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ABSTRACT. In this paper we count n-block BTD(V, B, R, 3,2)
configurations for n = 1 and 2. In particular, we list all configu-
ration types and determine formulae for the number of n-block
subsets of a design of each type. A small number of the formu-
lae are shown to be dependent solely on the design parameters
The remainder are shown to be dependent on the number of
occurrences of two particular two-block configurations as well
as the design parameters. Three new non-isomorphic BTD(9;
33;5,3,11; 3; 2) are given that illustrate the independence of
certain configurations.

1 Introduction

A balanced ternary design, (BTD), with parameters (V,B, R, K,A) is a
collection of B blocks on V elements such that each element occurs R times
in the design; each block contains K elements, where an element may occur
0, 1, or 2 times in a block (i.e. a block is a collection of elements rather than
a set of elements); and each pair of distinct elements occurs A times in the
design. (For a survey of BTD’s we refer the reader to Billington [1,2,3].) A
BTD is a generalization of a balanced incomplete block design (BIBD). In
BIBD’s no element can occur more than once in a block. Other than this,
the definitions for BIBD’s and BTD’s do not differ.
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An n-line BIBD configuration is a collection of any n blocks (i.e. lines) of
a BIBD. Work has been done on decomposing BIBD(v, b, 7, 3,1)’s into two,
three, and four-line configurations [6,8,9] and constructing BIBD(v, b, 7,3,1)’s
containing no “forbidden configurations” [4,7]. Most recently, Grannell,
Griggs and Mendelsohn, [5], have developed formulae for the number of
two, three and four-line configurations in BIBD(v, b,,3, 1).

The purpose of this paper is to extend the last strand of work by develop-
ing formulae for the number of one and two-block BTD(V, B, R, 3,2) con-
figurations. In Section 2 we present the design examples we will use to show
two-block BTD configuration independence and the one-block BTD config-
urations. In Section 3 we present the two-block BTD configurations and de-
velop formulae for configurations of designs with parameters (V, B, R, 3,2).

2 Preliminaries and one-block BTD configurations

When we use the term BTD, we assume that the design contains at least
one element that appears doubly in some block, and at least one element
that appears singly in some block. BTD’s are regular in the sense that
every element occurs singly in p; blocks and doubly in p; blocks where
R = p; + 2p,. Thus, our assumption is equivalent to the assumption that
both p; and p3 are nonzero. Under this assumption A will always be greater
than or equal to two. Also, because of the above described regularity, BTD
parameters are usually given as (V; B; p1, p2, R; K; A) rather than simply
(V,B,R,K,A).

Before we examine BTD configurations, we present four BTD examples
that we will use to illustrate configuration independence. In our exam-
ples and throughout the paper, we use bold faced italicized triples of let-
ters/numbers to represent blocks, and sets of bold faced italicized triples
to represent block configurations.

All four BTD examples listed below have parameters (9; 33; 5,3,11; 3;
2). Designs D, D3, and D4 are new. Design D;, which is included for ease
of refernce, was first given by Billington, [B1].

Design D; blocks:

112, 114, 116, 133, 159, 177, 188, 223, 224, 225, 267,
267, 288, 299, 335, 336, 348, 348, 377, 399, 445, 447,
449, 466, 556, 557, 558, 668, 669, 778, 799, 899

Design D» blocks:
112, 113, 114, 155, 166, 177, 188, 199, 225, 226, 227,

233, 244, 288, 299, 338, 339, 344, 355, 366, 377, 445,
466, 478, 478, 499, 559, 568, 568, 577, 679, 679, 889
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Design D3 blocks:

123, 124, 134, 234, 567; 567, 115, 116, 117, 188, 199,
227, 228, 229, 255, 266, 335, 338, 339, 366, 377, 446,
447, 449, 455, 488, 558, 599, 669, 688, 778, 779, 899

Design D4 blocks:

123, 124, 135, 145, 166, 234, 345, 117, 118, 119, 255,
277, 226, 228, 229, 336, 337, 338, 399, 446, 447, 449,
488, 556, 557, 588, 599, 668, 669, 677, 788, 779, 899

None of the designs Dy, Do, D3, nor Dy are isomorphic to one another.
For two designs to be isomorphic it is necessary for them to both contain the
same number of repeated blocks. Only D; and D, contain the same number
of repeated blocks (D; and D; both contain three blocks each repeated
twice. D3 contains one block repeated twice, and D4 contains no repeated
blocks.) Although D; and D contain the same number of repeated blocks
they are not isomorphic since in Dz all three of the repeated blocks taken
in pairs intersect, while in Dy no pair intersects.

We are now ready to examine BTD configurations. Define an n-block
BTD configuration to be a collection of any n blocks in the BTD. We
are interested in determining the number of n-configuration types, and in
finding formulae that count the number of times a particular configuration
type appears in a design.

Repeated blocks and repeated ‘elements are treated as distinct in BTD
block and pair counts. Similarly here, we consider repeated configurations
as distinct in configuration counts. For example, assume b; = abc and
b = abc are repeated blocks in a BTD that also contains the block b3 =
def. Although the two-configurations {b1,63} and {b2,b3} are the same
set when viewed as {abc, def}, they will be counted as two configurations.
However, for completeness the paper does give formulae for configuration
counts where repeats are not counted.

There are two one-block BTD(V, B, R, K = 3, A) configurations. They
are {aab} and {abc}. We say the configurations are constant, meaning the
formulae for the number of each can be given solely in terms of the design
parameters. The number of configurations of the form {aab} is Vp, the
number of the form {abc} is B—Vpz = V(p; —p2)/3. When the number of
configurations of a particular type can not be stated in terms of the design
parameters alone, the configuration is said to be variable.

Although the number of both one-block configurations are constant, the
number of distinct one-block configurations of type {abc} is variable. Let
t2 be the number of repeated blocks of type abc. The number of distinct
configurations of the form {abc} is B—V pa—t2. The value ¢; is independent
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of the design parameters. We use the design sets given above to illustrate
this. Designs Dy, D3, D3, D4 all have the same parameters, (9; 33; 5,3,11;
3; 2). However, D, and D, contain 3 pairs of repeated blocks of the form
abc, while D3 contains one pair, and D4 contains none. We close the
discussion of one-block configurations by noting that in a BTD with K =3
and A = 2, there can be no repeated blocks of type aab.

3 Two-block BTD configurations

There are fourteen distinct types of two-block BTD configurations for de-
signs with block size three. The complete listing is shown in Table 3.1.
When A is small, certain of the configurations can not exist. In Table 3.1,
these restrictions are included with the corresponding configuration. Also
given in the table are the formulae for counting configurations of a certain
type, and the variables used in the formulae.

‘We examine below the two-block configurations for BTD with parameters
(V, B, R, 3,2). There are eleven possible configurations in this case. Three
are constant and eight are variable (i.e. dependent on variables other than
the design parameters). Throughout the remainder of the paper we use
the configuration notation of Grannell, Griggs and Mendelsohn [5]. C; will
denote a configuration type, and ¢; will denote the count for configuration
type C;.

Case 1. Cg = {aab, aac}, cs = Vpa(p2 — 1)/2.

To construct Cg configurations, pair each block aab with the p2 —1 other
blocks containing the same double element. Since the p2 blocks where an
element appears doubly are distinct when A = 2, there are Vp2(p2—1) ways
to do this. Each Cs configuration is produced twice by this construction.
Thus, cs = Vip2(p2 —1)/2.

Case 2. Cg = {aab, bbc}, cs = V3.

To construct Cg configurations, pair each block aab with the p; blocks
containing the element b doubly. This generates V p3 pairs aab, bbc. (The
existence of aab implies the nonexistence of bba when A is two, so ¢ # a.)
Each pair produced a distinct Cg configuration. Thus, cs = V p3.

Case 8. C; = {abc,abc}, c; is independent of the design parameters.

Let ¢; = n.

The number of repeated blocks in a design can not be formulated in
terms of the design parameters alone. This is illustrated by the four non-
isomorphic BTD(9; 33; 5,3,11; 3; 2) examples of Section 2. Designs D; and
Dy each have three repeated blocks, D3 has one, and D4 has none.

Case 4. Cy2 = {aab,acd}, c12 = Vpa2(p1 — p2)-

To construct Ci2 configurations, pair each block aab with the p; blocks

that contain element a singly. The blocks being added will have the form
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acx where x = c or d. If x = c, then the pair formed will be a Cs
configuration. If x = d, then the pair formed will be a C;, configuration.
Each Cg and C); is produced once and only once by this construction.
Thus, c12 =V p2p1 — cs = Vpa(p1 — p2).

Each block acd that is repeated in the design will appear in 6p2 C)2 con-
figurations with only 3p; of them being unique. Thus, there are Vp2(p; —
p2) — 3p2n distinet C)a configurations.

Case 5. C = {abc,abd}, c; = V(p1 — p2)/2 — 3n.

Each block abc contains three pairs of elements, (abc,abe, and abc).
To construct C’s, for each block abc and each pair of elements in the block,
match the block with the unique other block in the design containing the
same pair. If abe is the block and pair under question, then the block added
will be of the form abx where x = c or d (x # a or b since A = 2). Each of
the C) configurations {abc, abc} will be produced a total of six times by
the construction. All other pairs produced will have the form abc, abd and
will appear twice each. Thus, ¢z = [3(B—V p2)—6c1]/2 = V(p1—p1)/2—-3n.

None of the blocks that appear in C, configurations can be a repeated
block in the design. If a block abc was repeated in the design and appeared
in the C5 configuration {abc, abd}, the pair ab would appear three times
in the design. This can’t happen since A = 2.

Case 6. Cj3 = {aab,bcd}, c;3 is independent of the design parameters
and n.

Let ¢13 = m.

The number of C;3 configurations {aab,ccb} in a design can not be
formulated in terms of the design parameters and n alone. This is illustrated
by design examples given in Section 2. D; and D each has parameters (9;
33; 5,3,11; 3, 2) and three repeated block pairs. Yet, D, contains 54 C;3
configurations, while D, contains 30 Ci3 configurations.

It can be shown that the number of Ci3 configurations that are duplicates
can not be formulated in terms of the design parameters, m, and n alone.
Let m’ represent the number of distinct Ci3 configurations.

Case 7. Cy = {aab, bbc}, cg = (Vpa(p1 — 1) — m)/2.

To construct Cy configurations, pair each block aab with the (p; — 1)
blocks, different from aab, that contain element b singly. These blocks will
be of the form bex where x = ¢ or d. Each pair of blocks of the form
aab, bed will be produced once by the construction except of course, if
the block bcd appears twice in the design. This will cause two duplicate
pairs to be produced. Each Cy configuration will be produced twice. Thus,
2c9 =Vpa(p1 —1) —c1a=Vpa(p1 — 1) — m.

Case 8. Cp = {aab, ccd}, cio = sz[(V - 3)p2 -p+ 1]/2 + m/2.
To construct Cyo configurations, pair each block aab with the (V —2)p2

221



blocks ccx where the repeated element is neither a nor b. The element
x will be a, b, or d. Each Cy and Cjp configuration will be produced
twice and each Cg configuration once by the construction. Thus, ci¢ =
(Voa(V —2)p2 — cs —2¢9)/2 = Vpa[(V - 3)p2 — o1 + 1]/2 + m/2.
Case 9. C3 = {abc,ade}, c3 = [V(p1 — p2)(p1 — 3) + 6n —m]/2.

To construct Cs configurations, pair each block abc with each of the
3(py — 1) blocks that match abc in one of a, b, or ¢ and in which the
match appears singly. Using this construction each C; is produced six
times, each C; four times, each Cy3 once, and each C3 twice. Thus, 2¢c3 =
3(B —Vp)(p1 — 1) — 6c; — 4ca — e13 = V(p1 — p2)(p1 — 3) + bn —m.

To count the distinct Cs configurations, produce the pairs as described
above. Next remove the 6n(p; —1)+(m—m’) pairs that were produced twice
because of repeated blocks. What is left is each C; four times, each distinct
Ci3 once, and each distinct C3 twice. Thus, the number of distinct C3
configurations is [3(B -V p2)(p1 —1) — (6n(p1 — 1)+ (m—m') —4cs —m’)/2 =
[V(p1 — p2)(p1 = 3) — 6n(p1 — 3) — m]/2.

Case 10. C4 = {abc,def}, Cq = V(p1 - pz)[V(p1 - pz) - 9p1 + 15]/18 —
n+m/2.

To construct Cs configurations, pair each block abc with each of the
(B~V pa—1) other blocks that coritain three distinct elements none of which
are a, b, or c. In doing this, each C;, C», C3, and C; will appear twice. Thus
cs = [(B-Vp2)(B=V p2—1)—2c1—2c2—2¢3)/2 = (B=V p2)(B—V p2—1) /2~
V(p1—p2)(p1—2)/2—n+m/2 = V(p1—p2)[3V (p1—p2) —3p1+5]/3—n+m/2.

To construct distinct C4 configurations, pair each distinct block abc
with each of the (B — Vp2 —n — 1) other distinct blocks that contain three
elements. In doing this, each distinct C, C3, and Cy will appear twice.
Thus, the number of distinct C; configurations is [(B — Vp2 — n)(B —
Vp2 —n—1)/2 =V (p1 = p2)(p1 — 2)/2+ 3n(p1 — 2) + m/2.

Case 11. Cy4 = {aab,cde}, c14 = Vpa(p1 — p2)(V - 3)/3 —m.

To construct Cy4 configurations, pair each block aab with each of the
blocks that contain three distinct elements. In doing this, each Cjs, Ci3
and Cy4 will be produced once. Thus, c14 = Vpa(B—-Vp2) —cr12—c13 =
Vpa(B —Vp2+p2 —p1) —m=Vpa(pr — p2)(V - 3)/3 —m.

To construct distinct C14 configurations, pair each block aab with each
of the distinct blocks that contain three distinct elements. In doing this,
each distinct Cy2, C13 and Cy4 will be produced once. Thus, the number of
distinct ¢4 configurations is V po(B—V pa—n)—(Vp2(p1—p2)—3p2n)—m’ =
Vpa(B—Vpa—n—p1+p2)+3pen—m'.

We conclude by explaining why C; and C)3 were chosen as the inde-
pendent configurations. BTD blocks are of two types; blocks that contain
three distinct elements and blocks that contain only two distinct elements.
Viewing the blocks from this perspective, the two-block configurations sub-
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divide naturally into three classes: C) —Cy, C5 —ci9, and Cy; — Ci4. These
subdivisions point to using {C),Cy,Ci3} as a basis. However, c;, cg, €13
are not independent. In particular, 2c + ¢13 = Vpa(p; — 1). Since the two
blocks of Cg are “more connected” than the two blocks of Cia, it would
appear C)3 should be dropped and {C},Cs} used for the basis. But recall
that our aim was to find formulae for distinct configurations as well as con-
figurations. To do this a third count must be assumed (see Case 6). This
count can be easily linked to c;3. Because blocks with only two distinct
elements cannot be repeated in a BTD where A = 2, the count cannot be
linked to ¢g. Thus, {C},Ci3} was chosen as the basis.

Configuration A=2 Restrictions Number of
Type Dependence Configurations
A=2,K=3
C, = {abc, abe} independent n
Cy = {abc,abd} design parameters V{p1 —p2)/2-3n
c1
C3 = {abc, ade} design parameters [V(p1 — p2)(p1 — 3)
c1,¢13 +6n — m]
C4 = {abc,def} design parameters Vo1 — p2)IV(P1 — p2)
€1,€13 —9p1 +15]/18 — n 4+ m/2
Cs = {aab, aab} can not exist
ifA=2o0r3
Cg = {aab, aac} design parameters Vpa(p2 — 1)/2
C7 = {aab, bba} can not exist
ifA=2o0r3
Cg = {aab,bbc} | design parameters Vo4
Cg = {aab,ccb} design parameters (Vpa(p1 — 1) —m)/2
€13
Cjo = {aab,ccd} | design parameters Vpal(V ~3)p2 — p1 + 1]/2
c13 +m/2
Ci1; = {aab, abc} can not exist
ifA=2
C12 = {aab,acd} | design parameters Vpa(py — p2)
C\13 = {aab, bed} independent m
C14 = {aab,cde} | design parameters Vpa(pr —p2)(V —3)/3—m
€13
Table 3.

Two-block BTD configurations (with K = 3)
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