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ABSTRACT

Let ®(N) be the maximum number of simple polygons that can be
drawn using as vertices a set V of IV points in the plane. By counting the
number of simple polygons of a particular configuration of V, an improved
lower bound for ®(N) is obtained. It is proved that (N )¥ is asymptoti-
cally greater than 3.6.
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1. INTRODUCTION

Let V be a set of N points in the plane. The number of simple polygons
that can be drawn using as vertices the points of V depends on the relative
position of these points. We are interested in knowing ®(N), the maximumn
of the above numbers among the different configurations of V.

This problem was first studied by Newborn and Moser [7]; they proved
that ®(N) is asymptotically greater than 2.15V. Later, Ajtai et al. [1]
proved that limsupy_, ., ®(N )*’ is finite, but very little is known about
the value of this limit, c. The best bounds for ¢ are:

3.268461786 < ¢ < 1384000

where the former figure is due to Hayward [5], and the latter to Smith [9].
The latter author conjectures 6 as a probable value of c.

Hayward [5] obtains the lower bound 3.268461786 analyzing the par-
ticular case in which the points are in three spiralled arcs emanating from
the origin, and counting a subset of the polygons of that configuration.

In this paper we will count the polygons that can be drawn when the
configuration of the set V is as shown in figure 1: the points lie in two
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concave lines P and @, such that, if py,p2,... ,pm are the points on P
and q1,¢2,... ,qn are these on Q, the segments p;g; do not cross Q. In
addition, Q must be outside the convex hull formed by {pi,p2,-.. ,Pm}-
We will prove that the number of polygons that can be drawn for this
configuration is asymptotically greater than 3.6, where N = m + n.

To prove this, we will use one result (theorem 1) found in Garcia and
Tejel [4]. In that paper, the following situation is studied: P and Q are -
two convex polygons with @ inside P; any simple polygon with vertices on
PuQ, traversed in clockwise direction, visits the points of Q in a particular
order. In that paper, these possible orders are characterized.

Definition 1. We will say that a permutation of (1,2,...,n) has “the
subdivision property” if it is of the form (1, ¢), where o is a permutation of
the indices 2,3,... ,n formed by two permutations o, and o2 of consecutive
indices, and the permutations o) and o3 can be subdivided in the same way
as o, as long as they have at least two indices.

For example, the permutation (1,3,4,2,7,5,6,9,8) has this property
because:

(17 (3, 41 27 77 5, 6’ 9’ 8)) — (17 ((3’ 472)1 (7’ 57 6) 9, 8))) -
(1,(((3,4),(2)),((7,5,6),(9,8)))) =
(1, ((((3), (4)), (2)), (((7),(5,6)),((9), (8))))) =
(1, ((((3), (4)), (2)), (((7),((5), (8))), ((9), (8)))))

but (1,3,5,2,4) does not have this property.

Definition 2. Given a permutation of n indices, we will say that six
indices #; < i3 < i3 < i4 < i5 < ig form a six point “star” if they appear in
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Ifq1,q2,... ,qn are the points of the convex polygon @ numbered clock-
wise, then the following is proved in [4]:

Theorem 1. The orders in which the points of Q can be visited in any
simple polygon, are permutations that do not contain a six point star and
verify the subdivision property.

2. RECURRENCE FORMULAS

For the particular configuration previously explained, we will give re-
currence formulas to count the number of simple polygonal paths that visit
all the points of P and @, and that are of one of the following types (see
figure 2).

Type 1: paths beginning in p, and finishing in p,,,. We will denote by
g1{m, n) the number of paths of this type.

Type 2: paths beginning in p; and finishing in ¢,. Their number will
be denoted by g;(m,n). By symetry, ga(m,n) also is the number of paths
from ¢, to p,,.

Type 3: paths from p; to g,. Their number will be denoted by
g3(m,n), which is the same as the one of paths from q; to pm.

Type 4: this is a subclass of type 1, formed by paths in which the
points ¢q; and g, are directly connected, and furthermore, a g; is visited
before ¢;, and a g; is visited after g,. Their number will be denoted by
g4(m,n).

Figure 2




Notice that, for any of these paths, points p1,ps,... ,pm must be vis-
ited in this order and, if an edge p;g; exists, then an edge psg;, with
i > i and j' < j, cannot exist. Also, as a consequence of this last re-
sult, for paths of type 2 (type 3), if ¢1 (gn) is visited directly from g;,
then points {g,...,gj-1} ({q1,... ,gj-1}) are visited before {g;,... ,qn}

({gjs+- - 1gn-1})-

On the other hand, the quantities g;(m,n),i = 1,2, 3,4 are well de-
fined; they only depend on m and n, and not on the exact position of the
points on P or @, or on the election of P and Q while these lines verify
the conditions explained in the previous section. Recurrence formulas for
gi(m,n),i =1,2,3,4 can be obtained because each path of any of the pre-
vious types is formed by shorter paths of the same types. We will use the
following lemma.

Lemma 1. Given a path of type 1, there exists j < n such that the points
{a1,... ,q;} are visited before {g;.1,... ,g.} and also g, is the last visited

point among {qi,...,¢;}.

Proof:
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We will add three points pm+1,po and go such that pg,... ,Pm41 form
a convex polygon and go, ... ,g» form another convex polygon inside the
first (see figure 3). Any path of type 1 can be transformed into a cycle
by adding the edges pmpm-+1, Pm+190, dopo and popy (see figure 3). Then,
Q- .- ,Qn are visited consecutively in the cycle and, by the subdivision
property, j < n must exist such that, beginning in py, first {q1,...,g;} are
visited and later {gj4+1,...,qn}. We will choose this j as the minimun of
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indices such that {qi,...,q;} are visited first.

If j = 1, the result is reached. If j # 1, then, the first visited point
g (i #1) from {qi,...,q;} will be visited after a point p;. Let us assume
that ¢ = j. Ifin {qi,...,q;} there are three points ¢;,,¢;, and g;,, with
11 < iz < i3, and ¢;, and g;, directly joined, then ¢;, must be joined with a
point pir (k' > k). But this is not possible because a link g;,px (or prrgi,)
crosses prq;. Hence, the points {qi,...,q;} are visited consecutively in
counter-clockwise direction in @.

Finally, let us assume that ¢ # j. If g, is the last visited point from
{@1,...,g;}, then, by the minimality of j and the subdivision property,
the order of points in @ is q1,4s, ¢i, j,9n,qo and they are visited in the
cycle in the order gi,gj,q1,9s,9n, go forming a six point star (see figure 3).
Therefore, necessarily ¢, = g, so that the six point star does not appear.

#
Let us see the recurrence formulas for g;(m,n),i =1,2,3,4.

Type 1)

We will assume m > 2 and n > 1. By applying lemma 1, we have the
following possibilities (see figure 4):

a) If the first point visited of @ is g, then the path continues with a path
of type 3 and the possibilities are:

E 93(ksn)

kef1,m—1]

b) If points {g2,... ,q;} are visited before ¢, and then g;4, is visited, the



number of different possibilities for n > 3 is:

E g2(k,j)gs(m — k,n — j)
ke[1,m-1],j€[2,n-1]

c) If, after ¢, the point ¢, is visited, then for n > 4, the possibilities are:

ga(m,n)

d) Finally, if after ¢;, a point i, +1 <! < n is visited, then, forn > 5
and m > 3, the number of continuations is:

> ek ha(m-k+Ln-)- > g(k-1,00(m-k+1,n-1)

ke[2,m—1) k€(2,m—1]
1€[4,n—1] 1€f4,n—1]
Figure 5

In this case, we must note that, if in one of these paths point py. is
visited directly after pr_; , the first term of the previous formula counts
these paths twice: once with the term g4(k,l)gi(m — k + 1,n — ) and the
other with g4(k — 1,1)g1(m — k + 2,n — 1) (see figure 5).

Therefore, only paths of type g4(k,!) such that the point p;, is visited
from a point of @) are considered so as not to count the same path several
times (see figure 6). There are g4(k,l) — g4(k — 1,!) of such paths and this
originates the subtracting term in the previous formula.

Figure 6



TS Rad
Jactit S,

Figure 7

For the validity of the above formulas, the initial conditions must be:

a(m,0)=0 Ym>?2
a1(0,n) =0 Vn
a(lL,n)=0 Vn

Type 2)

The curve starts at p; and finishes at ¢; and we will assume m > 1
and n > 2. Then, we have the possibilities shown in figure 7:

a) If we arrive at point ¢, from ¢, then a term of type go{m,n —1) appears.

b) If we arrive at point ¢, from point g¢,, then a term of type gz(m,n — 1)
appears if n > 3.

c) If we arrive at point ¢ from ¢; (j # 2 and j # n), then, for n > 4 and
m 2> 2, a term of the following type appears:

> ek Dg(m—k+l,n—-1-1)— Y g1(k-1,1)ga(m—k+1,n—I-1)
k€[2,m] k€[2,m]
le[1,n—3] le[1,n-3)

As before, if py is visited directly after pi_;, the first term of the
previous formula counts these paths twice, therefore, only paths of type
g1(k,!) such that point py is visited from a point of Q are considered and
their number is g, (k,l) — g1 (k - 1,1).



The initial conditions must be:
g2(0,n) =0 Vn
g2(m,0)=0 Vm2>1
g2im,1)=1 VYm2>1
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Figure 8

Type 3)

The path starts at p, and finishes at g, and we will assume m > 1 and
n > 2. Then, we have the following cases (see figure 8):

a) If we arrive at g, from pm, then a term of type gi(m,n — 1) appears
when m > 2.

b) If we arrive at g, from g,_1, then a term of type g3(m,n — 1) appears.

c) If we arrive at g, from gy, then a term of type g2(m,n — 1) appears when
n > 3.

d) Finally, if we arrive at g, from g; (1 < j < n—1) then, forn > 4 and
m > 2, a term of the following type appears:

E  ai(k, Dga(m—k+1,n—1-1)- E a1(k—1,0)g2(m—k+1,n—1-1)
ke[2,m] ke(2,m]
le[i,n-3] le(1,n-3)

The initial conditions must be:
g3(0,n) =0 Vn
g3(m,0)=0 Ym>1
g3(m,1)=1 Vm2>1

10



Type 4)

If m < 2 and n < 4, g4(m,n) = 0. For g4(m,n) withm >2andn >4
we have:

ga(m,n) = > g2(k, 1)ga(m — kyn = 1)

ke[l,m—1],lg[2,n-2}

In conclusion, by simplifying the above formulas we obtain:

galmn)= > gs(k,n)+ga(m,m)+ D ga(k,Dga(m — k,n—1)

kefo,m—1] ke(o,m]
lelo,n]
- Y mka-D+ Y, ailkDg(m—-k+1n-1)
ke[o,m—1) kelo,m+1]
tefo,n]
- Y ek Dgalm—k,n=1) m>1,n>1
ke[o,m]
ie[o,n]
(1)
g2(m,n) = ga(m,n — 1) + gs(m,n — 1) — g1(m,n — 2)
+ Y alkDgm-k+lLn-1-1)
k€(0,m+1]
lejo,n-1]
- Y gk Dg(m—kn~1-1) m>1n>3
ke(0,m]
1elo,n—1]
(2)
gs(m,n) = gi(m,n —1) + g2(m,n — 1) + gs(m,n — 1) — g1(m,n — 2)
+ 3 aikDgm-k+1lLn-1-1)
kefo,m+1] .
le[o,n—1]
- Y akbem-kn-1-1) m>1,n>3
kelo,m]
te[o,n—1]
(3)
ga(m,n) = Z g2(k,Dg2(m — k,n — 1)
ke[0,m],Le[0,n]
-2 Y gkn-1) m>1n>3
kE[o,m—1]
(4)

11



m= m=10 m=15 m=20
n=1 1 1 1 1
n=5 104 434 1114 2269
n=10 82546 1353295 8575904 35524423
n=15| 41242712 2366615340 32864853312 246076961668
n=20| 14013817844 | 2682887568136 | 78181775842203| 1018897823215759

Table 1
with the initial conditions:

(1)) (01 n) =0 Vn

91(m,0)=0 Vm2>1

92(07 n) =0 Vn

g2(m,0) =0 Vm2>1

g2(m,1)=1 Vm2>1

These recurrence formulas allow us to calculate g,(m,n), g2(m,n),
g3(m,n) and g4(m,n) for every m and n. Table 1 shows ga(m,n) for some

92(m,2) = gz(m,1) =1 Vm2>1
g3(0,n)=0 VYn

g93(m,0)=0 Vm>1
gs(m,1)=1 Ym>1
93(m, 2) = g1(m,1) + gs(m,1) =m Vm 21
94(0,n) =0 Vn
94(m,0) = ga(m,1) = g4(m,2) =0 Vm >1

values of m and n.

3. GENERATING FUNCTION OF g;(m,n)

From a path of type 2, a simple polygon can be formed joining the
two extremes of this path. Consequently, ®(m + n) > g2(m,n), and if we
calculate the asymptotic value of g2(m,n), we will obtain a lower bound

12




for ®(m + n). We will calculate in this section the generating function of
g2(m,n).

From (2) and (3) we obtain:
g3(m,n) = g2(m,n) + u(m,n—-1) m20,n2>1

and then, we have for (1) and (2) the following formulas:

amn)= > g@kn)+ D ai(k,n—1)+gi(m,n)

ke[o,m—1] ke[o,m-1]

+ Y ekDem-kn-1)
ke|o,m],i€[0,n]

+ Z gz(kal)gl(m—k$n_l_ 1)
kelo,m],l€[0,n—1]

- Y ekr-1- ) akn-2)

kelo,m—1] kefo,m—1]

+ Y. akDalm—k+1,n-1)
kE[0,m+1],l€|0,n]

- Z a1(k,1)ga(m — k,n - 1) m>1n>2
ke[0,m]l€[0,n]
(6)

g2(m,n) =22(mn— 1)+ Y qi(k,Dga(m—k+1n—1-1)

ke[0,m+1)
iefo,n—1)
- Y aklgm-kn-1-1) m>1,n>3
kelo,m]
lejo,n—1]

(7)

Let GL(Z,¥) = 3,50 Lon>0 91(M,n)Z™y" be the generating function
of g1(m,n). Analogously, we will define G2(z,y) and G4(x,y) the generat-
ing functions of g(m,n) and g4(m, n), respectively.

13



We have for G2(z,y)G2(z,y):

G2(z,y)G2(z,y) Z z™ Z g2(k,D)ga(m —k,n-10)} =
m>0 k€jo,m])
n30 lefo,n)

=S| S ek Dga(m - k,1)

m>1 keglo,m]
n=2 =1

+Y 2™y | Y gk, lga(m —k,n—1)

m>1 kelo,m)
n23 l€[0,n]

As g2(m,1) = 1,m > 1 and using (4) we have:

G2Az,y) = Y z™Pm-1)+ Y z"y" | ga(m,n) +2 Y ga(kn—1)
m>2 m>231 ke[o,m—1)

= Z x"‘yz(m - 1) + G4($, y)

m>2

+2 (Z z") ( Z z™y" g2(m,n — 1))
k>1 m>0,n>3

Z mz™ "') + G4(z,y)

m>2 m>2

+2 |y Z z™y"ga(m,n)
k>1 m>0,n>2

=y’ (z mz™ — Z x"‘) + G4(z,y)

m>2 m>2

+2 z") y | G2z,y) - Y 2™ 92(m,0) = D ™yga(m, 1)

m2>0 m2>0
n=0 n=1

Using 3,,502™ = = and Y5, mz™ = gz for |z] < 1 we obtain:

14



=y (8)

G2(z,y)G2(z,y) = G4(z,y) + %Gm' y) - (1-z)?

Similarly, we obtain for G1(z,y)G2(z,y) and G1(z,y)G4(z,y) from
(6) and (7) respectively:

z(1 - 2y) ?(y—1)
= ——— G2z, y) + —— (9)

G1(z,1)G2(z,v) = o

G1(z,)GA(z,y) = T (“3’1(”_; ) )G’l(z y) + ((—))02(1: y)

3

2z 'y
- 1— $G4(z,y) + (1 _ .'B)3

(10)

From (8), (9) and (10) we obtain the equation of third degree for
G2(z,y):

62a,)* - T Gaa ) + PN 2= W Gy
L U=y =z —ay)

-2y =0

(11)

4. ASYMPTOTIC VALUE OF g2(m,n)

For fixed complexes = and y the equation (11) will have three solutions,
and the series

> ga(m,n)z™y" (12)

will converge to one of these solutions for values of z and y in a determined
region of C2. We must then solve two problems: which is the convergence
region of the double series (12) and which of the roots of (11) coincides
with the value of the series in that region.

The following theorem solves both problems:

15



Theorem 2. The absolute convergence regxon of series (12) is the region
of (z,y) € C* sothat 0 < |z| < 1, 0 < |y] < 3 and D(|z|,|y|) < 0, where
D(z,y) is the discriminant of t.he equation 23 +az+b =0 with a = 22(1 -
y—-3y*)+z(2y—1)and b= —J (z(2+y- ’5 ¥?) +y — 2). Furthermore,
for real values of z and y in the interior of that region, equation (11) holds
three real roots v; < v < v3 and the intermediate root v, gives the value
of the series.

Proof:

For complexes £’ and ¢/, if 3 g2(m, n)|z'|™|y'|* converges, then series
(12) is absolutely convergent. Given real values £ > 0 and y > 0, if (12)
converges for z and y, then (12) is absolutely convergent for z' and y'
complexes, such that |z'| = z and |y'| = y. Thus, henceforth we will only
consider positive real values of = and y.

Multiplying the equation (11) by (1—z)3 and substituting (1-z)G2(z,y)
—% for 2, equation (11) yields:

2 +az+b=0 (13)

with a = 22(1-y—4y?)+z(2y—1)and b= —1;-‘1 (z@2+y- L) +y-2).

For each value of y, equation (13) represents a 3-form algebraic func-
tion, whose only singularities can be the zeroes of the discriminant of the
equation. Any branch of the function will be analytical in any region with-
out singularities, and consequently, in a neighborhood of the origin with
radius less than the minimum among the absolute values of the singulari-
ties. In addition, as g2(m,n) > 0 V m,n, the singularity of the root of (11)
that coincides with (12), must be real. .

The discriminant of (13) is

b2

3 3
D(z,y) = 7 + -2—7 =10 (Beoy) + Pa(y) + zealy) + es(y))  (14)

where:
co(y) = —32y° — 13y* +40y° + 8% — 12y + 4

c1(y) = 32¢° + 70y* — 72y° — 52y + 48y — 12
ca(y) = —61y* + 4y® + 92y% — 60y + 12

3
c3(y) = 32y° — 48y* + 24y — 4 =32 (y - %)

16



On the other hand, for an equation of type (13) with real coefficients,
there are three real roots if D(z,y) < 0. If D(z,y) > 0, there is only a real
root.

Let y be a fixed real value 0 < y < 1/2. In addition to z = 0, which
is not a singularity, the other zeroes of (14) are the solutions of the cubic
equation A(z,y) = 0, where

A(z,y) = 2°coly) + 221 (y) + zca(y) + c3(y)

cl!.'l!

3co(y) 1OF W this equation be-

Dividing by co(z) and substituting = +
comes:

w3+a1w+bl =0 (15)

3 2
Its discriminant is given by D, (y) = 7+ 241, and on operating:

4 y"(y - 1)(3y* - 3y +1)(20y - 19)°
Di(y) = 5 1
27 co(y)
For the considered values of y the discriminant D (y) is positive , hence
(15) has only one real root, that we will denote by w(y). Therefore, series
(12) is convergent for real y if 0 <y < 1/2 and real z with 0 < z < w(y).

For z = 0 the three roots of equation (13) are z; = —/z(1 — z), 2, =
0,23 = ++/2(1 — z). Then, the solutions of (11) are: v, = -2 =

-z
0,v3 =, /1% and the solution that corresponds to value of the series is the

intermediate v;. By continuity, while z is real and = < w(y), equation (13)
has three real roots (because D(z,y) < 0) and the corrresponding root to
series (12) is the intermediate one. But if £ > w(y) then D(z,y) > 0 and
this intermediate root becomes complex, so series (12) cannot be convergent
for values of = outside the above region (except if y = 0) and w(y) is the
singularity of this intermediate root for fixed y. #

Figure 9 shows the convergence zone of G2(z,y) as a function of ||
and |y|.

Let 71,72 denote the associated radii of convergence of series (12).
They are real numbers with 0 < 7, <1, 0 < rp < 1/2, A(r1,r2) = 0.
Then, for any r),r;,we can apply the formula of Cauchy-Hadamard in C2:

limsup max_(gz(m,n)riry)"/N =1

N-—00

17
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If we choose the radii of convergence #; and 72 such that ¥, = 7, the
above formula becomes:

v _ 1

limsup max (g2(m,n)) -

N-ooo

—

By solving the equation
A(ry,m) =0
with 0 < r; < 1, we obtain the value 7 = 0.27339098, so ',f—l = 3.60501960.

Therefore, we have proved the following result:

Theorem 3.

limsup ®(N)/N > limsup max (gz(m,n))"’/" = 3.60501960
Noroco n+m=N

N—ooo
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