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Abstract

A graph H is called a seed graph if there exists a graph G such
that the deletion of any closed neighborhood of G always results in
H.In this paper we investigate disconnected seed graphs. By degree
and order considerations we show that for certain pairs of connected
graphs, H; and Hz, H, U H> cannot be a seed graph. Furthermore,
for every connected graph H such that K; U H is a seed graph we
show that H can be obtained by a certain graph product of K> and
H', where H' is itself a seed graph.

1 Introduction.

We shall follow the notation of [1], and so a graph G has vertex set V(G)
and edge set E(G) which will be abbreviated to V and E, respectively, if the
graph G is clear from the context. The order of G will be denoted by |G].
For z € V(G) the neighborhood of z in G is Ng(z) = {u € V|zu € E}
and the closed neighborhood of z in G is Ng[z] = Ng(z)U{z}. In what
follows Ng(z) and Ng[z] may represent either just a set of vertices or the
subgraph induced by that set of vertices with the meaning being understood
from the context. We also drop the reference to G if no confusion will arise.
We write @ L b if a is neither adjacent nor equal to b. If A and B are both
subsets of V(G) we write A L B to indicate that a L b for every a € A and
every b € B. For a vertex u of G and X C V(G), X survives in G — N[y]
means that {u} L X.
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If A is a nonempty set of vertices in G the subgraph of G induced by
A will be denoted by (A)g, or simply by {A) if G is clear from the context.
The complement of a graph G is that graph G with vertex set V(G) and
edge set {abla,b € V(G) and ab & E(G)}. Whenever we form the union of
two or more graphs we will always assume they are vertex disjoint. The
join of a collection G1,Ga,- -, Gy of vertex disjoint graphs is the graph,
Gi1 + G2+ ... + Gy, obtained from the union of these individual graphs
by also including all edges of the form u,u,,r # s, where u; € V(G;) for
1<i<n.

In [2] a graph F is defined to be a graph with constant neighborhood
if there is a graph K such that N[z] 2 K for every vertex z of F. Any
regular, triangle-free graph is an example of a constant neighborhood graph.
A graph H is called a seed graph if there exists a graph G such that for
every vertex v of G, G — N[v] = H. As in [3], we call the graph G an
isomorphic survivor graph with seed H. For example, for n > 4 the
path P,_3 is a seed graph arising from the isomorphic survivor graph C,.
Further, any vertex transitive graph is both a constant neighborhood graph
and an isomorphic survivor graph. These two classes of graphs are closely
related as can be seen from the graph equation G — Ng[z] = Ng(z). It
follows that the graph G is an isomorphic survivor graph if and only if G
is a constant neighborhood graph.

The problem we shall be interested in here is that of characterizing those
graphs which can be seed graphs of isomorphic survivor graphs. Gun-
ther and Hartnell [3] observed that K3 is the seed graph of an isomor-
phic survivor graph G which is the complement of a 3-regular, triangle-free
graph. In [4] Hartnell and Kocay determined which larger cycles can be
seed graphs. This is summarized in the following theorem.

Theorem 1.1 Suppose the n-cycle, n > 4, is a seed graph of the isomor-
phic survivor graph G. Then one of the following holds:
1. n =4 and G is the line graph of a 3-regular, triangle-free graph.

2. n =5 and each connected component of G is isomorphic to the graph
of the icosahedron.

3. n = 6 and each connected component of G is isomorphic to the line
graph of K5, the complete graph of order 5.

In particular they showed that a cycle of order 7 or more cannot be
a seed graph. Gunther and Hartnell [3]) observed that every isomorphic
survivor graph is regular and then proved the following characterization of
cubic seed graphs.
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Theorem 1.2 If H is a 3-regular seed graph, then H must be one of the
following: K4, the Cartesian product of K3 and K,, the Cartesian product
of C4 and Ko, or the Petersen graph.

In addition they derived several necessary conditions involving the di-
ameter, the girth and the order of any k-regular seed graph.

We will focus our attention on seed graphs which are the disjoint union
of two connected components. In Section 2 we derive general properties
of such graphs and also consider some specific situations where the two
components come from several well-know classes of graphs. Section 3 is
devoted to seed graphs where the smaller of the two components is an
isolated vertex.

2 General Seed Graphs with Two Compo-
nents.

Several of the main results of this section will show that for certain pairs of
connected graphs H; and Hg, the graph H, U H, cannot be a seed graph
for any isomorphic survivor graph (hereinafter abbreviated to IS-graph as
in [3]) G. As proved in [3] if G and G are both IS-graphs having the same
seed H then so is their join G) + G2. Thus, if convenient, we may assume
a particular IS-graph is connected.

We begin this section with an example which contains some of the ar-
guments typical of those in the section. Suppose that G is a connected
IS-graph having seed K 2 U K3. As mentioned in the introduction G must
be regular since for every vertex v in G, G — N[v] has order six. Let z be an
arbitrary vertex of G and assume V(G — N[z]) = AU B where (A) = K »
and (B) = Kj. Note that A L B. Let R = N(z) N N(a) where a is the
vertex of degree two in {A). R must be nonempty since G is connected and
regular of degree at least three. Let S = N{(z) — R and let b be a vertex
from B. B induces a complete graph of order three in G — N{a] so |S| = 2,
say S = {u,v}, with u L v. Since {z,u,v} and B are distinct components
of G — N|[a], it follows that {u,v} L B. But now in G — N[b], A survives as
does {z,u,v}. But (A) = ({z,u,v}) = K 2, which is a contradiction since
the subgraph induced by this set contains no K3. It follows that K, 2 U K3
is not a seed graph.

Similar to this example we have the following lemma.

Lemma 2.1 Let Hy and Hy be connected graphs of orders m and n, re-

spectively, withm < n. If A(H;) =m—1 and A(Hz) = n—1, then HHUH,
s not a seed graph.
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Proof. Assume that H; U H» is a seed graph of some connected
IS-graph G. Recall that G is regular. For a fixed vertex z of G, let V(G —
N(z]) = AU B where (A) = Hy, (B) = Hy and A L B. Suppose a € A
has degree m — 1 in {(A) and b € B has degree n — 1 in (B). Let R =
Ng(a) N Ng(z) and let S = Ng(z) — R. R must be nonempty since G
is regular and degg,(b) > degg, (a). B and S survive in G — NJa], and
so it follows that (S U {z}) = H; and SN Ng(B) = 0. If there exists
r € R such that b € Ng(r), then G — N[b] is a single component. Thus
Ng(b)N Ng(z) = R, and so deg(a) = m— 1+ |R| and deg(b) = n—1+|R|,
which contradicts the regularity of G. Therefore H;UHj3 is not a seed graph.

m}

For any positive integers k£ and n, the disjoint union of k copies of the
graph K, is an IS-graph having as a seed the disjoint union of k — 1 copies
of K. (If a connected IS-graph having the same seed is desired one only
need to form the join of two copies of the original IS-graph.) However, the
above lemma yields the following corollary.

Corollary 2.2 If r and s are distincl positive inlegers, then K, U K, s
nol a seed graph. Equivalently, there does not exist a constant neighborhood
graph G all of whose (open) neighborhoods are isomorphic to K, .

Lemma 2.3 If Hy and H are connected graphs such that |Hy| < |Hs| and
H, U H, is a seed graph, then H, is an induced subgraph of H,.

Proof. Let G be a connected IS-graph with G — N[v] = H, U H,
for every v € V(G). Fix ¢ € V(G) and assume that H; is not an induced
subgraph of Hy. V(G — N[z]) = AU B, where A induces H, and B induces
Hy in G. For a € A let R; = Ng(a) N Ng(z). Since A L B, B survives
in G — N[a]. From the assumption that |H;| < |H,| it now follows that
for every b € B, Ng(b) N Ng(z) C R,. In fact, since A induces H; in G
and H; is not an induced subgraph of H», (A4) is a component of G — N[b]
for every b € B. Thus for every vertex a in A and every vertex b in B,
N(@®)NN(z) = N(a)N N(z).

If H; is not a complete subgraph, then for distinct nonadjacent vertices b
and ¢ in B it follows that ¢, z and A lie in distinct components of G — N[b},
a contradiction. Thus H, is complete. Similarly, if A, is not complete
then for a,d € A witha L d, N(a)NN(z) = N(d)N N(z) and so G — N[d]
contains at least three components again contradicting the assumption that
HUH, is the seed. But then H, is also complete and so by using the result
of Corollary 2.2 it follows that H; = H,. This contradiction shows that H,
is an induced subgraph of H. o
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In addition to being an induced subgraph of the larger of the compo-
nents, the smaller component has maximum degree which is bounded above
by the minimum degree of the larger component.

Lemma 2.4 If H; U H; is a seed graph where H, and H, are connected
and |H1| S IHzI, then A(Hl) S 6(H2)

Proof. Suppose G is a k-regular IS-graph with seed H; U H,. Fix
z € V(G) and let V(G — N[z]) = AU B such that (A) = H, and (B) = H,.
As in the proof of previous lemmas, for any vertex a in A, B is a component
of G — Nfa]. That is, for every a € A and every b € B, N(b) N N(z) C
N(a) N N(z). Let u be a vertex from A with deg4(u) = A(H)) and let v
be a vertex from B with deg gy (v) = 6(Hz). Then

k—6(Hz) = |[N(w)NN(z)| < |N(u)NN(z)| =k - A(H,).
Thus A(H;) < 6(Ha). u}

When the two surviving components are of the same order much more
can be concluded.

Theorem 2.5 Suppose H, and H, are connected graphs both of order n.
Hy U Hj is a seed graph if and only if Hy = K, = H,.

Proof. Assume H; U Hj is a seed graph where H, and H, are
connected. By Lemma 2.4, A(H;) < 6(H>) because |H;| < |Hz, and
similarly A(H2) < 6(H,). Thus H; and H; are regular of the same degree.
But now by Lemma 2.3 it follows that H;, = Hj. Let ¢ € V(G) and assume
that V(G — N(z]) = AU B where (A) = H, and (B) = H;. A L B and for
every a,d € A and b € B it follows that N(a) N N(z) = N(d)N N(z) =
N(b) N N(z). Now if H; is not a complete graph, then for any a € A,
A~ N[a] # 0 and survives as a component in G — N[a] because no d € A is
adjacent to other vertices of N[z] than the ones in N(z)N\N(a). But A—N|[q]
has order smaller than |H;|. This contradiction implies that H; = K,, = H,.

Let F = K, UK, UK,,. Then F+ F is a connected IS-graph with seed
K, UK,. ]

Although we have no characterization of those pairs of connected graphs
H,, Hy such that Hy U Hy is a seed graph, we conclude this section with
several cases based on the minimum degree of the large component. Since
the case |H;| = |H;| is covered by Theorem 2.5 we assume in what is to
follow that the components of the seed graph have different order. First we
have the following lemma which will also be useful in Section 3.
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Lemma 2.6 Suppose H is a connecied graph of order at least three such
that I{1 U H is a seed graph. Then H has even order and for every verter
a of H there is a vertez ¢’ of H such that Ny(a) = Ny(a'). In addition,
every verler of H belongs to a 4-cycle in H.

Proof. Assume G is an IS-graph with seed K; U H. Let 2 € V(G)
and assume V(G — N[z]) = {y} U A, where (A) = H and y ¢ N(A). Thus
Ng(z) = Ng(y). Let a be an arbitrary vertex from A. Since K; U H is
a seed of G it follows that V(G — N[a]) = {a’} U B where (B) = H and
a’' € Ng(B). Since every vertex from Ng(z) which survives in G — Nla] is
adjacent to both z and y it follows that a’ € A. Because ' is isolated in
G — Nla] and G is regular, Ng(a) = Ng(a'). Also a’ is the only vertex in
A with this property, since no other vertex is isolated in G — N{a].

Let b € A—{a,a’}. As above there exists a vertex b’ in A — {a,a’} with
Ng(b) = Ng(¥'). Continuing this process gives a pairing of the vertices of
A. Thus H has even order. For u,v € A such that Ng(u) = Ng(v) it also
follows that N(4y(u) = Nia)(v) and hence u and v belong to a common
4-cycle in H. o

Theorem 2.7 Suppose Hy and H, are connected graphs with |Hy| < |H»)|
and suppose Ho has minimum degree at most 2. If Hy U Hy is a seed graph,
then 6(H2) = 2, and either Hy = Ky, or Hy = P,_3 and Hy = C, for
some n > 5.

Proof. Suppose G is an isomorphic survivor graph which is regular
of degree k and which has seed H; U Hy, where H; and H; are as in the
statement of the theorem. Assume first that §( H,) = 1. By Lemma 2.4, H,
is isomorphic to either K or K». The case H; = K, isimpossible by Lemma
2.6, and so H; = K;. Let ¢ € V(G) and suppose V(G — N[z]) = {a,c}UB
where ac € E(G) and (B) = H,.

Since |N(a) N N(z)| = k — 1, there exists a unique vertex y in N(z) —
N(a). Also because G — N[a] = H, U Hy, y L B. See Figure 1. If ¢ is
adjacent to y, then there exists a unique vertex z € N(z) such that ¢ L 2.
But now it follows that z L B since B is a component of G — N[c]. If u
is a leaf in (B), then u must have exactly & — 1 neighbors in N(z). This
contradicts y L B and z L B.

Hence ¢ L y, and so N(a)AN(z) = N(c)NN(z). Because y L B, y must
be adjacent to every other vertex of N(z). Again if u is a leaf in (B}, then
by regularity it follows that u is adjacent to every vertex of N(z) — {y}.
However, at least three components survive in G — N[u], namely {z,y},
{a,c} and H2 — N[u). This contradiction shows that it is not possible for
H, to have minimum degree one.
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Figure 1.

Therefore, assume that §(H2) = 2. By Lemma 2.3 and Lemma 2.4 it
follows that H; must be one of the following: K;, Py(m > 2), or Crp(m >
3).

Hy cannot be Cy, for any m > 3. For let z € V(G) and assume V(G —
Nz]) = AU B such that (A) = C, and (B) = H,. Let b € B have degree
2 in H,. Since B survives in G — N([t] for every t € A, it follows from
the regularity of G that N(b) N N(z) = N(1) N N(z), for every t € A. In
particular, for every pair of vertices t1,22 € A, N(t1)NN(z) = N(t2)NN(z).
Fix a € A. There exists a pair a;,as € N(z) — N(a). Assume first that
m > 4. B L A and so B survives in G — N[a] 2 C,, U H,. But then
{z,a1,a2}, B and A — Nla] are three distinct components in G — N[a).
Therefore, H, cannot be a cycle of order at least 4. Similarly, by considering
G — N[b), it follows that H; % Cs.

Assume then that Hy =2 P, for some m > 2. We first consider the case
where m = 2. Let A = {a,c} and let b be a vertex of degree two in B.
Since G is regular, there is a single vertex a; € N(z)— N(a). A L B and so
N(®)NN(z) C N(a)NN(c)NN(z) otherwise G—N[a] or G—N|c] contains a
component larger than B, which is impossible. Let {a;,a2} = N(z)— N(b).
The vertex c is adjacent to exactly one of a; or ay (if it is adjacent to both
a; and ay, then there is a vertex az € N(b) — N(c), which is impossible as
shown above). By considering these two cases and the graph G — N[b] it
follows that Hy = ({z, a1, a2, e, c}) is either a 5-cycle or is isomorphic to one
of Gy or G3 of Figure 2. If Hy is not a 5-cycle, then it has a vertex of degree
at least 3. Let v € B such that degg)(v) > 3. But then in G — N/[v] there
exists a vertex w € N(:c) {a1,a2} such that w, a, ¢, a3, as, z all belong to
the same component in G — N[v], a contradiction to the fact that |H»| = 5.
Therefore, if H, = P,, then H, = Cs.
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Figure 2.

Now assume m > 3. Let u and v be the leaves of the path (A} and let a
be the vertex of A adjacent to u. Suppose b € B has degree two in (B), say
Nigy(b) = {y,2}, and suppose N(z) — N(a) = {a1,az}. Since B survives
in G — N[a] it follows that no vertex of B is adjacent to either of a;,as
(otherwise G — N[a] contains a connected graph (B U {z, a1, az}), which is
impossible) and the two components of G— N[b] are induced by B~ {b, y, z}
and AU {z,a1,a2}. Hence |Hy| = m + 3. If w € A and deg4y(w) = 2,
then N(b) N N(z) is a subset of N(w) N N(z) and they have the same
order. Therefore, N(b) N N(z) = N(w) N N(z), and so neither of a; or
as is adjacent to w. Also, v is adjacent to exactly one of a; or as, and
similarly for u. {z,a1,a2} is a part of the path of order m in G — N[q],
and so aja; € E(G). If, say a;, is adjacent to both of u and v, then a3 has
degree one in G — N[b] 2 Hj, a contradiction. Thus assume without loss of
generality that ayu € E(G) and azv € E(G). Now by considering G — N [b]
we see that Hy = (AU {z,ay,a2}) = Cpya.

Note that for n > 4, P,_3UC, is a seed graph. G = C,, + C,, will serve
as an appropriate isomorphic survivor graph having this seed. There are
many connected graphs other than C4 whose union with K; = P) forms a
seed graph. We delay their consideration until Section 3. While Theorem
2.7 deals with two-component seed graphs where the larger component has
small minimum degree, the following result considers the other extreme.
The proof is similar to many of the results in this section, and we shall
therefore omit it.

Theorem 2.8 Suppose H, and H; are connected graphs such that |Hy| <
|Ha|. If H U H; is a seed graph and §(H2) = |Ha| — 2, then H, = K.
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3 Seeds With An Isolated Vertex.

If H; is an isomorphic survivor graph whose seed graph is connected, say
Hy — N[u] = H, for every u € V(H3), then Hy U H, is also a seed graph.
Indeed, if F' is the disjoint union of two copies of Hy, then G = F + F is
a connected isomorphic survivor graph whose seed is H; U Hy. Any vertex
transitive graph can be used for H;. For example, if H, is an even clique,
say Ks,, with a perfect matching removed then this construction shows
that K; U Hy is a seed graph. This particular H; can be obtained from
K, by “splitting” each vertex into two nonadjacent vertices each having the
same neighborhood in the resulting graph. See Figure 3 for an example of
this process for r = 3.

Figure 3

We will show in this section that, in fact, for every connected graph H
such that K; U H is a seed graph, H is the “split” of a graph which is itself
a seed graph. We first begin with an example and then introduce a more
formal setting which will make the results easier to present.

Let G be the cycle of order 14 with vertex set V(G) = {vo, v1,...,13}
and edge set consisting of all edges of the form v;vi41, viviys oOr viviys,
where the subscripts are taken modulo 14. Note that for every vertex x of
G, G — N[z] = K, U H as shown in Figure 4. As it is drawn there, the
graph H can be seen to be two copies of the path P, with each vertex w;
having the same neighborhood as u;. We formalize this splitting of vertices
by using the following graph product.
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Figure 4

For graphs G1 and Gy, let Gy ® G2 be the graph whose vertex set is
the Cartesian product V(G1) x V(G3z). Two vertices (a,b) and (c,d) are
adjacent in G @ G2 precisely when either ac € E(G,) and bd € E(G>), or
a = c and bd € E(G2). The graph G, @G is defined for any two graphs G,
and G, but when G, is a complete graph of order two we get the splitting
of G, as mentioned above. The graph H of Figure 4 is isomorphic to
K> @ Py. The proof of the following theorem is simply a matter of applying
the definition of the above product.

Theorem 3.1 IfG is an isomorphic survivor graph with seed H and r >2
is a positive integer, then K, ® G is an isomorphic survivor graph with seed
(r=1)K1 U(K, @ H). In particular, K, U (K, ® H) is a seed graph.

We now establish the converse of Theorem 3.1 in the case r = 2. This
reduces the problem of determining the connected graphs whose union with
an isolated vertex forms a seed graph to that of finding all connected graphs
which are themselves seed graphs. We will need the following special case
of a “cancellation lemma” for the graph product .

Lemma 3.2 If C and D are graphs such that Ky ® C = Ky & D, then
c=D.
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Proof. Assume V(K2) = {1,2}. For i = 1,2 let C; = {(i,z)|z €
V(C)} and let D; = {(i,z)|x € V(D)}. For an isomorphism g : K ® C —
K2 ® D let Ay = g(C1)N D, and let By = g(Cy) N D2. From among all
isomorphisms from K» @ C to K3 @ D choose f to be the one with [Af| a
maximum. Note that |A;|+ |By| = |C| = |D|. We will show for this f that
Aj = D; and thus that C and D are isomorphic.

Project A; and B; onto D. That is, let A = {d € V(D)|(1,d) € Ay}
and let B = {d € V(D)|(2,d) € By}. If there exists a vertex d € B — A,
let z € V(C) be such that f(1,2) = (2,d). Hence (1,d) ¢ Ay, but f is
surjective and so there exists ¢ € V(C) such that f(2,c¢) = (1,d). Since
N((1,d)) = N((2,d)) in K2 @& D and since f~! is also an isomorphism, it
follows that N((1,z)) = N((2,¢)). But then define f' : K, ®C — K& D

by~
f(2,¢)=(1,d) if (¢,u)=(1,x)
fl(i:u)= f(lax)=(2vd) if (ivu)=(2’c) .
f(E,u) otherwise

But now |4;:| = |As| + 1. This contradiction proves that B C A.

Suppose B # 0 and let b € B. Then there exists ¢; € V(C) such
that f(1,¢1) = (2,0). Let L = {(2,d)|d € V(D) — A}, M = {(2,d)|d €
A - B} and N = {(1,d)|d € V(D) — A}. If f(2,c1) belongs to either N
(or L) then as above we can switch f(1,c1) and f(2,c1) and contradict
the choice of f (the fact that B C A). Therefore, for some d; € V(D),
f(2,¢1) = (2,d1) € M, and (1,d1) = f(1,c2) for some c2 € V(C). As
above f(2,¢2) € M, say f(2,c2) = (2,d2). Since N((1,d1)) = N((2,d2))
then N((1,¢2)) = N((2,¢1)) and N(c1) = N(c2). This similarly yields
N((2,¢2)) = N((2,c1)) and N((2,d2)) = N((2,d1)). It now follows that
N(dy) = N(d2).

Now (1,d2) € Aj so (1,d2) = f(1,¢3) for some c3 € V(C). But then,
since N(d;) = N(d2), it follows that N(c3) = N(c2) = N{c1). Continuing
in this manner we can show that for every pair of vertices u and v in
V(C), N(u) = N(v). That is, C is an independent set and so D is as well.
Therefore, either C = K,, = D or else B = . However, when B = §,
A = V(D) and so f(C)) = D1, and this implies that C = D as well. O

We are now prepared to prove the main theorem of this section.

Theorem 3.3 Suppose H is a connected graph of order at least two such
that Ky U H is a seed graph. There exists a connected seed graph Hy such
that H = (K, @ H,).

Proof. Assume that G is a graph such that for every z € V(G),
G —N[z] = K1UH. For each vertex z of G let f(z) denote the unique vertex
in G such that N(z) = N(f(z)). Note that f(f(z)) = = and the degree of
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regularity of G is even. Fix a vertex a € V(G). Then V(G-N/{a]) = {f(a)}u
A, where f(a) L A and (A)g = H. If u € N(a) then f(u) € N(a) since u
and f(u) have the same open neighborhood. In a similar way it follows that
for any v € A, f(v) € A. Thus there exist zy,...,Z.,41,...,9s € V(G) such
that N(a) = {z1,..., 2., f(21),..., f(z,)} and A = {g1,...,95, f(91),-- -,
f(9s)}. Let W = {a,z;,...,2r,01,...,9:} and let X = {g1,...,95}. Denote
by G, the subgraph of G induced by the set W, and let H; = (X)g = (X)g, .

Since Ng(g:) = Ng(f(g:)), it follows by construction that H = (A)¢ =
(K2 ® Hy). Note also that V(G — Ng,[a]) = X and so G, - Ng,[a] = H;.
What remains to be shown is that for every u € V(G,) = W, G, — Ng, [4] =
H,. Consider first the case u € Ng,(a). Assume without loss of generality
that v = z, and Ng,[u] = {e,z1,...,2i,91,...,9;} for some i and j. But
then V(G — Ng(u]) = {f(z1)}U(RUS), where R = {Ziy1,...,2Zr,gj41,- - -,
9s} C V(G1), and S = {f(2it1), .-, f(2r), F(gj41),-- ., f(g:)}. Now H =
(RU S)g and because of the definition of f it is also the case that H =
(K2 ® (R)g). Since (A)g = H = K, & Hy, by Lemma 3.2 it follows that
H, =2 (R)¢ = (R)g,, and so G; — Ng,[u] = H,;. The proof for u € X is
similar. Therefore, H; is a seed graph of G, and H = (K, & H,). 0
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