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ABSTRACT. This paper investigates the number of spanning
subgraphs of the product of an arbitrary graph G with the path
graphs P, on n vertices that meet certain properties: connec-
tivity, acyclicity, Hamiltonicity, and restrictions on degree. A
general method is presented for constructing a recurrence equa-
tion R(n) for the graphs G x P, giving the number of spanning
subgraphs that satisfy a given combination of the properties.
The primary result is that all constructed recurrence equations
are homogeneous linear recurrence equations with integer coef-
ficients. A second result is that the property “having a span-
ning tree with degree restricted to 1 and 3" is a comparatively
strong property, just like the property “having a Hamilton cy-
cle”, which has been studied extensively in literature.

1 Introduction
The graph G'(V’, E') is a spanning subgraph of the graph G(V, E) when
V/ =V and E’' C E. The vertices of G are considered to be labeled. For
each graph G there exist 2™ possible spanning subgraphs where = is the
number of edges of G.
SP(G) is defined as the set of all spanning subgraphs of a graph G having
the property P and CP(G) is defined to be equal to its cardinality: |SP(G)|.
The basic properties to be studied are: restrictions on degree (denoted
by D, where D is the set of allowed degrees), connectivity (denoted by C),
and acyclicity (denoted by AC). Special cases or combinations of these
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properties are known as: domino tiling (DT: D = {1}), 2-factors (2F:
D = {2}), Hamilton cycles (HC: C A D = {2}), Hamilton paths (HP:
C AAC A D = {1,2}), and spanning trees (ST: C A AC). A property P
is one the basic properties or any combination of these. The number of
Hamilton cycles of G is usually defined as being equal to CHC(G).

Let G(V, E) and G'(V’, E’) be graphs. The product graph G x G’ is
defined as the graph having the Cartesian product V' x V" as its vertices,
while its edge set contains exactly all the pairs {(, 5), (i, k)} where {j,k} €
E’ and all the pairs {(¢, 5), (k,7)} where {%,k} € E. Hence G x G’ contains
two types of edges. These will be call G"-edges and G-edges, respectively.

The notation C§(n) will abbreviate CF(G x P,), likewise S£(n) abbre-
viates SP(G x P,..)

In [3] and [4], CHC(n) is studied where G is one of K2, Ps, Py or Kj.
Upper and lower bounds of CHC(P, x Pp) are also presented. In [12] and
[6, 7], CEC is studied where G is P; and Ps respectively. In [1], CHP i
studied for n < 6. Other related results can be found in [5, 8, 11] In
all of these cases, homogeneous linear recurrence equations with integer
coefficients for CHC were found.

In the following section, we describe our method for finding the recurrence
equation of C5(n). Our method is related to a method which is more
generally known as the ¢transfer-matriz method, which is discussed in more
detail in [10]. First, we apply this method to restrictions on degree, because
it is the least complicated property. Second, we apply the method to the
connectivity and acyclicity properties. Third, we show how the recurrence
equation can be found for any combination of the basic properties. Finally,
we give a table of recurrence equations we have found by applying the
method to some combinations of properties and graphs.

2 Main method

Let S’ be some graph in SE(n). The vertex set of S’ consists of all (3, 5)
where i € {1,...,m}, m is the number of vertices in G, and j € {1,... ,n}.
We assume that the vertices of G are labeled with the numbers 1 to m in
some arbitrary way.!

The vertices of S’ can be partitions into n groups where the j-th group
contains all (3, 7) vertices. The G-edges of S’ are between vertices of the
same group. The P,-edges of S’ are between vertices of two successive
groups.

Which G-edges of G x P, are in S’ can be described by n spanning
subgraphs of G, one for each group. Let Gy,...,Gy be such that {i,k} €

1This assumption will be used in the remaining part of the paper without further
notice.
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E(G;) iff edge {(3,7), (k,7)} is in S’. Which P,-edges of G x P, are in S’
can be described by n — 1 vectors of m elements on {1,0}, one for each
set of edges between two successive groups. Let Aj,..., An_1 be such that
A;j[é] = 1 iff the edge {(4,), (,7 + 1)} is in S’ (where A[i] denotes the i-th
element of the vector A).

The sequence G1A41G3 ... Gy—1An—1Gy, describes the graph S’ from ‘left’
to ‘right’. When looking at the sequences of all the graphs in S5 (n) for all
possible values of n, one might think that there exists a system of states
and state transitions by which all the sequences can be generated. Many of
the results discovered so far have been found by constructing such systems.
We will show that it is indeed possible to construct a system of states and
state transitions for each combination of a property P and a graph G.

We take the vectors on m elements as states and the spanning subgraphs
of G as state transitions. There also will be a single begin state and a
single end state. For some properties there will be more than one state with
certain vectors. To make the vectors unique we will use vectors on natural
numbers instead of on {0,1}. For this reason, we redefine the existence of
the Py-edges based on the vectors in the following way: {(3,7), (¢, +1)} is
in 8" iff A;[¢] > O (instead of A;[i] = 1).

In some systems, more than one state transition between two states may
exist, but these state transitions will always be labeled by different spanning
subgraphs.

We will use directed multi-graphs for representing the state transition
systems. The vertices of the directed multi-graphs will represent the states
and we will label them with vectors of m elements. The directed edges
will represent the state transitions and they will be labeled with spanning
subgraphs of G. The vertices of the begin and end states will be denoted
by V; and V..

We will use (v;,v2,G") to denote the edge from v; to v, that is labeled
with the graph G’.

The graph represented by the walk vge1v; ...vn—1€nvy is the graph rep-
resented by the sequence Ge, Ay, ... Ay,_,Ge,. In the remaining of the
paper we only consider walks for which vy equals V;. But in many cases v,
will not be equal to V, as we also have to consider incomplete walks to V..

For each property P, we will present a method to construct (for each
graph G) a directed multi-graph MZ, such that each walk from V; to V,
over n edges represents a graph in S5 (n), and such that for each graph S’ in
S&(n) there is exactly one walk from V; to V. over n edges that represents
S’. We define W (n) as the set of all walks from Vj, to V. over n edges in
ME. From this it follows that |WZ (n)| = CE(n).

Furthermore, it is known that the number of directed walks over n edges
can be described by a homogeneous linear recurrence equation in n with

131



only integer coefficients.

Assuming that the vertices of M§ have been numbered, let N be the ad-
Jjacency matrix of Mg such that the value of N; ; equals the number of di-
rected edges from vertex i to vertex j in M. Let b be the number of vertex
Vs and e be the number of vertex V.. Then CZ(n) equals (N™&,)[e], where
&p is the vector from the standard basis whose elements are all equal to 0
except the b-th element which is equal to 1. The Cayley-Hamilton Theorem
(see, for example, [9]) from the field of linear algebra states that 2§=0 pj N7

equals the zero matrix when 2§=0 pja? is the characteristic polynomial of
the matrix N, which can be found by calculating the determinant of N —zI.
If we assume that p, = 1, then N™ = — Z§=1 Pe—;N™7 holds for all n > ¢&.
From this equation the recurrence equation C5(n) = — Z§=o pe—;CE(n—7)
for all n > € can be derived.

3 Restrictions on degree

Given a graph G(V, E) and a set of allowed degrees D we present the con-
struction of MZ. The vertex set of MZ consists of 2™ (m = |V(G)|) vertices
which are uniquely labeled with all the possible vectors of m-elements on
{0,1}. The special vertices V;, and V, of MZ are equal to the vertex that
is labeled with 0. The edge set of M2 consists of all the edges (v;,v2, G")
where G’ is a spanning subgraph of G, such that dgr(i)+ Ay, [i] + Aw, [t} € D
for all 1 < ¢ < m. dg(i) denotes the degree of the vertex labeled with i in
G'.

Due to the way the restriction is formulated, one can easily see that if an
edge (v1,vs,G’) exists in a graph M2, an edge (vp,v;,G’) will also exist.
Thus, in this case it is also possible to use an undirected multi-graph to
represent the state transition system correctly.

3.1 Correctness of M?

To prove that the construction of MZ is correct, it is sufficient to prove
that for each S’ in S2(n) there exists exactly one walk in W2 (n), and that
each walk in W2 (n) represents a graph in S2(n).

Theorem 1 There is a one-to-one correspondence between the walks in
W& (n) and the graphs in SE(n).

Proof: (=) For each walk Vie1v;...v5—16,Ve in MZ, let S’ be the graph
represented by Gy, . .. , Gy, (the labels with theedges ey, ... ,e,) and Ay, ...,
An—_1 (the labels with the edges v1,...,vn—1). Let (3,5) € {1,...,m} x
{1,...,n} be the vertices of the graph S'. It is clear that the degree of each
vertex (i, 7) equals dg; (i) + A;[i] + Aj+1[i], where Ap = A, =0. According
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to the definition of the edge set of MZ we know that the degree of all the
vertices is an element of D. From this we conclude that S’ is in S2(n).

(<=) For each graph S’ in S2(n) there exists a unique set of Gy,... ,G,
and A,,...,A,—1 which represent the graph, where A; are vectors over
{0,1}. There exists vertices vy, ... ,vn—1 in MZ labeled with A, ..., Ap_j.
For each A; there exists exactly one vertex v; labeled with A; by definition.

Let Ap = A, = 0. It is clear that for each 1 < j < n, dg; (3) + Ajfi] +
Aj11[i] is element of D for all 1 < i < m, which implies there must exist
an edge (vj,vj4+1,G;) in ME where vo =V, and v, = V,.

By definition there exists only one edge between v; and v;4; that is
labeled with G;. From this we conclude there is exactly one walk Ve, ...
Un_16,V, in M for each graph S’ in S2(n). m]

Corollary 1 CZ(n) is equal to the number of walks in WE (n) for all n.

4 Acycliness and connectedness

The properties acyclicity and connectedness are related in the sense that
they both depend on the (non-)existence of certain paths in a graph. A
graph G is connected iff there exists a path between any two vertices. A
graph G is acyclic iff there does not exist a path (of length greater than 0)
from a vertex to itself.

In M§ and MZC we should only allow walks from V; to V. for which
some global properties about vertices being connected hold in the graphs
represented by these walks. However, we can only express these as local
conditions, e.g., by putting restrictions on the edges between the vertices
of M§ and M4C.

Consider, for example, the walk Viv; ...v,—1V, in MAC that represents
a certain graph S’ in SAC. Let vp = V; and v, = V.. The existence
of the edge (vi-1,v;,G;) for some 1 < i < n should somehow depend
on what vertices are connected in the graph S” represented by the walk
Vo...vi—1. As a consequence, v;_; must be labeled with some kind of
connection coding which tells which of the vertices (4,1 — 1) and (k,i—1)
are connected in S” and which are not. We could use a vector on natural
numbers with m elements (where m is the number of vertices in G), such
that A,,_, [{] = Ay,_, [k] iff the vertices (¢,i—1) and (k,i~—1) are connected
in S”. Remember, however, that A,,_, also tells which of the edges {(¢,i —
1),(£,7)} appear in S’. Because some A,,_, [{] might be equal to 0, only
those Ay, _, [¢] unequal to 0 say something about which of the vertices in S”
are connected. For this reason, we will call these vectors partial connection
codings. We would like to make the partial connection codings unique. This
we can do by restricting the natural numbers that can be used, as is done
by the following definition.
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Definition 1 (partial connection coding) Given a graph G(V, E) and
an ordered subset (vy,...,vm) of the vertices V, we will call the vector
(a1,-... ,am) on natural numbers a partial connection coding of (vi,...vm)

if:

e for all a; > 0 and a; > 0 it is true that a; = a; iff v; and v; are
connected in G.

e (to make the coding unique) ay € {0,1} and for all i > 1, a; <
maz({ay,...,ai-1}) +1.

For each vector A on m-elements of natural numbers, we define N(A) as a
vector of m-elements of {0,1} such that for all 1 <i < m, N(A)[i] is equal
to 0if A[i] = 0 and equal to 1 otherwise. Note that if A; and A3 are partial
connection codings for a subset (vy,...vn,) of the vertices of a graph, then
N(A;) = N(Ap) implies A; = A».

Returning to our example, if A,,_, and G; are known, then we should
also be able to determine that vertices (¢, ) and (k, #) are connected in the
graph represented by the walk V;...v;. This can be found by adding edges
to the graph G; for each two vertices that are connected according to partial
connection coding A,,_,. We will use the notation G;[A,,_,] for this way
of adding edges; it is defined more precisely by the following definition:

Definition 2 For a graph G where the vertices are labeled with the numbers
1 to m, let A be some vector with m-elements of natural numbers. G[A]
i3 defined as the graph on the vertices of G, where the set of edges i3 the
union of the edges of G and all edges {i,3} for which A[i] = A[j] # 0.

The following lemma states that if (as in our example) v; is labeled with a
correct partial connection coding for the graph G;[A,;_,], then this partial
connection coding is also correct for the vertices ((1,2),...(m,1)) of the
graph represented by the walk Vj ... v;.

Lemma 1 Suppose that the spanning subgraph S’ of G x P, is represented
by G1,...,Gn and A;,... ,An—1. Purther suppose that An_, i3 a correct
partial connection coding for the vertices ((1,n —1),..., (m,n — 1)) of
the graph represented by Gi,... ,Gn—1 and Aj,..., An—2, where m is the
number of vertices of G. The vertices (p,n) and (q,n) are connected in S’
iff the vertices p and q are connected in Gn[An—1).

Proof: (=) If (p,n) and (g, n) are connected in S’, there must exist a walk
from (p,n) to (g,n); let (ay,b1),... (ax, bx) be this walk where (a1,b;) =
(p,n) and (ak,bx) = (g,n). For all 1 < ¢ < k where b; = b;41 = n, there
exists an edge {ai,ai+1} in G, and of course also in Gn[An—1]. For all
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1<i<j<kwherebi_; =bj;1=n,and by <n forall s <€<j,itis the
case that a;_; = a;, a; = a;;1 and b; = b; = n — 1. Because the vertices
(as, b;) and (a;, b;) are connected in the graph represented by Gy, ... ,Gn_3
and Ajy,..., An—2, we can conclude that A,_;[a;_1] = An—1[a;41] # 0 and
that {ai_1,@;41} is an edge in Gn[An-1]. Thus there exists a walk in
Gn[An—1] over the vertices a; for which b; = n, where ¢; = p and ax = q.
Hence p and g are connected in Gy, [An—1).

(«) If the vertices p and g are connected in G,[An—1], there must exist
a walk on the vertices ay, ... ,a, where a; = p and a;x = q. By definition
of Gn[An-1), each edge {ai,ai41} for 1 < i < k is an edge of Gy, or
otherwise An_1[a;] = An—1[ai+1] # 0. If {ai,ai4+1} is an edge of G, then
{(ai,n), (ai4+1,m)} is an edge of §’. If An_1[a;] = An-1][ai+1] # O, then S’
contains the edges {(a'l'»n)a (airn - 1)} and {(ai+11n - 1),(ai4+1,n)}, and
there exists a walk from the edge (a;,n — 1) to the edge (a;y1,7 —1) in the
graph represented by G,,... ,Gn—1 and A,;,..., A,_2. From this we can
conclude that there exists a walk through the vertices (a1,n),... ,(ak,n)
in &, and that (p,n) and (q,n) are connected in S’. o

M§ and MZC will be constructed in such a way that for each directed walk
with arbitrary length n from V; to a vertex v, the label A with v will be a
correct partial connection coding for the vertices ((1,n),... , (m,n)) of the
spanning subgraph of G x P, which is represented by this walk.

The following theorem states that this is true if for all edges (vy, v, G")
in M§, A, is a correct partial connection coding of G'[A,,].

Theorem 2 Suppose that the vertices of M are labeled with possible par-
tial connection codings (ay,...,am), where m is equal to the number of
vertices in G. Further suppose that for all the edges (v1,v2,G’) of ME,
ve i3 labeled with a correct connection coding for the vertices (1,... ,m) of
the graph G'[A,,], and vertez Vj is labeled with 0. Then for each walk of
arbitrary length n from V, to v in this Mg , v will be labeled with a correct
partial connection coding for the vertices ((1,n),...,(m,n)) of the graph
represented by this walk.

Proof: We prove this by induction on the length of the walk.

(Initial step:) For each walk Viejvi, the graph G’[Ay,] is equal to the
graph G’, with which the edge e; is labeled. From this we conclude that the
vertices (p, 1) and (g, 1) are connected in the graph represented by the walk
Veeiv, iff the vertices p and ¢ are connected in G’. If v; is labeled with
a correct partial connection coding for the vertices (1,...,n) of G'[Ay;]
then it is labeled with a correct partial connection coding for the vertices
((1,mn),...,(m,n)) of the graph represented by the walk Ve v;.

(Induction step:) For each walk Vie1v; ...vn—1€0v, (With n > 1), sup-
pose that v, is labeled with the correct partial connection coding A,,,_, of
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the vertices ((1,n—1),...,(m,n—1)) of the graph represented by the walk
Veei1v: ... Up_2€n—10n—1 in M. From Lemma 1 we know that the vertices
(p, ) and (g, n) are connected iff p and g are connected in G, [A,, _,]- If v
is labeled with a correct partial connection coding for the vertices (1,... ,n)
of G.,[Av,._,], then it is labeled with a correct partial connection coding
for the vertices ((1,n),...,(m,n)) of the graph represented by the walk
Vhe1v1 ... Un_1€,v, in ME. u]

4.1 Connectedness

In this section we present the construction of M and we prove its cor-
rectness. The vertex set of MS consists of the vertices which are uniquely
labeled with all the possible partial connection codings of m-elements joined
with a unique vertex V, (m = |V(G)|). The number of vertices exceeds the
number of possible partial connection codings by one. The special vertices
Vs and V, of M are two separate vertices, both labeled with 0. The edge
set of MS consists of all the edges (vy,v3, G'), such that:

e A,, is a correct partial connection coding of the vertices (1,...,m)
of the graph G’[A,,].

o v # V.

e either v = V, and G’[A,,] is connected, or v # V. and each vertex i
in G'[A,,] is connected (or equal) to a vertex j for which A,,[j] # 0.

The following theorem states the correctness of M§ constructed accord-
ing the above method.

Theorem 8 There is a one-to-one correspondence between the walks in
W& (n) and the graphs in SG(n).

Proof: (=) For each walk Vpe1v) ...vn—1exVe in ME, let S’ be the graph
represented by this walk. Suppose that S’ is not connected. Then S’ must
have at least two components. Let (%, k) be a vertex with maximal k that
is not connected with the vertex (1,n). Such a vertex (i, k) must exist.
There are two cases: k = n or k < n. In the case k = n, the vertices 1
and i of G, [A.,_,] are not connected according to Lemma 1. This means
that by definition the edge (vn—1, Ve, Ge,,) does not exist in Mg , which is a
contradiction. In the case k < n, we know that because k is maximal there
does not exist an edge {(4, k), (4, k+1)} in §’, such that (7, k) and (i, k) are
connected in the graph represented by the walk Viejvy ...vk—1€xvx. This
means there does not exist a 7, such that the vertices ¢ and j are connected
in Ge, [Av._,], and A,,[j] # 0, by application of Lemma 1. This means
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that, by definition, the edge (vk—1,vk, Ge,) does not exist in M§, which is
a contradiction.

(<) For each graph S’ in S&(n), let Gy,...,G,, and A;,... ,An_; Tep-
resent this graph, such that for all 1 < 7 < n, A; is a correct partial con-
nection coding for the vertices (1,%),... ,(m, %) of the graph represented by
G1,...,G; and A,y,...,A;_;. This completely determines Aj,..., An_;.
Let v1,...,v5—1 be the vertices that are labeled with A,,...,A,_;. By
definition there is only one v; labeled with A; for 1 < i < n. Let v =V,
and Ag =0.

We have to prove that the edges (v;_1,v;, G;) exist for 1 < i < n, and
that the edge (v,—1, Ve, Gy) exists. Of course A; is a correct partial con-
nection coding of G;[A;_1] for 1 < i < n, and 0 a correct partial connection
coding of Gn[An_1]. If an edge (vi—1,vi,G;:) for i < n does not exist, this
means that there exists a vertex p for which there does not exist a vertex
g, such that p and q are connected in G;[A;_;], and such that A;[g] # 0.
By applying Lemma 1, this means that (p,%) is not connected with any
(g, +1). Hence S’ is not connected. Which is a contradiction. By ap-
plication of Lemma 1, we know that Gn[A,—;] must be connected. Thus
the edge (vn-1, Ve, G;) does exist. Because vy,...,v,—; are uniquely de-
fined, and because there does not exist more than one edge between two
vertices labeled with a certain graph, there can only be one walk V; and V,
representing the graph S’. o

Corollary 2 C§(n) is equal to the number of walks in WS (n) for each n.

4.2 Acycliness

In the section we will describe the construction of M4AC and prove it
correctness. The vertex set of M€ consists of the vertices which are
uniquely labeled with all the possible partial connection codings of m-
elements (m = |V(G)|). The number of vertices is equal to the number
of possible partial connection codings. The edge set of MAC consists of all
the edges (v1,v2, G’), such that:

e A,, is a correct partial connection coding of the vertices (1,...,m)
of the graph G’[Ay,].
e G is acyclic.

e there does not exist a sequence a;b; . .. axbx of distinct numbers taken
from 1,... ,m, such that for all 1 < £ < k, the vertices labeled with
az and b, are connected in G, and such that A, [b] = Ay, [a1] # 0,
and Ay, [be] = Ay, [ae+1] #0 forall 1 <2<k,
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The special vertices V; and V. of MAC are equal to the vertex labeled with
0.

The following theorem states the correctness of this construction.

Theorem 4 There is a one-to-one correspondence between the walks in
WAC(n) and the graphs in SAC(n).

Proof: (=) Let S’ be the graph represented by the walk Ve v ...vn_1e.Vs
in Mé‘c, and suppose that S’ contains a cycle. Let j be maximal such that
(3,7) is a vertex of this cycle. Let V; be the set of vertices {(1, 5), ... ,(m,3)}.
Either all the vertices of the cycle are in Vj; or not. In the first case this im-
plies that Ge; contains a cycle, which is a contradiction with the definition
of the edge set of MAC.

In the other case the cycle must contain alternating parts in and out of
Vj. Let a1b; ...axbe be the boundaries of these parts, such that only the
vertices (ag, 7), (be,7) and those in between are in V; for all 1 < £ < k.
This means that all the vertices a; and b are connected in G,,. It also
means that the edges {(az,5 — 1), (a¢,5)} and {(be,7 — 1), (be, 7)} exist in
S’, and that there exists walks between each pair of vertices (bg, 7 — 1) and
(ag+1,5 — 1), and between the pair (bx,7 — 1) and (@1, — 1) in the graph
represented by the walk Viejv;...€5_1v5_1 in Méc. From this follows that
Av;_,[be) = Av;_,[ae+1] #0 for all 1 <€ <k, and A,,_, [b] = Ay,;_, [a1] #
0. From the definition of MAC we know that the edge (vj-1,v5,Ge;) does
not exist in MZC. Thus S’ must be acyclic.

(<) For each graph S’ in S4%(n), let G1,...,Gn and Ay, ..., An_; Tep-
resent this graph such that for all 1 < 7 < n, A; is a correct partial connec-
tion coding for the vertices ((1,1),...,(m,%)) of the graph represented by
Gi,...,G;and Ay,..., A;_;. This completely determines A;,..., A,_;.

Let vy,...,vn—1 be the vertices that are labeled with A,,...,A,—1. By
definition there is only one v; labeled with A; for 1 < i < n. Let vy = V},
vy = V. and Ag = A, = 0. We have to prove that the edges (v;_1,v;, G;)
exist for 1 < i < n. Of course A; is a partial connection coding of G;[A;—1]
forl1<i<n.

Suppose that the edge (vi—1,v;, G;) does not exist, then this means
that G; must contain a cycle, or there exists a sequence a;b; ... axbx of
distinct numbers taken from {1,...,m}, such that for all 1 < ¢ < k,
the vertices labeled with a, and b; are connected in G’, and such that
Ai—-l[bk] = A.'...1[a1] 75 0, and A'-1[b¢] = A,'_l[ae_H] 75 Oforall 0 < ¢ < k.
If G; contains a cycle, then S’ must also contain a cycle, which is a contra-
diction. If a sequence ajb;...axbx with the above properties exists, then
there must exist a cycle through the vertices (a4, 7), ... , (b1, %), (b1,i—1),...
ceey (ak,i - 1), (ak,i), ceey (bk, i), (bk,i - 1), ceny (al,i - 1), (al,i) in S’
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Which is a contradiction. Thus the edges (v;—;,v;,Gi) forall1 <i<n
must exist.

Because vy,...,vn_1 are uniquely defined, and because there does not
exist more than one edge between two vertices labeled with a certain graph,
there can only be one walk from V; to V. representing the graph S’ O

Corollary 3 CA%(n) is equal to the number of walks in W4 (n) for each n.

5 Joining two (or more) properties

For each graph G and properties P and P’, the directed multl—graph MENP ’
can be constructed from MZE and ME'. The vertices of MENP' are the
subset of the Cartesian product of the vertices of ME and Mc.‘ , wWhere
only the pairs (v,v’) are taken for which N(A,) = N (Ay). Note that
N(A,) = N(A,) does not imply A, = A, in all cases.

The labeling of the vertices of M AP’ should be such that N (Awen) =
N(Ay) = N(Av).

The edge set of MEMP' consists of all the edges ((v1,7}), (vz,vz) G') for
which (vy,v2,G") and (v}, v, G’) are edges in resp. ME and MG

The special vertices V; and V. of MEAP’ are the vertices (v1,v}) and
(va, vh) resp., where vy is V; of ME, v} is V; of ME', vg is V. of ME and
v} is Vp of ME'.

Theorem 5 If ME and ML are correct for SE(n) and SE (n), then the
Mg"P " as constructed according the above described method is correct for
SENP ‘(n).

Proof: To prove that MEMP' is correct with respect to SEAF", we have to
prove that each walk in MEAP’ represents a graph in S5 AP and that for
each graph §’ in SEAP’ there is exactly one walk in M&' "P

(=) For each walk (vp, %) - .. (vn, ,,) in MEAP'| such that (wo,)) and
(vn,v.,) are resp. V; and V. of MEAP', we know that N(A,) = N(Ay) =
N(A(v;,v2)), and that the existence of (('v,_l,'v, 1) (03, }), Gi) implies the
existence of (v;—1,v;,G;) and (v} _l,v‘,G’) in resp. ME and ME for all
possible i. Also v is V; of ME, v} is V; of Mc , Un is Ve of ME and v,
is V. of ME'. From this we conclude that in M P and ML there exists
resp. the walks VUL ... Vn-1Vn and vovi...vh_ v, whlch represent the
same graph as the walk (vo,vo) . (vn, W), where vy is Vp of M§, vl is V}
of ME', vy is V. of ME and v} is V, of ME'. Because M§ and ME' are
correct, it means that this graph is both in .S’P £(n) and SP (n), hence also
in S AP (n).
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(«) For all § in SEAP (n), §' is in S (n) and in SE'(n). Because ME
and Mg P’ are correct, there exxst exactly one walk vgv1 ...vn_1vy in MG,
and exactly one walk vgv] ...v},_,v} in Mg 2" which represent the graph S/,
such that vg and v, are resp V,, and V, of MG and that v and v/, are resp.
V, and V, of ME'. It is clear that N(A,,) = N(4, 1) and that the edges
between the vertloes v;—1 and v;, and between vl and v} are labeled with
the same spanning subgraph of G for all posmble i. I‘Yom this we conclude
that (vo,))...(vn,v,) is a walk in WEAP’ which represents S’. Suppose
there exist two different walks from V; to V. in W£ AP'(1) that represent
the same graph S’. Let these walks be Vj(vq,2})... (Vn-1,v,_;)V. and
Vo(wy,wy) ... (wn—1,w),_;)Ve. Let i be minimal such that (v;_1,v_,) is
not equal to (w;_1,wj_,). Such ¢ must exist, otherwise the walks are not
different. This means that at least v; # w; or v} # w!. In the case v; # w;
it means that there exists two walks in M£ that represent the graph §’,
which is a contradiction. In the case v # w; it means that there exists two
walks in M " that represent the graph S’, which is also a contradiction.
Of course thete only exists at most one edge between each two vertices in
ME"P’ labeled with the same spanning subgraph of G. a

At first sight it may look like an ME*C constructed according the above
method will contain more edges tha.n MZC or M. But this is not true.
MEMNC will generally contain more vertices than M AC and Mg, but many
of these vertices, especial all those (v,%') for which A,, # Ay, Wi]] not have
any edges connected to them. An alternative way to construct a correct
MEMC is by taking a correct M§, and remove all edges (v;,vp,G’) for
whlch there does not exist an edge (v}, v, G’) in MAC such that A,, = Ay
and A,, = Ay;.

When P is one of C, AC or CA AC, an alternative and correct ME*P for
some D can be constructed by taking M§ and remove all edges (v, v2, G")
for which there does not exist an edge (v}, v, G’) in MZ such that N(A4,,) =
Ay and N(A,,) = Ay;- Proof of the correctness of these construction
methods is left to the reader.

6 On reducing MZ

It is obvious that some M§ get very large. From a theoretical view point
this is of course no problem at all. But the calculation of the characteristic
polynomial of a matrix becomes increasingly more complex if the size of
the matrix becomes larger.

A certain M§ can be reduced in size in a number of ways. The simplest
way is to remove all vertices (and adjacent edges) for which there does not
exist a directed walk from V}, to the vertex or a walk from the vertex to V.
These vertices will never be included in any walk from V; to V. in M§.
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If the graph G has a non-trivial automorphism, then it is possible to
reduce Mg even further. Each automorphism can be represented by a
permutation of the numbers 1 to m, where m is the number of vertices of
G.

Now it is possible to join all the vertices in M that have the same
labeling according to these permutations, and select one labeling for the
joined vertices. The edges, which were labeled with spanning subgraphs
of G, should now also be labeled with one of the permutations to indicate
which mapping has been performed. Note that it is now possible that there
is more than one edge between two vertices labeled with the same spanning
subgraph of G, but they will always have different permutations.

If an M£ has been reduced according to these methods, the character-
istic polynomial can possibly have less terms, which implies that also the
recurrence equation will have less terms.

7 Results

In this section we will present all the results that were found by applying the
above mentioned methods, by means of a computer program, to a number
of problems.

7.1 The program

The computer program used to find the results is written in C, and is
available through the author.

The program roughly consists of two parts. The first part constructs
the directed multi-graph for a specific problem (a combination of a graph
G and a property P). The second part of the program determines the
recurrence equation based on the adjacency matrix of the directed multi-
graph. Actually, the edges of the directed multi-graph are not stored, but
instead the adjacency matrix is filled in the first part.

The algorithm to construct the directed multi-graph is an incremental
algorithm, that starts with a set of vertices only containing V4 and an
empty set of edges. In each step of this algorithm, another vertex from
the set of vertices is processed. For this vertex, the set of outgoing edges
is determined. The edges that are found are added to the set of edges,
and any new vertices, to which the edges lead, are added to the set of
vertices. When all vertices have been processed, the directed multi-graph
is constructed, except for the vertices (and adjacent edges) that cannot be
reached from V.

To find the outgoing edges with a certain vertex v, we try all spanning
subgraphs G’ of G that are possible with A, depending on the property
P. For all valid combinations of A, and G we try to find all valid A’ such

141



that edge (v,v’,G’), where v’ is labeled with A’, is correct according the
property P. When property P is a combination of the basic properties
D, C and AC, only the edges for which all required basic properties hold
are added, following the suggestion made at the end of Section 5. Both
the process of trying all G’ and trying all A/, are implemented by a back-
tracking algorithm over, respectively, the edges in G, and the elements of
the vector A’. For the basic properties C and AC, we first determine which
element of the vector A’ will be zero and which non-zero. Only after this
has been determined for all elements, we calculate the partial connection
coding.

We also applied the optimization of joining vertices in case G has a non-
trivial automorphism, as described in Section 6.

The second part of the program—which is the most time consuming for
the more complex problems—tries to find the recurrence equation. Several
alternative algorithms have been employed.

The most straight forward approach for determining the recurrence equa-
tion is by calculates the characteristic polynomial of the adjacency matrix,
which consists of calculating the determinant of N — zI. Although these
matrices are rather sparse, this soon turns out to take too much time, due
to the complexity of this algorithm, which is roughly of exponential order
to the size of the matrix.

The two other approaches both try to find possible recurrence equations.
If the recurrence equation is of order k and the matrix is of size £, we can
check whether the recurrence equation holds for C(k + 1) to C(¢). If this
is the case, we can assume that the recurrence equation found is indeed
correct. It is possible that the recurrence equations found in this way are
different from the those found by calculating the characteristic polynomial.
In all these cases we need to multiply the characteristic equation of the
recurrence relation by another polynomial in order to get the characteristic
polynomial of the multi-graph under investigation.

The second approach consists of finding the recurrence equations by solv-
ing the equation 2 .o PjN7 = 0, for k ranging from 2 to £. Note that
because N is a £ by £ matrix this equation consists of £2 linear equation
with p; to pi as free variables. This set of equations can be reduced with a
row sweeping technique to a set of independed equations. We set px equal
to 1, and calculate the values for p; for 0 < j < k. Those p; that do not
appear in the equations are set to 0. The recurrence equations found by
this approach are checked for C(k + 1) to C(¢).

A third approach is to find the recurrence equatlon from the values of
C(n). For this we try to solve the equations Y o PiC(i+37) = 0 for
0 < j < k, where k is ranging from 2 to £. From ﬁere on this approach is
the same as the second.
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The complexity of the last two approaches is far more acceptable, al-
though the computations require operations on integers of arbitrary size.
For more complex problems the integers soon become very large. For in-
stance, the integers used in the computation of CH€ have more than 40000
digits.

Only the first and the last approach have been implemented completely.
A limited form of the second approach has been implemented as well. All
solutions presented in the sections below are found with the third approach,
and most of them are also found with the first approach. In case the
solutions differ, between the first and the last approach, or when only the
third approach lead to a solution, we have indicated this.

7.2 The problems

The path graphs on n vertices will be denoted with P,, as we have defined
previously. The cycle graphs on n vertices will be denoted by C,,. K, will
denote the complete graphs on n points.

In the presentation of our results we will use C(n) as an abbreviation of
CE(n) whenever P and G are determined by the context. F o G is defined
as follows: take a copy of F and one of G, and draw a line from each vertex
of F' to each vertex of G.

We define the property ST} 3 (the spanning subgraphs with degree 1 or 3)
as CAACA D = {1, 3}. In each of the following subsections we will present
the results with a certain graph for the properties DT, 2F, HC, HP, ST,
and ST;3 as far as they were found. In all cases where solutions were
already given in the literature, we found the same solutions. The solution
for CHC and the numbers for CHC agree with results known to Y.H.H.
Kwong. It is known that CHC(G) < C*¥(G), CHP(G) > |V(G)|- CHC(G),
C5T(G) > CHC(@) and C5T1.3(G) < C5T(G).

Some of the solutions are so large (almost one page for C ST‘ **) that we
have omitted them in this paper. These solutions can be obtamed from the
author directly.

7.3 Results for K,

For CRT it is known C(1) =1, C(2) =2 and C(n) = C(n— 1) + C(n —2).
For C¥’ it is known C(1) =0, C(2) =1 and C(n) = C(n —1) + C(n — 2).
For C”f it is known C(1) = 0 and C(n) = 1. For CEF we found C(1) =1,
C(2) =4, C(3) =8,C(4) = 14 and C(n) = 3C(n—1)-3C(n—-2)+C(n-3).
For C§T we found C(1) =1, C(2) =4 and C(n) =4C(n—1) — C(n — 2).
For Cg. ™ it is known that C(1) = C(3) = 1 and C(2) = C(n) = 0.
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7.4 Results for P;

For CPT we found C(1) =0, C(2) =3, C(3) =0, C(4) =11 and C(n) =
4C(n—2)—C(n—4). For CF{ it is known that C(1) = 0 and C(n) = 31,
For CHC [4] gives C(2n + 1) = 0 and C(2n) = 2"~1. For CEF we found
Cc(1) =1, C(2) = 8, C(3) = 20, C(4) = 62, C(5) = 132, C(6) = 336,
C(7) = 688, C(8) = 1578 and C(n) = 3C(n — 1) + 2C(n — 2) — 12C(n —
3) +4C(n — 4) + 12C(n — 5) — 8C(n — 6). For CZT we found C(1) = 1,
C(2) = 15, C(3) = 192, C(4) = 2415 and C(n) = 15C(n — 1) - 32C(n —
2) +15C(n — 3) — C(n — 4). For Cp, * we found C(2n + 1) = C(4n) =
C(2) = 1, C(6) = 10 and C(10 + 4n) = 36 - 4".

7.5 Results for K3

For CRT we found C(2n + 1) =0, C(2) =4, C(4) = 19 and C(n) =
5C(n — 2) C(n —4). For C3 we found C(1) =1, C(2) =4 and C(n) =
3C(n—1)+C(n—2). For C'Hc [4] gives C(1) = 1 and C(n+2) = 3-2™. For
CEP we found C(1) =3, C(2) = 30, C(3) = 144, C(4) = 588, C(5) = 2160
and C(n) = 7C(n—1)-16C(n—2)+12C(n—3). For C§! we found C(1) =
C(2)=175,C(3)=1728 and C(n) = 24C(n—1) — 240(11. 2)+C(n - 3)
For Cg.* we found C(2n + 1) = 0, C(2) = 3, C(4) = 36, C(6) = 324 and
C(n)= SC’(n —2)+8C(n —4).

7.6 Results for P,

For CPT we found C(1) =1, C(2) = 5, C(3) = 11, C(4) = 36, C(5) = 95
and C(n) = 6C(n — 1) — 24C(n — 3) — 6C(n — 4) + 5C(n — 5). For C¥
we found C(1) = 0, C(2) = 2, C(3) = 3, C(4) = 18, C(5) = 54 and
C(n) =2C(n-1)+7C(n—-2)—2C(n—3) —3C(n —4) + C(n — 5). For
CHC [4] and [12] give C(1) = 0, C(2) = 1, C(3) = 2, C(4) = 6 and
C(n) = 2C(n — 1) +2C(n — 2) — 2C(n — 3) + C(n — 4). For CEP we
found C(1) = 1, C(2) = 14, C(3) = 62, C(4) = 276, C(5) = 1006, C(6)

3610, C(7) = 12010, C(8) = 38984, C(9) = 122188, C(10) = 375122,
C(11) = 1128446, C(12) = 3342794, C(13) = 9767588, C(14) = 28217820,
C(15) = 80709424, C(16) = 228864620 and C(n) = 6C(n—1)-5C(n—2) —
27C(n—3)+37C(n—4)+48C(n—>5)—69C(n—6)—38C(n—7)+57C(n—8)—
2C(n—9)—-31C(n—10)+13C(n—11)+3C(n—12) —4C(n—13)+C(n—14).
To get the characteristic polynomial for the adjacency matrix of M ,’,’ P the
characteristic polynomial of this recurrence relation has to be multxphed
with (z — 1)2. For C5T we found C(1) = 1, C(2) = 56, C(3) = 2415,
C(4) = 100352, C(5) = 4140081, C(6) = 170537640, C(7) = 7022359583,
C(8) = 289143013376 and C(n) = 56C(n — 1) — 672C(n — 2) + 2632C(n —
3) —4094C(n — 4) + 2632C(n — 5) — 672C(n — 6) + 56C(n —7) — C(n — 8).
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This result was only found with the third approach. For CST 12 we found
C(n) =

7.7 Results for C;

For CZT we found C(1) =2, C(2) =9, C(3) = 32 and C(n) = 3C(n—1)+
3C(n—2)—C(n~3). For CZF we found C(1) =1, C(2) = 9, C(3) = 53 and
C(n)=6C(n—1)+3C(n — 2) 4C(n — 3). For CEC we found C(1) =1,
C(2) =6,C(3) = 22 and C(n) = 4C(n — 1) — C(n —2). For CEFP we
found C(1) = 4, C(2) = 72, C(3) = 584, C(4) = 4016, C(5) = 24656
C(6) = 140624, C(7) = 761960, C(8) = 3976704 and C(n) =11C(n—1) —
36C(n—2)4+16C(n—3)+67C(n—4)—9C(n-5)—10C(n— 6)+20(n 7).
To get the characteristic polynomial for the adjacency matrix of Mg, HP the
charactenstlc polynomial of this recurrence relation has to be multlphed
with 22 — 3z + 2. For CST we found C(1) =4, C(2) = 384, C(3) = 31500,
C(4) = 2558976, C(5) = 207746836, C(6) = 16864848000 and C(n) =
90C(n—1)— 735C(n 2)+1548C(n—3)— 7350(n—4)+900(n —-5)—C(n—6).
This resu]t was only found by the third approach. For Cg, °T1.3 we found
C(n) =

7.8 Results for S,

The graph S, is the star graph, which is equal to K; 3. For CE7 we found
C(2n+1) =0, C(2) =4, C(4) =19 and C(n) = 5C(n — 2) — C(n — 4).
For C%F' and CHC we found C(n) = 0. For CEF we found C(2n +1) =

0 and C(Zn + 2) = 6-5". To get the charactenstlc polynomial for the
adjacency matrix of M g P the characteristic polynomial of this recurrence
relation has to be multiplied with (z* — 4z + 3)(z? — 5). For C3T we
found C(1) = 1, C(2) = 54, C(3) = 2240, C(4) = 89964, C(5) = 3596725
C(6) = 143700480 and C(n) 48C(n — 1) 336C(n — 2) +582C(n —3) —

336C(n —4)+48C(n —-5) — C(n 6). This result was only found by means
of third approach. For C 713 we found C(1) = 1, C(2n) = C(3) =0,
C(5) =24, C(7) =54 and C(n) 2C(n-2) +16C(n 4) + 4C(n - 6).

7.9 Results for D,

The graph Dj is the graph K; 3+ e. For CET we found C(1) =1, C(2) =

6, C(3) = 13, C(4) = 49 and C(n) = C(n -1)+6C(n-2)+C(n —
3)-C(n — 4) To get the characteristic polynomial for the adjacency

matrix of MHP Da » the characteristic polynomial of this recurrence relation

has to be multiplied with (z? — 1)(z — 6). For C}} we found C(1) = 0,

C(2)=3,C(8) =17, C(4) = 46, C(5) = 193 and C(n) =3C(n-1)+

9C(n—-2)-3C(n— 3) ~3C(n—4) + C(n—5). For CEC we found C(1) =
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0, C(2) =2, C38) =6,C(4) =24 and C(n) = 3C(n — 1) + 3C(n —
2) —2C(n — 3) + C(n — 4). For CHP we found C(1) = 2, C(2) = 40,
C(3) = 240, C(4) = 1558, C(5) = 8300, C(6) = 43438, C(7) = 212700,
C(8) = 1014700, C(9) = 4691580, C(10) = 21257258, C(11) = 94520524,
C(12) = 414149254, C(13) = 1791339472, C(14) = 7664373014, C(15) =
32481662616, C(16) = 136520499746, C(17) = 569599125312, C(18) =
2361080470268 and C(n) = 11C(n—1)—34C(n—2) -22C(n —3)+266C(n—
4) — 270C(n — 5) — 454C(n — 6) + 986C(n — 7) — 247C(n — 8) — 887C(n —
9) + 1013C(n — 10) — 259C(n — 11) — 353C(n — 12) + 417C(n — 13) —
925C(n — 14) + 71C(n — 15) — 13C(n.— 16) + C(n — 17). For CET' we found
C(1) = 3, C(2) = 270, C(3) = 20160, C(4) = 1477980, C(5) = 108097935,
C(6) = 7903526400, C(7) = 577834413429, C(8) = 42245731959480 and
C(n) = 90C(n — 1) — 1313C(n — 2) + 5850C(n — 3) — 9828C(n — 4) +
5850C(n — 5) — 1313C(n — 6) + 90C(n — 7) — C(n — 8). This result was
only found by means of the third approach. For Cgf"’ we found C(1) =1,
C(2) = 4, C(3) = 16, C(4) = 92, C(5) = 432, C(6) = 1884, C(7) = 8582,
C(8) = 30736, C(9) = 181936, C(10) = 829672, C(11) = 3793850, C(12) =
17366388, C(13) = 79441576, C(14) = 363298028, C(15) = 1661695126
and C(n) = 4C(n — 1) — 5C(n — 2) + 30C(n — 3) + 13C(n — 4) + 36C(n —
5) +48C(n — 6) — 76C(n — 7) — 14C(n — 8) — 36C(n — 9) + 4C(n — 10) +
8C(n — 11) ~ 4C(n — 12).

7.10 Results for W,

The graph W, is the graph K4 —e. For CjT we found C(1) = 2, C(2) = 10,
C(3) = 36, C(4) = 145 and C(n) = 2C(n — 1) 4+ 7C(n - 2) + 2C(n —
3) ~ C(n — 4). To get the characteristic polynomial for the adjacency
matrix of M{)T, the characteristic polynomial of this recurrence relation
has to be multiplied with z — 1. For CZf we found C(1) = 1, C(2) = 13,
C(3) = 85, C(4) = 673, C(5) = 5021 and C(n) = 6C(n — 1) + 16C(n —
2) —29C(n — 3) — 16C(n — 4) 4 16C(n — 5). For CHC we found C(1) =1,
C(2) = 10, C(3) = 46, C(4) = 238, C(5) = 1170, C(6) = 5882 and
C(n) = 5C(n — 1) 4+ 3C(n — 2) — 19C(n — 3) + 20C(n — 4) — 4C(n — 5).
For C{/F we found C(1) = 6, C(2) = 152, C(3) = 1608, C(4) = 15420,
C(5) = 127980, C(6) = 1003360, C(7) = 7432708, C(8) = 53204540,
C(9) = 371397240, C(10) = 2537155684, C(11) = 17047659916, c(12) =
113102692016, C(13) = 742597784164, C(14) = 4835184613212, C(15) =
31267479066856, C(16) = 201066698078244, C(17) = 1286998671857356
and C(n) = 14C(n—1)~41C(n—2) —193C(n—3) +1025C(n—4) +-49C (n —
5)—5867C (n—6)+7519C (n—7)+6908C (n—8)—23055C (n—9)+16228C (n—
10) + 2530C(n — 11) ~ 7196C(n — 12) + 832C(n — 13) + 1568C(n — 14) —
608C(n — 15) 4+ 64C(n — 16). To get the characteristic polynomial for the
adjacency matrix of Myj¥, the characteristic polynomial of this recurrence
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relation has to be multiplied with z — 1. For CjjT we found C(1) = 8,
C(2) = 1152, C(3) = 147000, C(4) = 18643968, C(5) — 2363741512,
C(6) = 299675376000 and C(n) = 140C(n —1) —1715C(n — 2) +4952C(n —
3) — 1715C(n — 4) + 140C(n — 5) — C(n — 6). This result only has been
found by means of the third approach. For nyz"" we found C(1) = 2,
C(2) = 16, C(3) = 144, C(4) = 1216, C(5) = 10004, C(6) = 82608,
C(7) = 682636, C(8) = 5639688, C(9) = 46500712, C(10) — 384808384,
C(11) = 3179752720 and C(n) = 14C(n —1) — 62C(n — 2) + 148C(n —3) —
264C(n — 4) + 336C(n — 5) — 256C(n — 6) + 128C(n — 7) — 64C(n — 8).

7.11 Results for K,

For CRT we found C(1) = 3, C(2) = 16, C(3) = 75 and C(n) = 4C(n—1)+
4C(n —2) — C(n —3). For C¥f we found C(1) = 3, C(2) = 42, C(3) = 474
and C(n) = 11C(n - 1) + 8C(n — 2) — 12C(n — 3). For Cfgf we found
C(1) = 3, C(2) = 30, C(3) = 198 and C(n) = 7C(n - 1) — 2C(n — 2).
For CEP we found C(1) = 12, C(2) = 408, C(3) = 6648, C(4) = 90672,
C(5) = 1103088, C(6) = 12509256, C(7) = 135409896 and C(n) = 23C(n—
1) —173C(n — 2) + 421C(n — 3) + 62C(n — 4) — 132C(n — 5) + 24C(n — 6).
This result only has been found by means of the third approach. For C,S(T
we found C(1) = 16, C(2) = 3456, C(3) = 686000, C(4) = 135834624 and
C(n) = 204C(n — 1) — 1190C(n — 2) + 204C(n — 3) — C(n — 4). For Cg.**
we found C(1) = 4, C(2) = 48, C(3) = 672, C(4) = 8496, C(5) = 106944,
C(6) = 1349760, C(7) = 17032800 and C(n) = 12C(n — 1) + 4C(n — 2) +
48C(n — 3).

7.12 Results for P;

For CRT we found C(2n + 1) = 0, C(2) = 8, C(4) = 95, C(6) = 1183,
C(8) = 14824 and C(n) = 15C(n—2) —32C(n—4) + 15C(n—6) — C(n—8).
To get the characteristic polynomial for the adjacency matrix of MET,
the characteristic polynomial of this recurrence relation has to be multi-
plied with z* — 32% + 1. For C¥ we found C(2n + 1) = 0, C(2) = 3,
C(4) = 54, C(6) = 1140 and C(n) = 24C(n—2) —57C(n —4) +26C(n—6).
For CHC [7] gives C(2n 4+ 1) = 0, C(2) = 1, C(4) = 14, C(6) = 154
and C(n) = 11C(n - 2) + 2C(n — 6). For CE* and CET we did not
found a solution. For Cﬁg“" we found C(2n +1) = C(4n) = 0, C(6) =
296, C(10) = 70420, C(14) = 16391166, C(18) = 3816021084, C(22) =
888375830566, C(26) = 206814474641944, C(30) = 48146529005876746,
C(34) = 11208539472498838244, C(38) = 2609354391828066201746, C(42)
= 607459192887167645884388, C(46) = 141416847085185500394182672,
C(50) = 32921922778799648796216249818,

C(54) = 7664242427921761934124201980862,
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C(58) = 1784240015038927382237215443432910 and C(n) = 262C(n—4)—
7125C(n — 8) + 78668C (n — 12) — 581608C(n — 16) + 2138065C (n — 20) —
5215246C(n—24)+16969316C (n—28) —43146455C (n—32)+39514076C (n—
36) + 7628882C (n —40) — 6116529C (n — 44) + 23336C/(n — 48) —2876C (n —
52) + 64C(n — 56). This result was only found by means of the third ap-
proach.

7.13 Results for Cjs

For CET we found C(2n + 1) = 0, C(2) = 11, C(4) = 176, C(6) = 2911,
C(8) = 48301 and C(n) = 19C(n—2) —41C(n—4)+19C(n—6) —C(n—8).
For CZF we found C(1) = 1, C(2) = 11, C(3) = 81, C(4) = 666 and
C(n) = 9C(n — 1) — 4C(n — 2) — 22C(n — 3) + 3C(n — 4). For CE°
we found C(1) = 1, C(2) = 5, C(3) = 30, C(4) = 160 and C(r) =
6C(n—1)—4C(n—2)+2C(n—3). For CEF we found C(1) = 5, C(2) = 130,
C(3) = 1660, C(4) = 16820, C(5) = 152230, C(6) = 1275680, C(7) =
10154290, C(8) = 77897010, C(9) = 581452680, C(10) = 4250594690,
C(11) = 30572999140, C(12) = 217099260110, C(13) = 1525905283670,
C(14) = 10636695448300 and C(n) = 19C(n—1)~127C(n —2)+328C(n —
3)—117C(n —4) —675C (n—5)+1127C(n—6) —1016C(n—7)+380C(n—8) +
12C(n—9)—140C(n—10)+68C(n—11) —20C(n—12). This result was only
found by means of the third approach. For CZT we found C(1) =5, C(2) =
1805, C(3) = 508805, C(4) = 140503005, C(5) = 38720000000, C(6) =
10668237057005, C(7) = 2939274449134805, C(8) = 809816405722655805,
C(9) = 223117116976138566005 and C(n) = 319C(n — 1) — 12441C(n —
2) + 128319C(n — 3) — 408001C(n — 4) + 408001C(n — 5) — 128319C(n —
6) +12441C(n — 7) — 319C(n — 8) + C(n — 9). This result was only found
by means of the third approach. For Cgf * we found C(2n+1) =C(2) =
0, C(4) = 260, C(6) = 27420, C(8) = 2504560, C(10) = 223723080,
C(12) = 19923617840, C(14) = 1773563554900, C(16) = 157870122686600,
C(18) = 14052371971981100, C(20) = 1250831588811052320, C(22) =
111339169110472830220, C(24) = 9910535055491682625400, C(26) =
882157695038695625086700 and C(n) = 98C (n—2)—T45C (n—4)—4916C(n—
6) — 234C(n — 8) +160624C(n — 10) — 26648C (n — 12) + 338976C(n — 14) —
1265216C (n — 16) — 2291392C(n — 18) — 1695488C (n — 20) — 307200C (n —
22) + 32768C(n — 24). This result was only found by means of the third
approach.

7.14 Results for W5
The graph Wi; is the graph Ky o K1. For CPT we found C(2n +1) = 0,

C(2) = 29, C(4) = 1189, C(6) = 49401, C(8) = 2053641 and C(n) =
44C(n—2)—-102C(n—4)+44C(n—6)—C(n—8). To get the characteristic

148



polynomial for the adjacency matrix of MJT, the characteristic polynomial
of this recurrence relation has to be multiplied with z* — 4z2 + 1. For
Cy, we found C(1) = 4, C(2) = 156, C(3) = 3832, C(4) = 101476,
C(5) = 2653176, C(6) = 69537644 and C(n) = 21C(n — 1) + 149C(n —2)
285C(n — 3) — 1354C(n — 4) + 1098C(n — 5) — 24C(n — 6). This result was
only found by means of the third approach. For C{{,f we found C(1) =4,
C(2) = 92, C(3) = 1432, C(4) = 22632, C(5) = 357952, C(6) = 5660752,
C(7) = 89521984, C(8) = 1415743552 and C(n) = 13C(n — 1) + 50C(n —
2) — 80C(n — 3) — 120C(n — 4) + 188C(n — 5) + 32C(n-6)—16C(n —7).
For C{T and Cfvfl" we found solutions, but these have been omitted here,
due to their size.

7.15 Results for Og

Os is the graph K5 — e. For C57 we found C(2n +1) = 0, Cc(2) =
40, C(4) = 2197, C(6) = 121735, C(8) = 6748096, C(10) — 374079619,
C(12) = 20737143595 and C(n) = 65C(n—2) —548C(n—4)+995C(r—6) —
548C(n—8)+65C(n—10)—C(n—12). For CEF we found C(1) = 6, C(2) =
327, C(3) = 11040, C(4) = 406731, C(5) = 14683587, C(6) = 532938234
and C(n) = 26C(n — 1) + 396C(n — 2) — 707C(n - 3) — 6539C(n — 4) +
7239C(n — 5) — 405C(n — 6). This result was only found by means of the
third approach. For C5C we found C(1) = 6, C(2) = 204, C(3) = 4152,
C(4) = 90012, C(5) = 1916640, C(6) = 41086080 and C(n) = 16C(n—1)+
136C(n — 2) — 460C(n — 3) +432C(n — 4) + 256C(n — 5). This result was
only found by means of the third approach. For C§F, C5T, and ng'l" we
did not find any solutions.

7.16 Results for K5

For CZT we found C(1) =0, C(2) = 56, C(3) = 0, C(4) = 4181, C(5) = 0,
C(6) = 313501 and C(n) = 76C(n — 2) — 76C(n — 4) + C(n — 6). For c¥
we found C(1) = 12, C(2) = 814, C(3) = 41278 and C(n) = 47C(n —1) 4
288C(n — 2) — 436C(n — 3). This result was only found by means of the
third approach. For CES we found C(1) = 12, C(2) = 480, C(3) = 13440
and C(n) = 28C(n — 1) 4+ 12C(n — 2). For CEP we found C(1) = 60,
C(2) = 8760, C(3) = 617400, C(4) = 36021240, C(5) = 1871009400,
C(6) = 90539967480, C(7) = 4181860331640, C(8) = 187073020183800
and C(n) = 95C(n — 1) — 2854C(n — 2) + 23880C(n — 3) + 97152C(n -
4) + 20616C(n — 5) — 19296C(n — 6) — 6912C(n — 7). For CST we found
C(1) = 125, C(2) = 300125, C(3) = 663552000, C(4) = 1464514260125,
C(5) = 3232184906328125 and C(n) = 2255C(n — 1) — 105985C(n — 2) +
105985C(n — 3) — 2255C(n — 4) 4+ C(n — 5). This result was only found by
means of the third approach. For C,s(fl" we found C(2n+1) =0, C(2) =
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1320, C(4) = 8872800, C(6) = 57159820320, C(8) = 368270723329920,
C(10) = 2372720981421121920, C(12) = 15287133546258050856960, C(14)
— 98403019073706019959014400 and C(n) = 6288C (n — 2) + 990168C(n —
4) + 49284576C(n — 6) — 334385280C(n — 8) — 782880768C(n — 10) —
34504704C (n — 12).

7.17 Results for Pg

For CBT we found C(1) =1, C(2) =13, Cc(3) =41, C(4) = 281, C(5) =
1183, C(6) = 6728, C(7) = 31529, C(8) = 167089, C(9) = 817991, C(10) =
4213133, C(11) = 21001799, C(12) = 106912793, C(13) = 536948224,
C(14) = 2720246633 and C(n) = 40C(n—2) —416C(n—4)+1224C(n—6)
1224C (n—8) 4+416C(n—10)—40C(n—12)+C(n—14). This result was only
found by means of the third approach. For CF we found C(1) =0, C(2) =
5, C(3) = 9, C(4) = 222, C(5) = 1140, C(6) = 13903, C(7) = 99051,
C(8) = 972080, C (9) = 7826275, C (10) = 71053230, C(11) = 599141127,
C(12) = 5285001303, C(13) = 45349095730 and C(n) = 5C(n — 1) +
49C(n — 2) — 116C(n — 3) — 363C(n — 4) + 627C(n — 5) + 544C(n — 6) —
1061C(n — 7) + 133C(n — 8) + 264C(n — 9) — 47C(n — 10) — 26C(n —
11) 4+ 3C(n —12) + C(n — 13). To get the characteristic polynomial for the
adjacency matrix of M,z,f , the characteristic polynomial of this recurrence
relation has to be multiplied with z + 1. For CHC we found C(1) = 0,
C(2) = 1, C@3) = 4, C(4) = 37, C(5) = 154, C(6) = 1072, C(7) =
5320, C(8) = 32675, C(9) = 175294, C(10) = 1024028, C(11) = 5668692,
C(12) = 32463802, C(13) = 181971848, C(14) = 1033917350 and C(n) =
5C(n—1)+14C(n - 2) — 63C(n — 3) +12C(n —4) + 90C(n — 5) —35C(n —
6) — 66C(n — 7) + 118C(n — 8) — 8C(n — 9) — 82C(n — 10) +42C(n — 11) +
28C(n — 12) —4C(n — 13) + 2C(n — 14). For CZT we found a solution, but

it is omitted here, due to its size. For C,s,;t"" we did not found a solution.

7.18 Results for Og

For Cgf we found C(1) = 8, C(2) = 137, C(3) = 2016, C(4) = 30521,
C(5) = 459544, C(6) = 6926545 and C(n) = 12C(n — 1) + 47C(n — 2) —
8C(n—3)—47C(n—4)+12C(n—>5)+C(n—6). For C3 we found C(1) = 20,
C(2) = 2984, C(3) = 340852, C(4) = 40071100, C(5) = 4696965476,
C(6) = 550730736140 and C(n) = 113C(n —1)+585C(n—2) —10329C(n -
3) + 17644C(n — 4) + 3148C(n — 5) — 8496C(n — 6). This result was only
found by means of the third approach. For cgf we found C(1) = 16,
C(2) = 1568, C(3) = 105080, C(4) = 7178840, C(5) = 490094648, C(6) =
33450179864, C(7) = 2284284179000, C(8) = 155949857160056, C(9) =
10646817995958872 and C(n) = 76C(n— 1) — 542C(n —2) +936C(n —3) +
2987C (n—4) —9940C(n— 5) +4896C(n—6)+ 9600C (n—"7) —8192C(n—8).
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For CHF we found a solution, but it is omitted here, due to its size. For
CST and C51** we did not found a solution.

7.19 Results for Kg

For CRT we found C(1) = 15, C(2) = 376, C(3) = 8805, C(4) = 207901
and C(n) = 21C(n — 1) + 62C(n — 2) — 21C(n — 3) — C(n — 4). For C¥,
we found C(1) = 70, C(2) = 24400, C(3) = 6912340, C(4) = 1997380720
and C(n) = 264C(n — 1) +7160C(n — 2) — 31008C(n — 3) — 10480C(n — 4).
For CHC we found C(1) = 60, C(2) = 12000, C(3) = 1758360 and
C(n) = 145C(n—1)+516C(n—2)—288C(n—3). For CEF we found C(1) =
360, C(2) = 275040, C(3) = 102430080, C(4) = 31321626480, C(5) =
8516117133360, C(6) = 2155827631204800, C(7) = 520736224355831520,
C(8) = 121804259414668451280, C(9) = 27852572730572966535120, C(10) =
6266130842526002431103520 and C(n) = 493C(n — 1) — 76229C(n — 2) +
3141623C (n — 3) +83807874C (n — 4) + 375481728C (n — 5) — 11713248C(n —

6) — 1202308992C (n — 7) + 1074456576C (. — 8) — 238878720C (n — 9). For

CgT we did not found a solution. For Crit* we found a solution, but it is

omitted here, due to its size.

7.20 Results for P,

For CRT we found C(2n + 1) = 0, C(2) = 21, C(4) = 781, C(6)
31529, C(8) = 1292697, C(10) = 53175517, C(12) = 2188978117, C(14)
90124167441, C(16) = 3710708201969 and C(n) = 56C(n — 2) — 672C(n —
4)+2632C (n—6) — 4094C (n.—8) +2632C(n — 10) — 672C(n—12) +56C(n—
14) —C(n—16). This result was only found by means of the third approach.
For C¥ we found C(2n+1) = 0, C(2) = 8, C(4) = 779, C(6) = 99051,
C(8) = 13049563, C(10) = 1729423756, C(12) = 229435550806, C(14) =
30443972466433, C(16) = 4039769151988768, C(18) = 536061241088972481
and C(n) = 171C(n — 2) — 5496C(n — 4) + 56617C(n — 6) — 240021C(n —
8) -+ 457923C(n — 10) — 420254C (n — 12) + 186912C (n — 14) — 37569C (. —
16) + 2584C(n — 18). This result was only found by means of the third
approach. For CEC we found C(2n +1) = 0, C(2) = 1, C(4) = 92,
C(6) = 5320, C(8) = 301384, C(10) = 17066492, C(12) = 966656134,
C(14) = 54756073582, C(16) = 3101696069920, C(18) = 175698206778318,
C(20) = 9952578156814524, C(22) = 563772503196695338,

C(24) = 31935387285412942410, C(26) = 1809007988782552388490, C(28)
= 102472842263117124008066, C(30) = 5804663918990466729365476, C (32)
= 328810272735298761062754308, C(34) = 18625745945872429428768223714,
C(36) = 1055071695766249759732087999456 and C(n) = 85C(n —2) —
1932C(n — 4) + 20403C(n — 6) — 116734C(n — 8) + 386724C(n — 10) —
815141C(n — 12) + 1251439C(n — 14) — 1690670C (. — 16) + 2681994C(n —
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18)—4008954C(n—20)+3390877C (n—22) ~1036420C (n—24) —178842C (n—
26) + 92790C (n — 28) + 17732C (. — 30) — 5972C (n — 32) + 1728C (n — 34) +
144C(n — 36). This result was only found by means of the third approach.
For CEP, C§T, and C}‘S;,T 13 we did not find any solutions.

7.21 Results for Py

For CET we found C(1) = 1, C(2) = 34, C(3) = 153, C(4) = 2245,
C(5) = 14824, C(6) = 167089, C(7) = 1202697, C(8) = 12088816, C(9) =
108435745, C(10) = 1031151241, C(11) = 8940739824, C(12) = 82741005829,
C(13) = 731164253833, C(14) = 6675498237130, C(15) = 59554200469113,
C(16) = 540061286536921, C(17) = 4841110033666048,

C(18) = 43752732573098281, C(19) = 393139145126822985,

C(20) = 3547073578562247994, C(21) = 31910388243436817641,

C(22) = 287665106926232833093, C(23) = 2589464895903294456096,
C(24) = 23333526083922816720025, C(25) = 210103825878043857266833,
C(26) = 1892830605678515060701072,

C(27) = 17046328120997609883612969,

C(28) = 153554399246902845860302369,

C(29) = 1382974514097522648618420280,

C(30) = 12457255314954679645007780869,

C(31) = 112199448394764215277422176953,

C(32) = 1010618564986361239515088848178 and C(n) = 153C(n — 2) —
7480C (n — 4) + 151623C(n — 6) — 1552087C(n — 8) + 8933976C (n. — 10) —
30536233C(n—12)+63544113C(n—14)—81114784C (n—16)+63544113C (n—
18)—30536233C (n—20)-+8933976C (n—22)—1552087C (n—24)+151623C (n—
26) — 7480C (n — 28) + 153C(n — 30) — C(n — 32). For the other properties,
we did not find any results.

7.22 Spanning trees with degree 1 and 8

The property that a graph does have a Hamilton cycle is studied extensively
in literature, because it is a very strong property. This is also reflected by
the fact that the values for CHC(n) are usually low compared to that of
other properties. However it turns out that the values for ch‘-° (n) are also
comparatively low. When comparing C¥ (n) and C’gT"’ (n) for the graphs
in the above sections, it appears that Cg *(n) < CHC(n) for graphs G
with few edges and CE¢(n) < 02'-"1'3 (n) for graphs G with many edges.
At least some conditions have been found for which a graph G cannot
have a spanning tree with only degrees 1 and 3. When G is bipartite, let
z and y be the number of vertices in the two vertex classes, then G can
only have a spanning subtree with degrees 1 and 3, if z and y are odd,
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and when z > (y —1)/2 and y > (z — 1)/2. This explains almost all of

the (non-trivial) cases for which CgT 3(n) = 0 as mentioned in the above
results.

8 Further research

Research could be done for how an M can be constructed for other prop-
erties. It seems to be possible to give a construction method for ME where
P is one of the following properties: restrictions on the number of compo-
nents, restrictions on the number of vertices in a component, restrictions
on the number of edges in a component, and restrictions on the degree per
separate vertex of G. It seems also be possible to construct MZ for count-
ing the number of different vertex or edge colourings for both G x P,, as
for all spanning subgraphs of G x P,.

Another research question is: for which of the above properties an ME
can be constructed for G x C,, where Ch, is the cycle graph on = points. It
seems that only the properties connected and acyclic are excluded.

Of course research could be done for necessary and sufficient conditions
for a graph to have a ST} 3 spanning subgraph.
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