Edge k-to-1 Homomorphisms *

Jiping Liu[†]

Department of Mathematics and Statistics Simon Fraser University Burnaby, B.C., Canada

Huishan Zhou

Department of Mathematics and Computer Science Georgia State University Atlanta, Georgia 30303-3083, USA

ABSTRACT. A homomorphism from a graph to another graph is an edge preserving vertex mapping. A homomorphism naturally induces an edge mapping of the two graphs. If, for each edge in the image graph, its preimages have k elements, then we have an edge k-to-1 homomorphism. We characterize the connected graphs which admit edge 2-to-1 homomorphism to a path, or to a cycle. A special case of edge k-to-1 homomorphism -k-wrapped quasicovering - is also considered.

1 Introduction

The motivation of this paper can be traced back to two sources: graph homomorphisms and k-to-1 continuous mapping in topological spaces. Graph homomorphism is a widely studied graph theoretical concept. Graph homomorphism is an edge preserving mapping from the vertex set of one graph to the vertex set of another graph. There are quite a few papers considering the computational complexities of homomorphism [2, 3, 6, 12, 21, 23, 29]. Some consider the characterizations of homomorphic preimages of a fixed graph in terms of forbidden homomorphic preimages [13, 14, 15, 20, 26].

^{*}Supported by Georgia State University Research Enhancement Grant: #93-036.

[†]The author thanks Department of Mathematics & Computer Science at Georgia State University for its kind hospitality.

Others concern the interplay of homomorphism and other graph theoretical properties [1, 4, 27, 28]. Still others concern the relationship between graph homomorphisms and languages [11, 22, 25]. Special cases of homomorphisms are considered in [5, 18, 19, 24], in which the preimages of an edge incident to a vertex v are distributed to the preimages of the vertex v in some pattern. It is called a double cover projection [18, 24] if it is a 2-to-1 homomorphism and equally distributed. D. W. Waller [24] found a way to construct all the double covers of a graph by means of a spanning tree, and M. Hofmeistar [18] found a way to count double covers of a graph.

A finite graph can also be viewed as a compact topological space, in which any path, whose inner vertices have degree two, is a compact topological subspace homeomorphic to a real closed interval. Therefore, we can consider a continuous mapping from one graph to another in the sense of topological spaces. A k-to-1 continuous mapping is one for which every inverse image consists of k points. The image graph must have a cycle in order to have a continuous mapping for k > 1 [7]. More recently it has been shown that [8] a tree cannot be a k-to-1 finitely discontinuous image of any connected graph if k > 1. The discussion of the existence of k-to-1 continuous maps between graphs when k is sufficiently large can be found in [16].

It was also shown in [9] that any tree admits a k-to-1 finitely discontinuous function onto any graph with a cycle for any k > 2, but that there cannot be a 2-to-1 finitely discontinuous function from a tree to any graph whether the image has a cycle or not. In [10], those trees that admit a 3-to-1 continuous map onto a cycle were characterized. Those graphs that admit a 3-to-1 continuous map onto a cycle were characterized in [17].

Note that a homomorphism is a special continuous mapping between graphs but it still keeps more graph structures. This leads us to consider the "Heath-Hilton" type questions on homomorphism.

All graphs considered in this paper are finite undirected graphs. Let G be a graph. A walk W of G is an alternating sequence of vertices and edges $v_0e_0v_1e_1v_2\cdots e_{k-1}v_k$ such that v_i is incident with e_i and e_{i-1} for $i=1,2,\ldots,k$. A walk W is called a path if $v_i\neq v_j$ whenever $i\neq j$. A path W is called a cycle if $v_0=v_k$. We use P_n and C_n to represent a path and a cycle of n vertices respectively.

Let G be a connected graph, and H a subgraph of G. We define a relation ' \sim ' on E(G)-E(H) by the condition that $e_1\sim e_2$ if there exists a walk W such that

- 1. the first and last edges of W are e_1 and e_2 respectively, and
- 2. W is internally-disjoint from H (that is, no internal vertex of W is a vertex of H).

It is easy to see that \sim is an equivalence relation on E(G) - E(H). A

connected subgraph of G - E(H) induced by an equivalence class under the relation \sim is called a *bridge* of H in G. A bridge which is a path (tree) is called a *path* (tree) bridge. If B is a bridge, a vertex in the set $V(H) \cap V(B)$ is called an *attachment* of B to H. We will simply call a bridge or an attachment if there is no confusion.

For convenience, if B is a bridge with only one attachment b (two attachments b_1, b_2), we sometimes write (B, b) $((B, b_1, b_2))$ instead of B.

For two graphs G and H, if there is a mapping h from V(G) to V(H) such that $xy \in E(G)$ implies $h(x)h(y) \in E(H)$, then h is called a homomorphism of G to H, denoted by $h: G \to H$. Let $h: G \to H$ be a graph homomorphism. If for each $uv \in E(H)$, $h^{-1}(uv)$ has k elements, we call h the edge k-to-1 homomorphism, G the edge k-to-1 homomorphic preimage, and H the edge k-to-1 homomorphic image.

In the study of graph embeddings, B. Jackson, T.D. Parsons and T. Pisanski [19] introduced a so called wrapped quasicovering which is also a special kind of edge k-to-1 homomorphism. Let G and H be two graphs. An edge k-to-1 homomorphism $h: G \to H$ is called a k-wrapped quasicovering of G over H if for each vertex $v \in V(G)$, there is a positive integer i(v) such that, if v' = h(v) then for each edge e of H incident to v', there are i(v) edges of G in $h^{-1}(e)$ incident to v. The number k is called the multiplicity of h and i(v) is called the wrapping index of h at v.

If i(v) = 1 for every vertex v of G, then h is a covering map in the sense of Gross and Tucker [5].

In this paper, we will characterize the graphs which admit edge 2-to-1 homomorphism to a path in Section 2, or to a cycle in Section 3, and we will also characterize the graphs which admit k-wrapped quasicovering over a cycle in Section 4.

2 Connected graphs admitting edge 2-to-1 homomorphisms to a path

We need the following definitions in order to characterize graphs which admit edge 2-to-1 homomorphisms to a path.

Definition 1 Let T be a tree and $P = u_0u_1 \cdots u_k$ be a path of T. Assume that all the bridges of P in T are path bridges $(T_1, u_{i_1}), \ldots, (T_l, u_{i_l})$ where $i_1 < i_2 < \cdots < i_l$.

If $i_1 = 0$, and T_j is of length $|T_j| = i_{j+1} - i_j$ $(i_{l+1} = k)$, for $j = 1, \ldots, l$, then T is called a basic I double path with main path P.

If $i_l = k$, and T_j is of length $|T_j| = i_j - i_{j-1}$ $(i_0 = 0)$, for $j = 1, \ldots, l$, then T is called a basic II double path with main path P.

We call u_0 and u_k the main vertices of T.

Definition 2 An even cycle $C_{2m} = u_0u_1 \dots u_m u_{m+1} \dots u_{2m-1}u_0$ is called a basic III double path with main path $P = u_0u_1 \dots u_m$ and main vertices u_0 and u_m .

A basic double path is a basic I, II, or III double path.

Definition 3 Let H be a connected graph. If there is a sequence of subgraphs H_1, \ldots, H_k of H such that

- (1) $H_1 \cup \cdots \cup H_k = H$,
- (2) each H_i is a basic double path with main path P_i ,
- (3) $H_i \cap H_j = \emptyset$ if |i-j| > 1 and $H_i \cap H_{i+1}$ is a vertex of H which is a main end vertex of both H_i and H_{i+1} , for $i = 1, \ldots k-1$, then H, denoted by $H = H_1 \circ H_2 \circ \cdots \circ H_k$, is called a double path with main path $P_1 P_2 \cdots P_k$.

Lemma 2.1 Let $f: G \to H$ be an edge k-to-1 homomorphism. For any vertex $v \in V(H)$, if $f^{-1}(v) = \{x_1, x_2, \ldots, x_m\}$, then $d(x_1) + \cdots + d(x_m) = kd(v)$.

Proof. Let e_1, \ldots, e_l be all the edges incident to x_1, \ldots, x_m . Then $d(x_1) + \cdots + d(x_m) = l$ and $f(e_1), \ldots, f(e_l)$ are all edges incident to v. Since f is edge k-to-1, l = kd(v). Therefore, $d(x_1) + \cdots + d(x_m) = kd(v)$.

Corollary 2.2 If G admits an edge 2-to-1 homomorphism to a path, then the maximum degree of G is at most 4, and the number of vertices in a preimage of any vertex is at most 4.

Lemma 2.3 Let G be a connected graph admitting an edge 2-to-1 homomorphism f to a path P_{n+1} . Then G is a double path of size 2n.

Proof. Let $P_{n+1} = v_0v_1 \cdots v_n$. Suppose $f(x_i) = v_i$ for i = 0, n. Since G is connected, there is a path P' joinnig x_0 and x_n . Let $P' = x_0x_1 \cdots x_{m-1}x_mx_n$. We are going to prove that m = n - 1. Note that x_1 must be mapped to v_1 since f is a homomorphism. x_2 must be mapped to v_0 or v_2 by the same reason. If $f(x_2) = v_0$, then we have $f(x_3) = v_1$, implying that there are three edges mapped to the edge v_0v_1 . Hence $f(x_2) = v_2$. Continuing this way, we see that $f(x_i) = v_i$ for $i = 0, 1, \ldots, m$ and $f(x_n) = v_{m+1}$. This proves that m = n - 1, $P' = x_0x_1 \cdots x_{n-1}x_n$ and $f(x_i) = v_i$. Let T be a bridge of P' in G. If T is not a path, then there is a vertex $x \in T$ such that $d(x) \geq 3$. We have that $f(x) \neq v_0, v_n$ by Lemma 2.1. Let $f(x) = v_j$ for some 0 < j < n. Then $d(x) + d(x_j) \geq 5$, which is a contradiction. Therefore, in G all vertices of degree 3 and 4 are on the path P'.

Now we prove this lemma by induction on the number of degree 3 and 4 vertices in G.

Let G have no degree 3 and 4 vertices. Then G is a path or a cycle of length 2n since G is connected and G admits an edge 2-to-1 homomorphism to P_{n+1} . If only $d(x_0) = 2$ or $d(x_n) = 2$, G is a basic I double path or basic II double path. If $d(x_0) = d(x_n) = 2$, then G is a type III double path or a double path composed of a type I path and a type II path depending G is a cycle or not. Therefore, G is a double path of size 2n.

Suppose now the lemma is true for graphs having less than m vertices of degree 3 and 4 for m > 0. Let G have m vertices of degree 3 and 4 vertices. We have shown that all degree 3 and 4 vertices of G are on the path P'. Let x_i be the last vertex of degree at least 3 on P'. Then $i \neq n$, otherwise G does not admit the edge 2-to-1 homomorphism f to P_{n+1} with $f(x_n) = v_n$.

Let $G_1 = f^{-1}(v_0 \cdots v_i)$ and $G_2 = f^{-1}(v_i \cdots v_n)$. Then $G = G_1 \circ G_2$ since $f^{-1}(v_i) = \{x_i\}$. That is G is obtained from G_1 and G_2 by identifying at x_i . Note that $f|G_1$ is an edge 2-to-1 homomorphism from G_1 to the path $v_0 \cdots v_i$. Also note that G_1 has less than m vertices of degree 3 and 4. Hence G_1 is a double path by induction hypothesis. Similarly, G_2 is a double path. Therefore, $G = G_1 \circ G_2$ is a double path of size 2n.

Theorem 2.4 A connected graph G admits an edge 2-to-1 homomorphism to P_{n+1} if and only if G is a double path of size 2n.

Proof. The necessity follows from Lemma 2.3.

Sufficiency. Let $P_{n+1} = v_0 v_1 \cdots v_n$. Since G is a double path of size 2n, the main path P of G has length n. Let $P = x_0 x_1 \cdots x_n$. Define f on P to be $f(x_i) = v_i$. We extend f to the rest of G as follows.

We can express G as $G_1 \circ G_2 \circ \cdots \circ G_m$, where each G_i is a basic double path with main path P^i which is a subpath of P. Let $P^i = x_p x_{p+1} \cdots x_q$. If G_i is a basic III double path with the bridge T, then T has attachments x_p, x_q and length q - p. It is easy to see there is a unique way to extend f to T. If G_i is a basic I or basic II double path, let $(T_1, x_{i_1}), \ldots, (T_k, x_{i_k})$ be all bridges with $i_1 < i_2 < \cdots < i_k$. For each T_j , we let f map T_j to $v_{i_j} \cdots v_{i_{j+1}}$ if G_i is a basic I double path, and f map T_j to $v_{i_{j-1}} \cdots v_{i_j}$ if G_i is a basic II double path. The conditions on the lengths of $T'_j s$ guarantee such extension on T_j to be 1-to-1 and onto. Therefore, f is an edge 2-to-1 homomorphism from G to P_{n+1} .

3 Connected graphs admitting edge 2-to-1 homomorphisms to a cycle

In order to characterize connected graphs admitting edge 2-to-1 homomorphisms to a cycle we need the following definition.

Definition 4 Let H be a double path with main path $P = u_0u_1 \cdots u_n$ and let $Q = v_1 \cdots v_m$, $Q' = v'_1 \cdots v'_m$ be two paths of same length.

- a) A graph G is called a type I double cycle if G is a cycle of even length or G is obtained from H by identifying u_0 with u_n , and the cycle $u_0 \cdots u_{n-1} u_0$ is called the main cycle of G.
- b) A graph G is called a type II double cycle if G is obtained from Q, H and Q' by identifying v_m with u_0 and v'_1 with u_n . Denoted by $Q \circ H \circ Q'$.

A double cycle of length 2n is either a double cycle of type I or a double cycle of type II of size 2n.

Theorem 3.1 A connected graph G admits an edge 2-to-1 homomorphism f to an n-cycle C_n if and only if G is a double path of size 2n or a double cycle of size 2n.

Proof. Let $C_n = v_0 v_1 \cdots v_{n-1}$. Let $P_{n+1} = w_0 w_1 \cdots w_n$ be a path of n edges.

Sufficiency. Let G be a double path with main path $x_0x_1 \cdots x_n$. By Theorem 2.4, there is an edge 2-to-1 homomorphism $f: G \to P_{n+1}$. We can assume that $f(x_i) = w_i$ for $i = 0, \dots n$. Define F as follows: $F(u) = v_i$ if $f(u) = w_i$ and $u \in V(G) - f^{-1}(\{w_0, w_n\})$, and $F(u) = v_0$ if $u \in f^{-1}(\{w_0, w_n\})$. Then it is easy to see that F is an edge 2-to-1 homomorphism from G to the n-cycle C_n .

Next, let G be a double cycle of type II. Then we can rewrite G as $G = P \circ H \circ P'$, where H is a double path, $P = y_0 \cdots y_k$ and $P' = y_0' \cdots y_k'$ are two paths of same length. By Theorem 2.4, there is an edge 2-to-1 homomorphism f which maps H to the subgraph $v_0 \cdots v_{n-k-1}$ with $f(y_k) = v_0$ and $f(y_0') = v_{n-k-1}$. We extend f by letting $f(y_i') = f(y_{k-i}) = v_{n-k+i-1}$. It is easy to see that f is an edge 2-to-1 homomorphism from G to G.

Now suppose that G is a double cycle of type I. If $G = x_0x_1 \cdots x_{2n-1}x_0$ is a cycle of length 2n, let $f(x_i) = f(x_{i+n}) = v_i$ for i = 0, 1, 2, ..., n-1. Then f is an edge 2-to-1 homomorphism from G to C_n .

Assume now G is not a cycle. Then G is obtained from a double path H with main path $P = u_0u_1 \cdots u_n$ by identifying u_0 with u_n . Let u be the vertex in G by identifying u_0 and u_n . We have that there is an edge 2-to-1 homomorphism f from H to C_n . Define F(v) = f(v) for $v \neq u$ and $F(u) = f(u_0)$. It is easy to see that F is an edge 2-to-1 homomorphism from G to C_n .

Necessity. Let a connected graph G admit an edge 2-to-1 homomorphism f to C_n .

Suppose that there is a cycle C in G which is mapped onto C_n . If |C| > n, then it is easy to see that |C| = 2n and G = C is a cycle of length 2n which is a type I double cycle of size 2n. If $|C| \le n$, then we have |C| = n. Let $C = x_0 \cdots x_{n-1}$ and suppose that $f(x_i) = v_i$. There is a vertex on C of degree at

least 3, say x_0 . Let $G'=(G-\{x_0\})\cup\{x_0',x_0''\}\cup\{x_0'x,x_0''y|x\in f^{-1}(v_1),y\in f^{-1}(v_{n-1})\}$, where x_0' and x_0'' are two new vertices. We define g such that $g(u)=w_i$ if $f(u)=v_i$ and $u\in V(G')-f^{-1}(v_0)$; $g(x_0')=w_0,g(x_0'')=w_n$ and $g(u)=w_0$ if $u\in f^{-1}(v_0)$ and u joins $f^{-1}(v_1)$; $g(u)=w_n$ if $u\in f^{-1}(v_0)$ and u joins $f^{-1}(v_{n-1})$. Then g is an edge 2-to-1 homomorphism from G' to P_{n+1} . By Theorem 2.4, G' is a double path. But G is obtained from G by identifying x_0' and x_0'' . Therefore, G is a double cycle of type I.

Suppose now there is no cycle in G which is mapped onto C_n . If G is a double path, we are done. Assume not, then G is not a path. Without loss of generality, let $v_0v_1\cdots v_i$ be a longest path in C_n such that $H=f^{-1}(v_0v_1\ldots v_i)$ is connected. Then f|H is an edge 2-to-1 homomorphism from H to the path $v_0v_1\cdots v_i$. By Theorem 2.4, H is a double path. Now consider $K=f^{-1}(v_iv_{i+1}\cdots v_{n-1}v_0)$. K is not connected, for otherwise K is a double path which implies that there is a cycle in G mapped onto G_n , a contradiction. Since each component of G must join to G mapped onto G as G is connected, and G admits an edge 2-to-1 homomorphism G to G then G has exactly two components, say G and G and G is a contradiction. Therefore, we must have G is connected, which is a contradiction. Therefore, we must have G is a type II double cycle.

4 Graphs admitting wrapped quasicovering over cycles

The k-wrapped quasicovering is a special case of edge k-to-1 homomorphism. We will now give a characterization of graphs addmitting k-wrapped quasicovering over cycles for all k. First we need the following definition.

Definition 5 Let $C_{kn} = v_1 v_2 \cdots v_{kn} v_1$ be a cycle of length kn. Let $V_j = \{v_{j+in} : i = 0, 1, \ldots, k-1\}$ for $j = 1, \ldots, n$. G is called a k-tuple cycle if G is obtained from C_{kn} by identifying some vertices of V_j for each $j = 1, \ldots, n$.

Theorem 4.1 Graph G addmits a k-wrapped quasicovering f over an n-cycle C_n if and only if G is a k-tuple cycle.

Proof. Sufficiency. Let $C_n = u_1 \cdots u_n$. Let G be a k-tuple cycle, i.e., a graph obtained from $C_{kn} = v_1 v_2 \cdots v_{kn}$ by identifying some vertices of V_j for each $j = 1, \ldots, n$ where $V_j = \{v_{j+in} : i = 0, 1, \ldots, k-1\}$ for $j = 1, 2, \ldots, n$. Let V'_j be the vertices of G obtained by identifying some vertices of V_j . Define $f: V(G) \to V(C_n)$ by $f(V'_j) = \{u_j\}$. It is easy to see that f is a k-wrapped quasicovering with index $i(v) = \frac{d(v)}{2}$ for each $v \in V(G)$.

Necessity. First we show that there is an integer k_1 such that G contains a cycle C of length k_1n and f|C is a k_1 -to-1 homomorphism from C to C_n .

Let $U_i = f^{-1}(u_i)$. We claim that for any i and any $v \in U_i$, there is a $w \in U_{i+1}$ such that $vw \in E(G)$, where the subscripts are taken modulo n.

We have that $f(v) = u_i$. For edge $u_i u_{i+1} \in E(C_n)$, there are exactly i(v) edges incident to v which are mapped to $u_i u_{i+1}$ by the definition. Suppose $f(vw) = u_i u_{i+1}$. Then $w \in U_{i+1}$.

Now choose an arbitrary vertex $v_1 \in U_1$. By the above claim, we can choose $v_2 \in U_2$ such that $v_1v_2 \in E(G)$, then choose $v_3 \in U_3$ such that $v_2v_3 \in E(G)$, continuing this way, we can have $v_n \in U_n$ such that $v_{n-1}v_n \in E(G)$, then choose $v_{n+1} \in U_1$ such that $v_nv_{n+1} \in E(G)$. If $v_{n+1} = v_1$, then we are done and $k_1 = 1$. If not, then choose $v_{n+2} \in U_2$ such that $v_{n+1}v_{n+2} \in E(G)$, At last, we must have a vertex $v_{mn+i} \in U_i$ such that v_{mn+i} is the first vertex we meet which was already chosen, that is $v_{mn+i} = v_{ln+i}$ where l < m. Now $C = v_{ln+i}v_{ln+i+1} \cdots v_{mn+i-1}v_{mn+i}$ is a cycle of G which has length (m-l)n. Let $k_1 = m-l$. Then f|C is a k_1 -to-1 homomorphism from C to C_n . We also note that f|C is a wrapped quasicovering with index $i(v) = \frac{d_C(v)}{2}$.

If C = G, then we are done. Suppose $C \neq G$. Let $U = \{v : v \in V(C) \text{ such that } d_G(v) = 2\}$. Let the graph G' be such that V(G') = V(G) - U and E(G') = E(G) - E(C). Then f|G' is a wrapped quasicovering of multiplicity $k - k_1$ from G' over C_n . By induction, G' is a $(k - k_1)$ -tuple cycle, i.e., G' is obtained by identifying some vertices in each set $(f|G')^{-1}(u_i)$. Now it is easy to see that G is obtained from C and G' by identifying some vertices in $V(C) \cap U_i$ with some vertices in $V(G') \cap U_i$. Therefore, G is a k-tuple cycle.

Corollary 4.2 G admits a wrapped quasicovering f over C_n of multiplicity k such that f is also k-to-1 on vertex set if and only if $G = C_{kn}$, a cycle of length kn.

Remark: All the results above can be extended to directed graphs.

Acknowledgement:

We wish to thank the referee who suggested to shorten the proof of Lemma 2.3.

References

- [1] M.O. Albertson and K.L. Collins, Homomorphisms of 3-chromatic graphs, *Discrete Mathematics* 54 (1985), 127-132.
- [2] J. Bang-Jensen and P. Hell, On the effect of two cycles on the complexity of coloring, *Discrete Applied Mathematics* 26 (1990), 1-23.
- [3] J. Bang-Jensen, P. Hell and G. Macgillivrary, The complexity of coloring by semicomplete digraphs, SIAM J. on Discrete Mathematics 1 (1988), 281-298.
- [4] A.M.H. Gerards, Homomorphisms of graphs into odd cycles, J. Graph Theory 12 (1988), 73-83.
- [5] J.L. Gross and T.W. Tucker, Generating all graphs coverings by permutation voltage assignments, *Discrete Mathematics* 18 (1977), 273–283.
- [6] W. Gutjahr, E. Welzl and G. Woeginger, Polynomial graph colorings, J. Graph Theory, in press.
- [7] O.G. Harrold, The non-existence of a certain type of continuous transformation, Duke Math. J. 5 (1939), 789-793.
- [8] J. Heath, There is no k-to-1 function from any continuum onto [0,1], or any dendrite, with only finitely many discontinuities, Trans. Am. Math. Soc. 306 (1988), 293-305.
- [9] J. Heath, K-to-1 functions between graphs with finitely many discontinuities, Proc. Am. Math. Soc. 103 (1988), 661-666.
- [10] J. Heath, Trees that admit 3-to-1 maps onto the circle, J. Graph Theory, 14, No. 3, (1990), 311-320.
- [11] S.T. Hedetniemi, Homomorphisms of graphs and automata, University of Michigan Technical Report 03105-44-T (1966).
- [12] P. Hell and J. Nešetřil, On the complexity of H-coloring, Journal of Combinatorial Theory B 48 (1990), 92-110.
- [13] P. Hell, H. Zhou and X. Zhou, Homomorphisms to oriented cycles, to appear in *Combinatorica*.
- [14] P. Hell and X. Zhu, Homomorphisms to oriented paths, submitted.
- [15] P. Hell and X. Zhu, Homomorphisms to unbalanced cycles, submitted.

- [16] A.J. Hilton, The existence of k-to-1 continuous maps between graphs when k is sufficiently large, *Journal of Graph Theory* 17, No. 4, (1993), 443–461.
- [17] A.J.W. Hilton, J. Liu and C. Zhao, Graphs that admit 3-to-1 maps onto a circle, submitted.
- [18] M. Hofmeister, Counting double covers of graphs, J. Graph Theory, 12, No. 3, (1988), 437-444.
- [19] B. Jackson, T.D. Parsons and T. Pisanski, A duality theorem for graph embeddings, J. Graph Theory, 5, No. 1, (1981), 55-77.
- [20] P. Komárek, Some new good characterizations for directed graphs, Casopis. Pēst. Mat. 51 (1984), 348-354.
- [21] G. MacGillivrary, On the complexity of coloring by vertex transitive and arc transitive digraphs, SIAM J. Discrete Math., 4 (1991), 397– 408.
- [22] H.A. Maurer, A. Salomaa and D. Wood, Colorings and interpretations: a connection between graphs and grammar forms, *Discrete Applied Math.*, 3 (1981), 119-135.
- [23] H.A. Maurer, J.H. Sudborough and E. Welzl, On the complexity of the general coloring problem, *Inform. and Control* 51 (1981), 123-145.
- [24] D.A. Waller, Double covers of graphs, Bull. Austral. Math. Soc. 14 (1976), 233-248.
- [25] E. Welzl, Symmetric graphs and interpretations, J. Combinatorial Theory (B) 37 (1984), 235-244.
- [26] H. Zhou, Characterization of homomorphic preimages of certain oriented cycles, SIAM J. on Discrete Mathematics, 6, No. 1, (1993), 87-99.
- [27] H. Zhou, Chromatic difference sequence and homomorphism, Discrete Mathematics 113 (1993), 285-292.
- [28] H. Zhou, Inequalities with respect to graph homomorphism, *Discrete Mathematics* 112 (1993), 295–298.
- [29] X. Zhu, Polynomial algorithm for homomorphism to oriented cycles, submitted.