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Abstract

The cyclic chromatic number is the smallest number of colours
needed to colour the nodes of a tournament so that no cyclic triple
is monochromatic. Bagga, Beineke, and Harary [1] conjectured that
every tournament score vector belongs to a tournament with cyclic
chromatic number 1 or 2. In this paper, we prove this conjecture and
derive some other results.

1 Introduction

An n-tournament T,, consists of n nodes py, ps, ..., pn such that each pair
of distinct nodes p; and p; is joined by one and only one of the oriented
arcs p;p; or p;p;i. If the arc p;p; is in T, then we say that p; dominates
pj, denoted by p; — p;. The score of p; is the number s; of nodes that p;
dominates. The score vector of T, is the ordered n-tuple (sy,s32,...,8n),
where the nodes have been labelled so that s; < s2 < ... < s,. We denote
the set of all nodes of T,, by V(T,,), and the set of all arcs of T, by A(T},).
For any subset W C V(T,), the sublournament T, (r = |W|) of T,, induced
by W is the r-tournament with V(7;) = W and A(T,) C A(T,). We
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denote by T,[W] the subtournament of T}, induced by W. A tournament
is transitive if whenever p — ¢ and ¢ — r then p — r also. We denote by
L, the transitive r-tournament, and by C3 the cyclic 3-tournament.

For any nontrivial graph F, the F-chromatic number of a graph G is the
smallest number of colours needed to colour the vertices so that no copy of
F in G has all of its vertices the same colour. Thus, the usual chromatic
number x(G) is the K,-chromatic number of G. In [1], Bagga, Beineke, and
Harary consider such colourings of tournaments by focusing on forbidding as
monochromatic subtournaments L3 and Cs. The cyclic chromatic number
x¢(T) of a tournament T is the minimum number of colours with which the
nodes of T can be coloured so that no Cs is monochromatic, that is, x.(T)
is the C3-chromatic number of . The maximum cyclic chromatic number

among all tournaments on n vertices was shown in [2] to be of order

log,n’

Bagga et al conjectured in [1] that every tournament score vector be]‘f)l;lgs
to a tournament with cyclic chromatic number 1 or 2. Here, we prove that
this conjecture is true.

We list two results which are used in the proof of our main result.

The following theorem was first proved by Landau [3] (1953), and later
(1964) Ryser [5] gave another proof (see [4]).

Theorem 1 A setl of integers (s1,52,...,5n) with s; < 52 < ... < sy 18
the score vector of some lournament T,, if and only if

isiZ(g),

i=1
fork=1,2,...,n with equality holding when k = n.
The next lemma. is easily proved with the help of Theorem 1.

Lemma 1 (Landau [8] 1958) If the scores s1,52,...,5, of a tournament
T, are in nondecreasing order, then

i—1 n+i—2
g SHS T

fori=1,2,...,n.

2 Proof of the conjecture

For any score vector S = (s1, 82, . .., 5n), we show that there is a tournament
T,, with S as its score vector such that V(T,) = V} + V&, and that T,[Vy]
and T,[V;] are transitive subtournaments of T,,. In other words, we can
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partition V(T,) into two subsets V; and V5 such that the subtournaments
Ta[V1] and T,[V5] are both transitive. Hence, we can colour V; with one
colour and V; with another colour, giving Xe(Tw) < 2, and the Bagga-
Beineke-Harary’s conjecture follows.

NOTE: If one of V; and V, is empty, then T, itself is transitive, and thus,
Xc(Tn) = l.

Now, we state and prove our main result.

Theorem 2 For any score vector S = (81, 82,..., Sp) withsy <82 <...<
Sn, there is a tournament T,, with S as its score vector such that V(T,) =
Vi + V2, and that T,[V}] and T,[V3) are transitive subtournaments of T},

where V(Tn) = {p1,p2,-.-,Pn}, Vi = {pi | i is odd } with |V}| = I’g]. and
Va = {pi | i is even } with |Vo| = [g]

Proof: By induction on n.
The theorem is trivial when n = 1,2.
Consider the case n > 3 and suppose the theorem is true for all smaller

n.

Let S = (s1,52,...,8,) be any score vector with s, <s2L...< s,
Then there is some ¢ with 1 < i < n—1 such that Si41 = 8; OF Si41 = 8; +1
(since for each 1 < j < n, s; can only have n values: 0,1,...,n — 1). Let

k be the largest such 7, and let w = sx + sg41 + 1 — k. Then w > 1 from
Lemma 1 and the choice of k. Consider s,,. Let r and ¢ be the smallest
and largest indices less than k such that s, = s,, = s;. Let

g=k—1—sp—spp1+@E+r)=(t+k)— (sk + skg1) + (r—1).
Define the set of integers (s}, s5,...,s,_,) as follows:
si=s;, if i=1,2,...,r—1 or i=q+1,q+2,...,¢;
si=si—1, if i=r;r+1,...,q or i=t+1,t+2,... k—=1;
si=8i42—2, if i=kk+1,...,n-2.

From this definition, it follows that s} < sj < ... < s,_,, s} = s; for
(8 + sk41) — k values of i, s} = s; — 1 for 2k — (sk + sk41 + 1) values of i,
and s} = s;42 — 2 for (n — k — 1) values of i.

Consequently,

n-2 n

Esﬁ» = Zsi —(sk +sk41) —(2k — sk —seq1 — 1) = 2(n—k — 1)
i=1 i=1
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=gs;—(2n—3)=(g)_(2n_3)= ( n;2 )

Therefore, by Theorem 1, we need only show that the inequality

LI b
ZS.’ < ( 9 )
i=1
is impossible for every integer h = 2,3,...,n — 3 in order to complete the
proof that (s}, s5,...,s,_,) is the score vector of some tournament T, _».
We follow Ryser’s proof of Theorem 1 (see [4]).

First, consider the smallest value of A (1 < h < k — 1) for which in-

equality
h
Zsﬁ < ( g )

i=1

holds (if it ever holds). Since

h-1
h-1
/
Sz ("0,
i=1 2
it follows that s; < h. Furthermore, r < h since the first » — 1 scores were
unchanged. Hence,

Sh = Sh41 = - =5y,
where

f = max (h,t).

Let m denote the number of values of i not exceeding h such that s = s; —1.
Then it must be that

and hence
Sk+skp1—k=w—-1< f—-m.

So,

sitsipn S f+k
for all j < k.
Therefore,
k41 k41 A I k+1
(31 ) sTu=Fdtmt S s+ 3 &

i=1 i=1 s=h41 i=f+1

k-1
h
< ( 9 )+(f—h)8h+'zf;13£+8k+3k+l+m
1=
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<($)+E L rn+ru+n

_IU=1) k= NE+D (G +R)
2 2

k2 +k kE+1

=5 (k1)

a contradiction. So,

foralll<h<k-1.
Now consider k < h < n—2. We have, by the definition of the s;’s, that

h h+42
Dosi=D" 8 — (st +su41) — (2h — 5k — sp41 — 1) - 2[(h+2) - k—1]
i=1 i=1
h+2

=Y si-%-1> ( ";2 )-2}.-1
i=1

=(7)-C1)-(0)-(4)
| ész(g)

forallk<h<n-2.

Therefore, ' = (s},s5,...,s,_,) is indeed a tournament score vector.
Thus by the induction hypothesis, there is an (n — 2)-tournament T;,_,
with 5 as its score vector such that V(T,-2) = V{ + V/, and that Ta-2[V{]

and T,_»[V;] are transitive subtournaments of Tj_,, where V(Tn-2) =
. . n—2 n
{P1,92 -, Pz}, Vi = {p} | iisodd } with |V]] = [ 71 = [51-1,

.. ] n-—2 n
and V3 = {p} | i is even } with |Vj| = | 3 J=|_5_]—l.
Now, we construct an n-tournament 7}, with Th -2 as its subtournament
as follows:

V(Tﬂ) = {PI:PZ, . "pn}:

where

pi=p}, |if i=1,2,...,k~-1;
p;:p:-_z, if i=k+2,k+3,...,n.
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A(Tn) = A(Tn_z) UA 3 UA UA3UA4U As,

where

Ay = {pipt, Pive+i | k+2<i<n);

Ao = {pepl, Prrip; | 1<i<k—1 and k= i(mod 2),
1<j<k-1 and k+ 1= j(mod 2).};

As = {pePi, Pimip; | 1<i<k-—1 and k—i=1(mod 2) and s;=s;,
1<j<k-1 and k= j(mod 2)and s;=s;.};

Ay = {pipr, Pjpesi| 1 <i<k—1 and k—i=1(mod 2) and
si=s;—1, 1<j<k—1 and k=j(mod 2)and s;=s; -1}

and As = { either Pry1pr or DrPr+1} can be decided from the follow-
ing two cases:

Case 1: Sgp41 = Sk.

Then k — w = 2k — s — sg41 — 1 = 2(k — sx) — 1 is odd, that is,
(g—r+1)+(k—1—t) = k—wisodd. If (—r+1) is odd and ¢ = k(mod 2),
then let pry1 — pr. Otherwise, let pr — pe41-

Case 2: sp41 = sk + 1.

Then k — w = 2k — s — Sg41 — 1 = 2(k — sp — 1) is even, that is,
(g-r+1)+(k—1—t) = k—wis even. If both (¢—r+1) and (k—1—1) are
odd and ¢ — k = 1(mod 2), then let py — pr41. Otherwise, let pry1 — pr.

From the above construction, we can see that T, has score vector S =
(81,82, - -,5n) and has the following properties:

(i) V(T,) = Vi+Va, where Vi = {p; | i is odd } with [V] = |V{|+1 = [g],
and Vo = {p; | i is even } with |V3| = [V3|+1= [%J
(ii) Ta[Vi] and T, [V2] are transitive subtournaments of Tp,.
Hence, the proof is complete. il

Corollary 1 Every tournament score vector belongs to a tournament with
cyclic chromatic number 1 or 2.

Proof: By Theorem 2, for any tournament score vector S = (s1, s2,-- -, Sn),
there is an n-tournament T}, with S as its score vector such that x.(Tn) < 2.
[ |

It is easy to see that Theorem 2 implies the following result.
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Corollary 2 For any score vector S = (s1,82,...,8,) withs) <s;<...<
, n .
Sn, if m= [§J, Ri=(s1,83—1,...,8_1—(i—=1),...,52m¢1 —m), and

Ry =(s2,84—1,...,80i = (i—1),...,52m —(m—1)), then R, and Ry form
the score vectors of some bipartile tournament.
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