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Abstract

Sampathkumar and Pushpa Latha (see [3]) conjectured that the
independent domination number, i{(T), of a tree T is less than or
equal to its weak domination number, 7, (7). We show that this
conjecture is true, prove that yu(7) < B(T) for a tree T, exhibit
an infinite class of trees in which the differences v, — i and 8 — vy
can be made arbitrarily large, and show that the decision problem
corresponding to the computation of ¥4, (G) is N P-complete, even for
bipartite graphs. Lastly, we provide a linear algorithm to compute
Yw(T) for a tree T

1 Introduction

Let G = (V, E) be a graph. A set S C V is a dominating set of G if for every
u € V-5, there exists a v € S such that uv € E. The domination number
of G, denoted by ¥(G), is the minimum cardinality of a dominating set
of G. That the domination number 7 is a well-studied parameter, is clear
from the extensive bibliography on domination (see {2]). The independent
domination number of G, denoted by i(G), is the minimum cardinality of an
independent dominating set in G. The independence number of G, denoted
by B(G), is the maximum cardinality of an independent set in G. A set
S C V is a weak dominating set of G if for every u in V — S, there exists a
v € S such that uv € E and deg(u) > deg(v). The weak domination number
of G, denoted by 7, ((7), is the minimum cardinality of a weak dominating
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set of G. This new parameter was recently introduced by Sampathkumar
and Pushpa Latha in [3], in which they prove the following.

Theorem 1 (a) For any graph G of order p,7(G) < 1w (G) < p — 6(G).
(%) 1w (G) +1u(G) < p+ 1.

(c) If T is a tree of order p > 3 with e endverlices and b vertices adjacent
to an endverter, then e < v,(T) < p—b. Furthermore, iff T # K, ,_1, then
Yuw(T) < p—e, while v,(T) + 'Yw(T) <2p-3

The independent weak domination number of GG, denoted by i,(G), is the
minimum cardinality of a weak-dominating set which is also independent.
Allan and Laskar (see [1]) have shown that if a graph G does not contain
K, 3 as an induced subgraph, then i(¢) = ¥((7). Similarly, Sampathkumar
and Pushpa Latha (see [3]) show that if a graph G does not contain K3
as an induced subgraph, then i, (G) = v, (G). Lastly, Sampathkumar and
Pushpa Latha (see [3]) conjecture that i(T) < 4, (T) for a tree T'.

We show that this conjecture is true, prove that v, (T") < B(7T') for a tree T,
exhibit an infinite class of trees for which the differences v, —7 and 8 — v,
can be made arbitrarily large, and show that the decision problem corre-
sponding to the computation of v,,(G) is N P-complete, even for bipartite
graphs. Lastly, we provide a linear algorithm to compute v,,(T) for a tree
T.

2 Main results

In this section we prove that i(T) < 7, (T) for a tree T, thus settling a
conjecture of Sampathkumar and Pushpa Latha ([3]). We then prove that
Yu(T) < B(T) for a tree T and then exhibit an infinite class of trees for
which the differences v,, — i and 8 — 7, can be made arbitrarily large.

We start by proving a conjecture of Sampathkumar and Pushpa Latha ([3]).
Theorem 2 Let T = (V,E) be a tree. Then i(T) < 74 (T).

Proof. Suppose the result is not true and let T be the smallest order tree
such that i(T) > v,,(T). Note that p = p(T') > 3. Root T at any nonleaf
vertex 7 and let v be an endvertex of T for which d(v,r) is a maximum.
We first consider the case when d(v,r) < 2. Then T is either isomorphic
toa Ky or a Kj , with some edges divided once. Let s be the number of
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vertices at distance 1 from 7 and let ¢ be the number of vertices at distance
2fromr. If s >0, then i(T) = 1+t < s+t = 7,(T). If s =0, then
i(T)y=t < 14+t =7y(T). Both cases lead to a contradiction and we may
therefore assume that d(v,r) > 3. Let S be a weak dominating set of T of
cardinality 7, (T). Before proceeding further, we prove the following claim.

Claim 1 Ifv is a leaf of T, u is the parenl of v and w is the parent of u,
thenveSandugs.

Proof. Since deg(v) = | and deg(u) > 2 we must have that v € S.
Suppose, to the contrary, that u € S. Let 7" =T — v. Then,if z # v is
weakly dominated by u in T, i.e. zu € E and degr(z) > degr(u), then
zu € E(T') and degr:(z) = degr(z) > degr(u) > degr(u) — 1 = degr:(u),
so that z is also weakly dominated by u in 7’. Hence, S’ = 5 — {v} is a
weak dominating set of T”, so that 7, (T”) < |S’|. Now, since p(T") < p(T),
we have that i(T') < 7,(T") < |5 = S| =1 = yu(T) — 1. Let [ be a
minimum dominating set of 7/. If u € I, then I is also an independent
dominating set of T, so that i(T) < |I| = {(T") < yw(T). On the other
hand, if v ¢ I, then U {v} is an independent dominating set of T', so that
i(T) < |I|4+1 = i(T")+1 < 74(T). Both possibilities lead to a contradition,
so that u ¢ S. D

Since d(v,7) > 3, let u be the parent of v and let w be the parent of u.
Suppose v' € N[u] — {u,v,w}. If degr(v’) > 2, then there must be a leaf
z of T such that d(r,z) > d(r,v), which contradicts our choice of v. We
conclude that v must be a leaf of T'. Also, by Claim 1, v,v’ € S, while
ug S. Let S’ = S—{v}. Then S is a weak dominating set of " = T'—v, so
that 7, (T") < |S’] = |S] — 1. Now, since p(T”) < p(T'), we must have that
W(T') < 7 (T") < |S|— 1 = 7u(T) — 1. Let I be a minimum independent
dominating set of 7V. If u € I, then [ is also an independent dominating
set of T, so that i(T) < |I| = {(T') < yw(T). f u ¢ I, then 1 U {v} is an
independent dominating set of T', so that i(T) < |I|+1 = #{(T")+1 < 7 (7).
These contradictions show that v has no siblings.

Note that degr(w) > 2. Before proceeding further, we prove another claim.
Claim 2 If u/(# u) is a child of w, then u' is not a leaf of T.

Proof. Suppose, to the contrary, that u’ is a leaf of T. By Claim 1, we have
that v,u' € S, while u,w ¢ S. The set S’ =5 — {v} is a weak dominating
set of 7" = T — {u,v}. Then {(T') < 1, (T") < S| -1 = 7(T) - 1.
Let I be a minimum independent dominating set of 7/. Then I U{v} is an
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independent dominating set of T, so that i(T) < |I|+1 = {(T")+1 < yu(T),
which is a contradiction. O

By Claim 2 and the choice of v, it follows that T, the maximal subtree
rooted at w, is isomorphic to a K, where each edge is divided once. Since
d(v,r) > 3, w has a parent, say £. Let vy,...,v, be the leaves of T and let
ug,...,un be their parents. By Claim 1, {v1,...,v,} C S, while v; ¢ S for
i=1,...,n. Suppose that w € S. The set S’ = S — (U, {vi} U{w})U {€}
is a weak dominating set of 7" = T — (U, {u;, v} U {w}). As before,
i(T") < yu(T") < |S|—-(n+1)+1 = |S|—n = 7, (T)—n. Let I be a minimum
dominating set of T7'. Then I UUZ,{u;} is an independent dominating set
of G, so that i(T") < |I|+n < 9 (T), which is a contradiction. Hence w ¢ S.
Since u; € Sfori=1,...,n and w &€ S, we must have that £ € S. Then
S =8 — (UL, {v}) is a weak dominating set of T = T — (U, {u;,v;} U
{w}). As before, i(T") < 74(T") < |S| = 7u(T) - n. Let I be a minimum
dominating set of 7. Then I UU}{u;} is an independent dominating
set of G, so that i(T) < |I|+ n < 44 (T), which is a contradiction. This
final contradiction shows that our assumption, namely that there is a tree
T such that i(T) > 7, (T), is false and the theorem is proved. This result
is best possible, since i(Py) = 7, (P3) =2. W

Theorem 3 Let T be a tree. Then v,(T) < B(T).

Proof. It is easily verified that v, (T) < B(T) for all trees of order at most
3. Suppose 74 (T) < B(T) for all trees of order p and let T be a tree of
order at least p+ 1 > 4. Let r be a nonleaf of T and root T at r. Let S be
a maximum independent set of T" and let v be a leaf of T such that d(v,r)
is a maximum. Furthermore, let u be the parent of v and let T}, be the
maximal subtree of T rooted at u. If u has no parent, then T is isomorphic
to Ky for some integer n > 1. Since every weak dominating set of T'
contains all the leaves of T, v, (T) = n = B(T). Suppose, therefore, that
u has a parent, say w. Let X = {vy,...,v,} be the leaves of T,,. Without
loss of generality, we may assume that X C S, so that u ¢ S. It now
follows that S =S — X is an independent set of T/ = T — X — u, which,
clearly, is also maximum in 7”. Hence, by the induction hypothesis, we
have 7, (T') < B(T") < |S'|. Let W be a minimum weak dominating set
of 7. If w g W, then WU X is a weak dominating dominating set of
T, so that v,(T) < |[W[+ |X]| < |S| +n = |S| = B(T) and we are done.
We henceforth assume that w € W. Our choice of v implies that every
child of w in T" is either in W or adjacent to a leaf of T”, which is in W.
So, if the subtree T, is reinserted into the tree 7" to obtain the original
T, the only vertex that may not be weakly dominated by W U X is the
parent of w, say w’. If this is the case, then degr/(w) = degr/(w’). Then
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W' =W — {w}U {w'} is a weak dominating set of 7", since w’ now weakly
dominates itself and w. It now follows that W’ U X is a weak dominating
set of T, so that 7, (T) < [W'| + |X| = W]+ [X| < |S'] + n = |S| = B(T)
and we are done. The result is best possible, since v, (K ) = B(K, ). B

That there exists an infinite class of trees in which the differences Yw — 1
and 3 —17, can be made arbitrarily large, may be seen as follows. Let e > 1
and d > 2 be integers. Let Sy (S2 = {a1,...,aq4-1}, respectively) be a set
of e (d — 1, respectively) independent vertices. Join each vertex in S, (52,
respectively) to a new vertex ¢; (c2, respectively). Now join ¢; with c3. Let
H,...,H4_1 be disjoint copies of a K 4 with each edge subdivided once
and identify the central vertex of H; with a; for i = 1,...,d — 1. The set
S3 will be used to denote the vertices obtained in the subdivision process,
while S, will be used to denote the leaves of the subdivided stars. Denote
the resulting tree by T'(e, d). The tree T'(2,3) is shown in Figure 1.

Figure 1: The tree T'(2,3)

Theorem 4 Let e > 1 and d > 2 be integers and T = T(e,d). Then
Yuw(T) = {T) = e and B(T) — 1, (T) = d - 2.

Proof. Let I be an independent dominating set of T. Then |IN(S3US,)| >
(d—1)d and |[IN(S1U{c1})| > 1, so that |I| > 1+(d—1)d. The set SsU{c,}
is an independent dominating set of T' of cardinality 1 + (d — 1)d, so that
iT) =1+ (d— 1)d.

Let D be a weak dominating set of 7. Then, since every weak dominating
set must contain all the leaves of T, S; U Sy C D. Also, in order to
weakly dominate ¢, we must have that D N {c1,co} # 9, so that |D| >
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1S1] + 1Sa] + ID N {e1, ez}l > e + (d — 1)d + 1. The set Sy U S5 U {ca}
is a weak dominating set of T of cardinality e + (d — 1)d + 1, so that
Yo(T) = e+ (d—1)d + 1.

Let I be a maximum independent set of 7. Then S; US4 C I, so that
c1 € I and SN 1 =0. It now follows that S2 C I, whence ¢z ¢ I. Hence,
I =851US2US8;y, sothat 3(T) = e+ (d- l)-l-(d—- 1)d.

This shows that 7, (T) — i(T) = e and B(T) — yu(T) =d — 2. [

3 Complexity results

Consider the decision problem

WEAK DOMINATING SET (WDS)

INSTANCE: A graph G = (V, E) and a positive integer k < |V|.
QUESTION: Is there a weak dominating set of cardinality at most k7

In this section we will show that WDS is N P-complete, even when re-
stricted to bipartite graphs, by describing a polynomial transformation
from the following well-known N P-complete problem:

EXACT COVER BY 3-SETS (X3C)

INSTANCE: A finite set X with |X| = 3g and a collection C of 3-element
subsets of X. Each element £ € X appears in at least two subsets.

QUESTION: Does C contain an exact cover for X, that is, a subcollection
C’ C C such that every element of X occurs in exactly one member of C’.
Note that if C’ exists, then its cardinality is precisely ¢.

Theorem 5 WDS is N P-complete, even for bipartile graphs.

Proof. It is clear that WDS is in NP.

To show that WDS is a N P-complete problem, we will establish a polyno-

mial transformation from X3C. Let X = {z,,...,z3,} andC = {C},...,Cy}
be an arbitrary instance of X3C. We will construct a bipartite graph &

and a positive integer k such that this instance of X3C will have an exact

three cover if and only if ¢ has a weak dominating set of cardinality at

most k.
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The graph G is constructed as follows. Let F be the graph obtained from
a K1 2 with each edge divided exactly once. The central vertex is denoted
by v, the vertices obtained by the subdivision process by d and d' and
the leaves of F' adjacent to d and d’ by e and e'. Let Fy,..., Fs, be 3q
disjoint copies of F. Corresponding to each variable z; we associate the
graph F;. Let {v;,d;, d}, e;,ei} be the names of the vertices in F; that are
names v,d,d’, e, e’, respectively, in F. Corresponding to each set C; we
associate the graph H; = K with V(H;) = {¢;,c}}. The construction of
G is completed by joining v; and ¢; if and only if the variable z; € Cj.
Finally, set k¥ = m + 7q. Note that (5 is bipartite and that the construction

of (G is accomplished in polynomial time.

Let D = U¥ {d;,d}}, E = U3 {ei,el}, V = {v1,...,v3,}, C' = {c},...c}n}
and C = {c1,...,¢m}-

Suppose C has an exact 3-cover, say C'. Then it is easily verified that
S=EUC"U{c;|C; € C'} is a weak dominating set of cardinality 2(3¢) +
m+ ¢ =m+ 7q. (Note that deg(v;) > 4 = deg(c;) for all ¢ and all j.)

Suppose, conversely, that S is a minimum weak dominating set of cardi-
nality at most m + 7q. Note that £ U’ C S, since S must contain every
endvertex of (7. Let ' = S —(EUC"). Then || < m+7¢— (6¢g+m) = q.
We now prove that 5’ C (. Suppose |S'ND| =z and |[$'NV|=y. Then
[S'NC| < g—(z+y), so that |IN[S'NCINV| < 3(g—(z+y)) = 3¢—3z—3y.
Note that [N[S'ND]NV| = |S'N D| = «. It then follows that |V — N[S'N
DINV -S'"NV-N['NCINV|>3¢—z—y—(3g—32—3y) =2z +2y. If
z>0ory>0, then z; € N[S] for some i € {1,...,3¢q}, which contradicts
the fact that S is a weak dominating set of (;. This implies that S’ C C.

Let C' = {Cj|c; € S}. Then, since S is a weak dominating set of G, C' must
be a cover for X. Since C’ is a cover of X such that |[C’' | < g, it follows that
C; N C; = 0 for distinct C; and C; in C'. Also, if 2} is covered by distinct
elements C; and Cj, then, by the construction of G, z; € C; N Cj, which is
a contradiction. Hence C’ is an exact three cover for X. l

4 A linear algorithm for computing v,,(7) for
a tree T

In this section, we present a linear algorithm for computing the value of
Yw(T) for any tree T. We construct a dynamic style algorithm using the
methodology of Wimer (see [4]).
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We make use of the well-known fact that the class of (rooted) trees can
be constructed recursively from copies of the single vertex K, using only
one rule of composition, which combines two trees (T,71) and (T3,72) by
adding an edge between 1 and r, and calling r; the root of the resulting
larger tree. We denote this as follows: (T,r1) = (T1, 1) o (T2, 72)-

In particular, if S is a weak dominating set of T', then S splits into two
subsets S; and S according to this decomposition. We express this as

follows: (T, S) = (T1,51) o (T, S2)-

We will find it convenient to know, a priori, what the degree of each vertex
in the tree T is. This is accomplished by the following (linear) algorithm.
Suppose we have as input the parent array parent[l...p] for the input tree.
The output will be the array deg[l...p] where deg[i] will be the degree of
the ith vertex.

procedure degree;

begin

for i:=1 to p do
deglil:=0;

for i:=p downto 2 do
begin

degl[i] :=degl[il+1;

deglparent[i]] :=deg[parent[il]+1;
end;

end; {degree}

In order to construct an algorithm to compute v, (7T) for any tree T, we
characterise the classes of possible tree-subset pairs (T',.5) which can occur.
For this problem there are four classes:

(1] = {(T1,S1)|r1 € $1,85) is a dominating set of Ty and Vv € V(T1) 3s €
S1 N N[v] such that degr(v) > degr(s)}.

2] = {(T1,51)|r1 € S1,5) is a dominating set of T} and Vv € V(T1) 3s €
S1 N N[v] such that degr(v) > degr(s)}.

8] = {(T1,S1)|r1 € S1,5) is a dominating set of 7} and Vv € V(T}) —
{r1} 3s € $1 N N[v] such that degr(v) > degr(s)}.

[4] = {(T1, S1)Ir1 € S1, S1 is not a dominating set of Ty and Yv € V(T1) —
{r1} 3s € S; N N[v] such that degr(v) > degr(s)}.
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1] [2] [3] [4] | Conditions
1 1] X X | degr(r1) > degr(rs)
a1 ([ [ [ (1 | degr(r) = degr(rz)
1 1] (1] [1] | degp(ry) < degp(rs)
2] [2] X X | degr(r) > degr(rs)
2 [[2] [2] X X | degr(r)=degr(rs)
2] [21] X X | degr(r) < degp(rs)
[2] 3] X X degT (7’1) > degT(rg)
Bl [2] [B] X X |degr(r)=degr(ra)
8] B] X X [ degr(r) < degr(rz)
2] [4 X X | degr(ri)> degr(rs)
4| [2] [ X X [degr(r)=degr(rs)
B] [M] X X [ degr(r) < degr(ra)
Figure 2:

Next we must consider the effect of composing a tree T} having a set S
which is of class [i] with a tree T having a set which is of class [4] for every
possible combination of classes 1 < 7,5 < 4. That is, we must describe
the appropriate class of the combined set S; U Sy in the composed tree
T =T oT>. This is described in Figure 2. An ‘X’ in the table signifies
that this composition cannot happen, that is, no set S can ever decompose
into two subsets .S; and S, of the classes indicated.

From Figure 2, we can now write out a system of recurrence relations, as
follows.

if deg(ry) > deg(rs)
then begin
1]
(2]
(3]

(1] o [1JU[t] o [2]
[2]o[LJU[2] o [2JU (3]0 [1]U[4] 0 [1]
(3]0 (2]
[4] = [4] o [2]
end

else if deg(r)) = deg(r,)
then begin
(1] =[] [1]JU[l]o2]U[1] o [3] U[1] o [4]
2] = [2] o [JU[2] o 2] U[3] o [1] U [4] o [1]
81 =[3]o[2]

end

nmnon
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else begin
(1] =[e[Jut)e2ui]oB]uUl]o 4]
(2] = [2]o [1JU[2] o (2]
[B]=[8]o[JUB]o2JU4]e[l]
[4] = (4]0 [2]

end

To illustrate this, a tree-subset pair of class [3] can be read as follows: a tree-
subset pair (7', $) which is of class [3] can be obtained only by composing a
pair (T}, S1) of class [3] with a pair (T3, S2) of class [2] if deg(r1) > deg(r2)
and by composing a pair (T, S1) of class [3] with a pair (T3, 52) of class
[1] or by composing a pair (T1, S1) of class [3] with a pair (T2, S2) of class
[2] or composing a pair (T1,5)) of class [4] with a pair (T3, 52) of class (1]
if deg(r1) < deg(r2).

To prove the correctness of this dynamic programming algorithm for com-
puting v, (T) for any tree T', we would have to prove a theorem asserting
that each of these recurrences are correct. Space limitations prevent us
from doing this here, but it is easy to do. It is even easier to verify the
correctness of Figure 2, which can be done by inspection. The final step
in specifying a yy-algorithm is to define the initial vector. In this case, for
trees, the only basis graph is the tree with single vertex K,. We need to
know the minimum cardinality of a set S in a class of type [1] to [4] in the
graph K, if any exists. It is easy to see that the initial vector is [1,—, —, 0]
where -’ means undefined.

We now have all the ingredients for a 7,-algorithm, where the input is the
parent array parent[l...p] for the input tree and where the output is the
4-tuple corresponding to the root (i.e. vertex 1) of T which is computed
repeatedly by applying the recurrence system to each vertex in the parent
array, with the initial vector [1, —, —, 0] being associated with every vertex
in the parent array as the computation begins.

The basic structure for the algorithm is a simple iteration.

procedure vy ;

for i:=1 to p do
initialise vector [1 ...4] to [1,-,-,0];

call degree;

for j:=p downto 2 do
begin
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k:=parent[j];
combine(vector,k,j);
end;

Yw(T) := min {vector([1,1], vector[1,2]};
end; {74}

The combine procedure is derived directly from the recurrence system:
procedure combine (vector, k, j);

if deg(k] > deglj]
then begin
vector[k,1]:= min {vector[k,1]+vector (3,11,
vector [k,1]+vector[j,2]};

vector[k,2]:= min {vector[k,2]+vector 0,11,
vector [k,2])+vector[j,2]},
vector [k,3]+vector([j,1],
vector [k,4]+vector(j,1];

vector [k,3] := vector[k,3]+vector [,2];

vector[k,4] := vector [k,4]+vector [j,21;

end
else if deglk] = deg(j]
then begin
end
else begin
end;

end; { combine }

It is clear that procedure 7, has linear execution time.
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