Score Vectors and Tournaments with Cyclic Chromatic Number 1 or 2

S. Ao and D. Hanson
Department of Mathematics and Statistics
University of Regina
Regina, Saskatchewan
Canada S4S 0A2

October 19, 1995

Abstract

The cyclic chromatic number is the smallest number of colours needed to colour the nodes of a tournament so that no cyclic triple is monochromatic. Bagga, Beineke, and Harary [1] conjectured that every tournament score vector belongs to a tournament with cyclic chromatic number 1 or 2. In this paper, we prove this conjecture and derive some other results.

1 Introduction

An *n*-tournament T_n consists of n nodes p_1, p_2, \ldots, p_n such that each pair of distinct nodes p_i and p_j is joined by one and only one of the oriented arcs $\overrightarrow{p_ip_j}$ or $\overrightarrow{p_jp_i}$. If the arc $\overrightarrow{p_ip_j}$ is in T_n , then we say that p_i dominates p_j , denoted by $p_i \to p_j$. The score of p_i is the number s_i of nodes that p_i dominates. The score vector of T_n is the ordered n-tuple (s_1, s_2, \ldots, s_n) , where the nodes have been labelled so that $s_1 \leq s_2 \leq \ldots \leq s_n$. We denote the set of all nodes of T_n by $V(T_n)$, and the set of all arcs of T_n by $A(T_n)$. For any subset $W \subseteq V(T_n)$, the subtournament T_r (r = |W|) of T_n induced by W is the r-tournament with $V(T_r) = W$ and $A(T_r) \subseteq A(T_n)$. We

denote by $T_n[W]$ the subtournament of T_n induced by W. A tournament is transitive if whenever $p \to q$ and $q \to r$ then $p \to r$ also. We denote by L_r the transitive r-tournament, and by C_3 the cyclic 3-tournament.

For any nontrivial graph F, the F-chromatic number of a graph G is the smallest number of colours needed to colour the vertices so that no copy of F in G has all of its vertices the same colour. Thus, the usual chromatic number $\chi(G)$ is the K_2 -chromatic number of G. In [1], Bagga, Beineke, and Harary consider such colourings of tournaments by focusing on forbidding as monochromatic subtournaments L_3 and C_3 . The cyclic chromatic number $\chi_c(T)$ of a tournament T is the minimum number of colours with which the nodes of T can be coloured so that no C_3 is monochromatic, that is, $\chi_c(T)$ is the C_3 -chromatic number of T. The maximum cyclic chromatic number among all tournaments on n vertices was shown in [2] to be of order $\frac{n}{\log_2 n}$.

Bagga et al conjectured in [1] that every tournament score vector belongs to a tournament with cyclic chromatic number 1 or 2. Here, we prove that this conjecture is true.

We list two results which are used in the proof of our main result.

The following theorem was first proved by Landau [3] (1953), and later (1964) Ryser [5] gave another proof (see [4]).

Theorem 1 A set of integers $(s_1, s_2, ..., s_n)$ with $s_1 \leq s_2 \leq ... \leq s_n$ is the score vector of some tournament T_n if and only if

$$\sum_{i=1}^k s_i \geq \left(\begin{array}{c} k \\ 2 \end{array}\right),$$

for k = 1, 2, ..., n with equality holding when k = n.

The next lemma is easily proved with the help of Theorem 1.

Lemma 1 (Landau [3] 1953) If the scores s_1, s_2, \ldots, s_n of a tournament T_n are in nondecreasing order, then

$$\frac{i-1}{2} \le s_i \le \frac{n+i-2}{2},$$

for i = 1, 2, ..., n.

2 Proof of the conjecture

For any score vector $S = (s_1, s_2, \ldots, s_n)$, we show that there is a tournament T_n with S as its score vector such that $V(T_n) = V_1 + V_2$, and that $T_n[V_1]$ and $T_n[V_2]$ are transitive subtournaments of T_n . In other words, we can

partition $V(T_n)$ into two subsets V_1 and V_2 such that the subtournaments $T_n[V_1]$ and $T_n[V_2]$ are both transitive. Hence, we can colour V_1 with one colour and V_2 with another colour, giving $\chi_c(T_n) \leq 2$, and the Bagga-Beineke-Harary's conjecture follows.

NOTE: If one of V_1 and V_2 is empty, then T_n itself is transitive, and thus, $\chi_c(T_n) = 1$.

Now, we state and prove our main result.

Theorem 2 For any score vector $S = (s_1, s_2, ..., s_n)$ with $s_1 \le s_2 \le ... \le s_n$, there is a tournament T_n with S as its score vector such that $V(T_n) = V_1 + V_2$, and that $T_n[V_1]$ and $T_n[V_2]$ are transitive subtournaments of T_n , where $V(T_n) = \{p_1, p_2, ..., p_n\}$, $V_1 = \{p_i \mid i \text{ is odd }\}$ with $|V_1| = \lceil \frac{n}{2} \rceil$, and $V_2 = \{p_i \mid i \text{ is even }\}$ with $|V_2| = \lfloor \frac{n}{2} \rfloor$.

Proof: By induction on n.

The theorem is trivial when n = 1, 2.

Consider the case $n \geq 3$ and suppose the theorem is true for all smaller n.

Let $S = (s_1, s_2, \ldots, s_n)$ be any score vector with $s_1 \leq s_2 \leq \ldots \leq s_n$. Then there is some i with $1 \leq i \leq n-1$ such that $s_{i+1} = s_i$ or $s_{i+1} = s_i+1$ (since for each $1 \leq j \leq n$, s_j can only have n values: $0, 1, \ldots, n-1$). Let k be the largest such i, and let $w = s_k + s_{k+1} + 1 - k$. Then $w \geq 1$ from Lemma 1 and the choice of k. Consider s_w . Let r and t be the smallest and largest indices less than k such that $s_r = s_w = s_t$. Let

$$q = k - 1 - s_k - s_{k+1} + (t+r) = (t+k) - (s_k + s_{k+1}) + (r-1).$$

Define the set of integers $(s'_1, s'_2, \ldots, s'_{n-2})$ as follows:

$$s'_i = s_i$$
, if $i = 1, 2, ..., r - 1$ or $i = q + 1, q + 2, ..., t$; $s'_i = s_i - 1$, if $i = r, r + 1, ..., q$ or $i = t + 1, t + 2, ..., k - 1$; $s'_i = s_{i+2} - 2$, if $i = k, k + 1, ..., n - 2$.

From this definition, it follows that $s'_1 \leq s'_2 \leq \ldots \leq s'_{n-2}$, $s'_i = s_i$ for $(s_k + s_{k+1}) - k$ values of i, $s'_i = s_i - 1$ for $2k - (s_k + s_{k+1} + 1)$ values of i, and $s'_i = s_{i+2} - 2$ for (n - k - 1) values of i.

Consequently,

$$\sum_{i=1}^{n-2} s_i' = \sum_{i=1}^n s_i - (s_k + s_{k+1}) - (2k - s_k - s_{k+1} - 1) - 2(n - k - 1)$$

$$= \sum_{i=1}^{n} s_{i} - (2n-3) = \binom{n}{2} - (2n-3) = \binom{n-2}{2}.$$

Therefore, by Theorem 1, we need only show that the inequality

$$\sum_{i=1}^h s_i' < \left(\begin{array}{c} h \\ 2 \end{array}\right)$$

is impossible for every integer $h=2,3,\ldots,n-3$ in order to complete the proof that $(s'_1,s'_2,\ldots,s'_{n-2})$ is the score vector of some tournament T_{n-2} . We follow Ryser's proof of Theorem 1 (see [4]).

First, consider the smallest value of h $(1 < h \le k-1)$ for which inequality

$$\sum_{i=1}^h s_i' < \left(\begin{array}{c} h \\ 2 \end{array}\right)$$

holds (if it ever holds). Since

$$\sum_{i=1}^{h-1} s_i' \ge \left(\begin{array}{c} h-1\\ 2 \end{array}\right),$$

it follows that $s_h \leq h$. Furthermore, $r \leq h$ since the first r-1 scores were unchanged. Hence,

$$s_h = s_{h+1} = \cdots = s_f,$$

where

$$f = \max(h, t).$$

Let m denote the number of values of i not exceeding h such that $s'_i = s_i - 1$. Then it must be that

$$w \leq f + 1 - m,$$

and hence

$$s_k + s_{k+1} - k = w - 1 \leq f - m.$$

So,

$$s_j + s_{j+1} \le f + k$$

for all $j \leq k$.

Therefore,

$$\begin{pmatrix} k+1 \\ 2 \end{pmatrix} \le \sum_{i=1}^{k+1} s_i = \sum_{i=1}^h s_i' + m + \sum_{i=h+1}^f s_i + \sum_{i=f+1}^{k+1} s_i$$

$$< \begin{pmatrix} h \\ 2 \end{pmatrix} + (f-h)s_h + \sum_{i=f+1}^{k-1} s_i + s_k + s_{k+1} + m$$

$$< \binom{f}{2} + \frac{k-1-f}{2}(f+k) + (f+k)$$

$$= \frac{f(f-1)}{2} + \frac{(k-f)(k+f) + (f+k)}{2}$$

$$= \frac{k^2+k}{2} = \binom{k+1}{2},$$

a contradiction. So,

$$\sum_{i=1}^h s_i' \ge \left(\begin{array}{c} h \\ 2 \end{array}\right)$$

for all $1 < h \le k - 1$.

Now consider $k \leq h < n-2$. We have, by the definition of the s_i 's, that

$$\sum_{i=1}^{h} s_i' = \sum_{i=1}^{h+2} s_i - (s_k + s_{k+1}) - (2h - s_k - s_{k+1} - 1) - 2[(h+2) - k - 1]$$

$$= \sum_{i=1}^{h+2} s_i - 2h - 1 \ge \binom{h+2}{2} - 2h - 1$$

$$= \binom{h+2}{2} - \binom{h+1}{1} - \binom{h}{1} = \binom{h}{2}.$$

That is,

$$\sum_{i=1}^h s_i' \ge \left(\begin{array}{c} h \\ 2 \end{array}\right)$$

for all $k \leq h < n-2$.

Therefore, $S'=(s'_1,s'_2,\ldots,s'_{n-2})$ is indeed a tournament score vector. Thus by the induction hypothesis, there is an (n-2)-tournament T_{n-2} with S' as its score vector such that $V(T_{n-2})=V'_1+V'_2$, and that $T_{n-2}[V'_1]$ and $T_{n-2}[V'_2]$ are transitive subtournaments of T_{n-2} , where $V(T_{n-2})=\{p'_1,p'_2,\ldots,p'_{n-2}\}$, $V'_1=\{p'_i\mid i \text{ is odd }\}$ with $|V'_1|=\lceil\frac{n-2}{2}\rceil=\lceil\frac{n}{2}\rceil-1$, and $V'_2=\{p'_i\mid i \text{ is even }\}$ with $|V'_2|=\lfloor\frac{n-2}{2}\rfloor=\lfloor\frac{n}{2}\rfloor-1$.

Now, we construct an *n*-tournament T_n with T_{n-2} as its subtournament as follows:

$$V(T_n) = \{p_1, p_2, \ldots, p_n\},\,$$

where

$$p_i = p'_i$$
, if $i = 1, 2, ..., k - 1$;
 $p_i = p'_{i-2}$, if $i = k + 2, k + 3, ..., n$.

$$A(T_n) = A(T_{n-2}) \cup A_1 \cup A_2 \cup A_3 \cup A_4 \cup A_5$$

where

$$A_1 = \{ \overrightarrow{p_i p_k}, \overrightarrow{p_i p_{k+1}} \mid k+2 \le i \le n \};$$

$$A_2 = \{ \overrightarrow{p_k p_i}, \ \overrightarrow{p_{k+1} p_j} \mid 1 \le i \le k-1 \text{ and } k \equiv i \pmod{2}, \\ 1 < j < k-1 \text{ and } k+1 \equiv j \pmod{2}. \};$$

$$A_3 = \{ \overrightarrow{p_k p_i}, \ \overrightarrow{p_{k+1} p_j} \mid 1 \le i \le k-1 \text{ and } k-i \equiv 1 \pmod{2} \text{ and } s_i' = s_i, \\ 1 \le j \le k-1 \text{ and } k \equiv j \pmod{2} \text{ and } s_j' = s_j. \};$$

$$A_4 = \{ \overrightarrow{p_i p_k}, \ \overrightarrow{p_j p_{k+1}} \mid 1 \le i \le k-1 \text{ and } k-i \equiv 1 \pmod{2} \text{ and } s_i' = s_i - 1, \ 1 \le j \le k-1 \text{ and } k \equiv j \pmod{2} \text{ and } s_j' = s_j - 1. \};$$

and $A_5 = \{$ either $\overrightarrow{p_{k+1}p_k}$ or $\overrightarrow{p_kp_{k+1}}\}$ can be decided from the following two cases:

Case 1: $s_{k+1} = s_k$.

Then $k - \overline{w} = 2k - s_k - s_{k+1} - 1 = 2(k - s_k) - 1$ is odd, that is, (q-r+1)+(k-1-t) = k-w is odd. If (q-r+1) is odd and $q \equiv k \pmod{2}$, then let $p_{k+1} \to p_k$. Otherwise, let $p_k \to p_{k+1}$.

Case 2: $s_{k+1} = s_k + 1$.

Then $k-\overline{w}=2k-s_k-s_{k+1}-1=2(k-s_k-1)$ is even, that is, (q-r+1)+(k-1-t)=k-w is even. If both (q-r+1) and (k-1-t) are odd and $q-k\equiv 1 \pmod{2}$, then let $p_k\to p_{k+1}$. Otherwise, let $p_{k+1}\to p_k$.

From the above construction, we can see that T_n has score vector $S = (s_1, s_2, \ldots, s_n)$ and has the following properties:

(i)
$$V(T_n) = V_1 + V_2$$
, where $V_1 = \{p_i \mid i \text{ is odd }\}$ with $|V_1| = |V_1'| + 1 = \lceil \frac{n}{2} \rceil$, and $V_2 = \{p_i \mid i \text{ is even }\}$ with $|V_2| = |V_2'| + 1 = \lfloor \frac{n}{2} \rfloor$.

(ii) $T_n[V_1]$ and $T_n[V_2]$ are transitive subtournaments of T_n .

Hence, the proof is complete.

Corollary 1 Every tournament score vector belongs to a tournament with cyclic chromatic number 1 or 2.

Proof: By Theorem 2, for any tournament score vector $S = (s_1, s_2, \ldots, s_n)$, there is an *n*-tournament T_n with S as its score vector such that $\chi_c(T_n) \leq 2$.

It is easy to see that Theorem 2 implies the following result.

Corollary 2 For any score vector $S = (s_1, s_2, \ldots, s_n)$ with $s_1 \leq s_2 \leq \ldots \leq s_n$, if $m = \lfloor \frac{n}{2} \rfloor$, $R_1 = (s_1, s_3 - 1, \ldots, s_{2i-1} - (i-1), \ldots, s_{2m+1} - m)$, and $R_2 = (s_2, s_4 - 1, \ldots, s_{2i} - (i-1), \ldots, s_{2m} - (m-1))$, then R_1 and R_2 form the score vectors of some bipartite tournament.

References

- [1] K.S. Bagga, L.W. Beineke, and F. Harary, Two problems on colouring tournaments, *Vishwa International Journal of Graph Theory* Vol. 1, No.1 (1992) 83-94.
- [2] D. Hanson and S. Ao, On the maximum cyclic chromatic number of tournaments, Congressus Numerantium 106 (1995) 155-159.
- [3] H.G. Landau, On dominance relations and the structure of animal societies. III. The condition for a score structure, *Bull. Math. Biophys* 15 (1953) 143-148.
- [4] J.W. Moon, Topics on Tournaments, Holt, Rinehart and Winston (1968).
- [5] H.J. Ryser, Matrices of zeros and ones in combinatorial mathematics. Recent Advances in Matrix Theory. Madison: Univ. Wisconsin Press, (1964) 103-124.