — )n. Let ky = m —1. Then f|C is a
k;-to-1 homomorphism from C to C,,. We also note that f|C is a wrapped
quasicovering with index i(v) = d—cé'-’z.

If C = G, then we are done. Suppose C # G. Let U = {v : v € V(C)
such that dg(v) = 2}. Let the graph G’ be such that V(G') = V(G) -
U and E(G') = E(G) — E(C). Then f|G’ is a wrapped quasicovering
of multiplicity k — k; from G’ over C,,. By induction, G’ is a (k — k;)-
tuple cycle, i.e., G’ is obtained by identifying some vertices in each set
(f|G")~1(w;). Now it is easy to see that G is obtained from C and G’ by
identifying some vertices in V(C) N U; with some vertices in V(G') N Ui.
Therefore, G is a k-tuple cycle. |

Corollary 4.2 G admits a wrapped quasicovering f over C, of multiplicity
k such that f is also k-to-1 on vertez set if and only if G = Ckn, a cycle of
length kn.

Remark: All the results above can be extended to directed graphs.
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