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Abstract

The strong chromatic index of a graph G, denoted sg(G), is the
minimum number of parts needed to partition the edges of G into
induced matchings. The subset graph Bm(k) is the bipartite graph
whose vertices represent the elements and the k-subsets of an m
element ground set where two vertices are adjacent if and only if the
vertices are distinct and the element corresponding to one vertex is
contained in the subset corresponding to the other. We show that
sq(Bm(k)) = ( le) and that this satisfies the strong chromatic index
conjecture by Brualdi and Quinn (3] for bipartite graphs.

1 Introduction

A strong edge coloring of a graph G is an assignment of colors to the edges
so that edges of the same color form an induced matching in the graph. You
can think of a strong edge coloring as an edge coloring in which there are
at least 2 edges of different colors on the shortest path between each edge
of the same color. The strong chromatic indez, sq(G), equals the smallest
number of colors in a strong edge coloring.

Much work has been focused on bounding the strong chromatic index
of a graph based on its maximum degree. A conjecture given by Erdés
and Nesetfil [5) states that for a graph of maximum degree A its strong
chromatic index will be less than or equal to

Z-AQ if A is even.
SAT- 1A+ if Aisodd

This was verified by Cameron [4] for chordal graphs and by Horék et al.
[7] and Andersen [1] when A = 3. Restricting our attention to bipartite
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graphs, Faudree et. al. [6] conjectured that a bipartite graph G of maximum
degree A has strong chromatic index less than or equal to A2, They verified
the conjecture for trees, d-dimensional cubes, revolving door graphs, and
graphs with all cycle lengths divisible by 4. Steger and Yu [9] verified the
bipartite conjecture when A = 3. Brualdi and Quinn [3] further conjectured
that a bipartite graph with bipartition X and Y, where the maximum
degree of a vertex in X is & and the maximum degree of a vertex in Y is
B, has strong chromatic index less than or equal to af. This statement
contains the Faudree et. al. conjecture since o, 8 < A, hence off < A2,
Their conjecture is verified for bipartite graphs when a = 2, § is arbitrary
and no cycles are of length 4; when a and § are arbitrary and all cycle
lengths are divisible by 4; and when the associated incidence matrix is
from a projective plane, an affine plane, or is 2-totally unimodular (see
e.g. [8].) In this paper, we verify the Brualdi-Quinn conjecture for an
infinite family of graphs we call subset graphs. For integers k and m with
0 < k < m, the subset graph By,(k) is the bipartite graph whose vertices
represent the elements and the k-subsets of an m element ground set. Two
distinct vertices are adjacent if and only if the element corresponding to
one vertex is contained in the subset corresponding to the other. For B3(2),
X ={1,2,3},Y = {{1,2},{1,3},{2,3}},and E = {{1, {1, 2}}, {1,{1,3}},
{2,{1,2}}, {2,{2,3}}, {3,{1,3}}, {3,{2,3}}}. (See Figure 1.)

) 1.2
Ba(2):(g) 1,3
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Figure 1: A representation of the subset graph B3(2).
We prove that sq(Brm (k)) = (,,) and verify that this satisfies the Brualdi-
Quinn conjecture for the strong chromatic index of bipartite graphs.

2 Results

We present a simple lower bound for the strong chromatic index by consid-
ering a large set of edges which must be given different colors in any strong
edge coloring of B (k).

Theorem 2.1 sq(Bm(k)) > (,7,)-
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Proof. Label the first k vertices in X: z1,%s,...,2r. Now consider the
number of k-subsets of vertices from X that contain the vertex z;. There
will be ',:'_'ll) of them because we can choose k — 1 more elements to fill
the k-subset from a set of m — 1 elements. Associated with each of these

',:‘__ll) subsets is an edge between each of these subsets and vertex z,. Now
consider the number of k-subsets that contain both vertices z; and z3, there
will be (7-2) of these subsets. Associated with these ™~2) subsets is an

edge between each of these subsets and vertex z;. There will be (',;‘::)
k-subsets that contain vertices x;, T2, and x3, (','c'_':) k-subsets that contain

vertices xy, T2, z3, and x4, up to ("‘6‘ k) = 1 k-subsets that contain vertices
zy,Z2,...,Tk. Associated with these subsets are the corresponding edges
to the vertices 3,4, ..., ;. Pairwise, these edges are at most 1 edge away
from each other and hence must all be colored differently. So a strong edge
coloring of By, (k) requires at least (7)) + (722) + (P=3) +--- + (™"
colors. By repeated applications of Pascal’s formula (see e.g. Brualdi [2])
this sum of binomial coefficients reduces to (,™,). Hence sq(Bm(k)) >

(2y)- o

Before proving that equality holds in Theorem 2.1, we need to develop
a special property of edge colorings. An edge coloring of a bipartite graph
G = (X, E,Y) using t colors is k-distributed if for every k-subset, A, of X,
there is exactly one of the ¢ colors which is not incident to some vertex of A.
Further, each color is absent from at most one such k-subset of X. Since a
color can be missing at most once, we see that there have to be at least as
many colors as k-subsets. So t > (”,f I). Ift = (l’,g |) then there are exactly
as many colors as k-subsets and each color is missing from any k-subset
exactly once. The following theorem constructs a (k— 1)-distributed strong
edge coloring for B, (k).

Theorem 2.2 There is a (k— 1)-distributed strong edge coloring of Bp,(k)
using (") colors.

Proof. The proof proceeds by induction on m + k. Two families of subset
graphs serve as the basis, B, (1) and By,(m). For any positive integer m,
B (1) is a matching with m edges. Assigning each edge the same color
creates a O-distributed strong edge coloring using 1 = ('(',') color. The graph
B, (m) is isomorphic to the complete bipartite graph Kn,1. Assigning each
edge a different color creates a (m—1)-distributed strong edge coloring using
m= (") colors.

For 1 < k < m and m + k < C, assume that B,(k) has a (k — 1)-
distributed strong edge coloring using (,™,) colors. Now consider Bu,(k)
when m +k = C and 1 < k < m. Label the vertices in X: x;,Z2,...,Tm;
and label the vertices in Y that are adjacent to z: Y142, Y(moi)-
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Let H; be the subgraph of B,,(k) which results from removing z,, and
those vertices of Y adjacent to T,,. Then H; is isomorphic to By, _1(k),
and by induction can be given a (k — 1)-distributed strong edge coloring
using (','::ll) colors. Let H be the subgraph of By, (k) induced by the
vertices T1,%2,-..,Zm—1 and ¥y, Y2, ... 'Y(ool) Then Hj is isomorphic to

Bp-1(k — 1), and by induction can be given a (k — 2)-distributed strong

edge coloring using (',’::;) additional colors. Hence, we have used ’;:__11 ) +

m- 1) = (,,) colors so far. It remains to color the ','::11) edges incident

k-2
to x,,.
Since our coloring of Hj is (k — 1)-distributed, there is exactly 1 color
missing from each (k — 1)-subset of the vertices 3, Z2,...,Zm-1. Assign

the edge {Tm, 1} the color that is missing from the other (k— 1) neighbors
of 1. Do the same for the edges {Zm,¥2}, {Tm,¥3},-- -, {:z:m,y(:.-lx)}. This

requires no additional colors and gives us a valid strong edge coloring for
By (k) using (,™,) colors.

Now we must show that the strong edge coloring is (k — 1)-distributed.
Any (k — 1)-subsets taken from the set {z1,%2,...,Zm-1} Will satisfy the
necessary properties to be (k — 1)-distributed, because they were (k — 1)-
distributed in the coloring of H,, and the colors added to them by the
coloring of Hy were (k — 2)-distributed (so any (k — 1)-subset will contain
all of the colors used in Hz.)

A (k — 1)-subset that contains z,, is composed of =, and a (k — 2)-
subset from {r;,32,...,Zm-1}. Now Z, is incident to all of the (’,:‘:1)
colors used in Hj, so the missing colors from these (k — 1)-subsets must
be from the colors used in Ha. Since we are selecting (k — 2)-subsets from
{z1,22,...,Tm—1} and the coloring of Hz is (k — 2)-distributed, we know
that there will be exactly 1 color missing from each (k—1)-subset containing
Zm, and each color is missing exactly once. Hence the strong edge coloring
of By, (k) is (k — 1)-distributed. ]

Corollary 2.3 The strong chromatic index of the bipartite graph Bpm(k)
equals (7).

Proof. Theorem 2.2 inductively constructs an (k'fl) strong edge coloring
for B (k). Theorem 2.1 requires a strong edge coloring to contain at least

(,7,) colors. Hence equality holds and sq(Bm(k)) = G- a

Finally, we verify that the strong chromatic index of B, (k) satisfies the
Brualdi-Quinn conjecture. The degree of every vertex in Y is k and the

degree of every vertex in X is '}?——11) To satisfy the conjecture, we must

show that (,™,) < (%71)k-
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By assumption 1 < k < mso0 < (m—k)(k—1). Hencem < (m—k+1)k
and
m.(m— m—2)---(m—k+2)
(k=1)

(m-—1)(m—2)---(m—k+2)
(k—1)!

< (m—k+1)k.

Thus (,™,) < (7)) k. Hence the inequality always holds. Further sq(Bn(k)) =
(',:'_—ll)k ifandonly if k=mor k= 1.
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