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ABSTRACT. For a graph G,if F is a nonempty subset of the edge set E (G ),
then the subgraph of G whose vertex set is the set of end of edges in F is
denoted by <F>,. Let E(G)=uielE beapartitionofl E(G),letD, =
<E, >, for each i, and let ¢ = (D, | i ), then ¢ is called a partition of G and E,
(or D, ) is an clement of ¢. Given a partition ¢ = (D, | i €l ) of G, ¢ is an
admissible partition of G if for any vertex ve V, (G ) there is an unique element
D, which contains vertex v as an inner point. For two distinct vertices uand v, u-
v walk of G is a finite, allernating sequence ¥ =u,e,i,e,,...v, ,€,.u,= v of
vertices and edges, beginning with vertex « and ending with vertex v, such that
e,=u,,u fori=12,..n. A u-v string is a u-v walk such that no vertex is
repeated except possibly u and v, i.e. u and v are allowed to appear at most two
times. Given an admissible partition ¢, ¢ is a string decomposition or SD of G if
every element of ¢ is a string.

In this paper, we prove that 2-connected graph G has an SD if and only if G is
not a cycle. We also give a characterization of the graphs with cut vertices
such that each graph has an SD.
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1 Introduction The graph decomposition problem has been studicd by
many mathematicians. In [1] many results on this problem concerning various
topics are summarized. This problem is also appeared in [2, Chapter I1.5]. In
this paper we consider a new kind of graph decomposition problem and give a
completc solution of it. We will propose a concept of string decomposition of a
graph. When we regard a graph as a figure be constructed by a lot of wires
which form pieces of it, how we cut a wire to slightly many pieces (will be
called strings) which are bent possibly at most two as a technical simplicity and
to be reconstructed it under some suitable conditions. We are expect string
decomposition to have a wide range of technological applications.

All graphs considered in this paper are only finite, undirected, simple graphs

without loops. Let G be a graph and let « and v be (not necessarily distinct)
vertices of G.
For two distinct vertices wand v, u-v walk of G is a finite, alternating sequence u
=U, e, €x....,v, ,e,i,=v of vertices and edges, beginning with vertex « and
ending with vertex v, such that e,= u,, u, for i =1,2,...n. A u-v string is a u-v
walk such that no vertex is repeated except possibly & and v, i.e. u and v arc
allowed to appear at most two times. For two distinct vertices « and v, u-v
path is u-v string such that no vertex is repeated, and is denoted by P (u,v).
A u-v walk such that no vertex is repeated, u = v and n 2 3, is called a cycle.

For every u-v string H, the maximum degree in H is less than or equal to three.
For every u-v string S, the set E (S ) of the edges of S can be decompose (o at
most two cycles and at most one path (see Fig 1). We note that a cycle does not
any string.
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Figure 1.
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A graph with order n 2 3 is said to be 2-connected if the minimum number
of vertices whose removal results in a disconnected is two or in the trivial graph.
For a graph G, the vertex set of G is denoted by V (G ), while the edge set is
denoted by £ (G ). If U is a nonempty subsct of V (G ), then the subgraph of G
whose vertex set is U and whose edge set is the set of those edges of G that have
both ends in U is called an induced subgraph of G induced by U and is denoted
by <U>,. If Fisanonempty subset of £ (G ), then the subgraph of G whose
vertex st is the set of end of edges in F and is denoted by <F>,. Let E(G)=
VierE, beapartitionof E(G),let D, =<E, >, foreach i, and let ¢ =(D,| i
€l), then ¢ is called a partition of G and E (or D, ) is an element of ¢.

For an integer i, we denote V. (D )={ ve V(G )|deg (v)=i}.

If D is a cycle or a string and ve V, (G ). then v is called an inner point of D.

A complete graph of n vertices is denoted by K, . A subdivision of a graph G
is a graph which can be obtained from G by a sequence of edge subdivision.
We denote by M, a graph that can be obtained from K, by replacing cach edge
(a,b) of K, by two parallel edges(see Fig. 2).

K, M

3

Figure 2.

Given a partition ¢ = (D, | i €/ ) of G, ¢ is an admissible partition of G if for any
vertex ve V, (G ) there is an unique element D, which contains vertex v as an
inner point.  Given an admissible partition ¢, ¢ is a path decomposition, or PD,
of G if every element of ¢ is path of order at least two. Given an admissible
partition ¢, ¢ is a string decomposition or SD of G if every element of ¢ is a
string. Moreover a partition ¢ is a cycle decomposition or CD, of G if every
element of ¢ is a path or a cycle. Therefore, if ¢ is a PD, then ¢ is a CD.

For a string D, the number of cycles contained in D is denoted by m (D ).
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An elementary partition of a string D is a partition of D in which D is
partitioned into paths and cycles as follows:

Case I. m (D )= 1. The edge set E (D ) is partitioned into a cycles and a
path(see Fig. 3(a)).

Case 2. m (D )=2.1If D is 2-connected, E (D) is partitioned into a cycle a
path (see Fig. 3(c)). If D has cut vertices, E (D ) is partitioned into two cycles
and a path (see Fig. 3(b)).
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Figure 3.

Given a SD ¢ of G, a subdivision of ¢ is a partition ¢ ’ obtained from ¢ by
making an clementary partition for each element of ¢. By the definition of a
string, ¢ ‘is obviously a CD of G, since for any u¢ V (G ) the element which
contains vertex u as an inner point is uniquely determined.

Let A and B be subgraphs of G suchthat V(A )NV (B)=C. AnA-B path P
is a path connecting between a vertex of B and a vertex of B which has no points
in common with V (A ) UV (B ) except its end points.

Let H be a subgraph of G or a subset of V(G ). An path P is H-bridge if P is a
path connecting between distinct vertices w, and w, of H such that E(H)NE
P)y=s@andV(H)NV(P)={ w,w,}.
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A collection {P,,P,....,P } of u-v paths is a internally disjoint if V (P,) "V (P,)
={u,v} foralliandj, 1 <i,j<n,i#j. Ingenerally, acollection {P,.P,,....P,} of
H -bridges is internally disjoint if V (P,) "V (P,,cV (H ) (or H ) for all i and j,
1<i,j<n, i#

Let G be a 2-connected graph and suppose S cV (G ). asubgraph Fof G is
good with respect to Sif either E(F )= and S=V(F), or E (F ) #J and
there is a partition ¢ of F satisfying three conditions:

(i) Eachelementof G is a path;

(ii) For any vertex v of S, there is no elements which contains v as

an inner point;
(iii) For any v €V (F) =S, there is uniquely element of ¢ which contains
v as an inner point.

If F is a good subgraph of G, ¢ is called a good decomposition of F with
respect to S.If we regard any subset S as a subgraph of G with no edge, that is<S
> une Where H =<8 >, by the definition, S is a good subgraph with respect to
itself.

2 Preliminary Lemmas

Lemma 1. Let G be a 2-connected and let H be a subgraph with |V (H ) |
22. Then G-E(H) is a good subgraph with respect to V (H ).

Proof: From Remark 3, by regarding H as a good subgraph with respect to V
(H ), we may consider a maximal subgraph F such that V (H ) gV (F ), where
the maximality is considered with the number of edges. 1f (G —E (H )) —E(F)
#@, then there exists a F -bridge P, since G is 2-connected and [V (F ) | 2|V
(H)|22. Moreover, it is obvious that F UP is a good subgraph of G with
respect to V (H ), which contradicts the maximality of |E (F) |.

Let G be a 2-connected graph and let ue V(G ). A partition ¢ =
{E.E,...E } of G is a pseudocycle decomposition ( PCD ) of G with respect to
vif ¢ satisfies the following conditions:

(i) Foreachi, ISi<k,D,=<E >, isapathoracycle;
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(i) Forany ve V(G ) — {u }, there exists unique i, / <i < k such that
veV,(D,).
In the above definition, if each D, is a path, ¢ is called in particular a
pseudopath decomposition (PPD) of G with respect to u.

Lemma 2. Let G be a 2-connected graph and let ue V(G). Let G —u be a
tree such that G has a PCD  ¢= {E,E,.....E, } of G with respect to u, where

D, =<E >;. Then there exists an integer i, | <i <k such that D, is a cycle and
any other D, (j#i) is a path( therefore, ¢ is a PCD and not PPD).

Proof: If G has acycle C, then ue V(C) since G—uisatree. Then we prove
by induction on |V (G )| that G has acycle. If|V (G ) =3, then G=K..
Therefore G has an unique PCD consisting of only cycle i.e. G itself.  Suppose
that any graph H with |V (G )| < |V (G )] satisfying the conditions in Lemma 2
holds Lemma 2.

Assume |V(G )24 andputT=G —u. ThenTisatree. Letxisbea
endpoint of Tand let ¢, =xye E(T). Since G is 2-connected, e, = xue E (G ).
Assume, (o the contrary, that there exists a PPD ¢ = {E,E......E, } of G with
respect to u , that is, cach P, := <E > isa path.

Let x be a interior vertex of a path P, Let G “is the subgraph obtained from G
by contracting edge xu to one vertex # . Let x be a interior vertex of a path
P,. Let G ’is the subgraph obtained from G by contracting edge xu to one
vertex # . Trivially, G “is 2-connected and G “— u “is a tree. We consider
two cases.

Ifyu ¢ E(G ), then {E,—e¢,,E,.....E, } is a PPD of G *, which reads ¢ =
{E,.E,....E } isa PPD of G, a contradiction. Assume that ¢,:= yu € E(G) and
e,¢ E(P,). By the definition there exists at most one path which contains y as
interior vertex, so either P, or P, contains y as an endpoint. Then either (E, E,—
,....E, } isa PPD of G 7, which is a contradiction. Therefore, there exists at
least one cycle D, :=<E,>,, 1 <i<k. Let Cbeaanycycle of G. Trivially
[V(C)l23. Since G is 2-connected, by Lemma 1, G - E (C ) has a good
decomposition ¢ with respect to V(C). The set ¢ U {E (C)} is trivially a CD.

Lemma 3. Ifa 2-connected graph G contains one of the following subgraphs

(1)~ (3 )asasubgraph, G has a PD.
(I') asubdivision of K,.
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(2) a subdivision of M,.
(3) o cycles C, and C, such that V(C)) " V(C,) = D.

Proof. Let G be a 2-connected graph and let H be a subgraph of G of order at
least two. If G has a PD, then by Lemma |, then G — E (H ) has a good
decomposition ¢ U @ is a PD of G, where @ is a PD of H.  Thus to prove
Lemma 3, it is enough to show that if G contains one of the subgraphs (1 )~( 3 ),
G contains a subgraph H having a PD.
we consider two cases.

Case 1. G contains a subdivision H of K.
Let w,,w,,w, and w, be four vertices of G. Let H :=U g, P (w, W), where {P
(w,,w,)) is the set of disjoint {w,w,w, ,w,} - { bridges }.
Put P,:=P (w,w, ) UP (w,w, ) U P(w,,w,)and P,:= P (w,,w, ) U P (w,w,) U
P (w,w,). Then H has a PD containing P, and P,.

Case 2. G contains a subdivision H of M ;.
Let w,,w,, and w, be tree vertices of G.  Put H:=P (w,w,) U P, (w,w,) UP,
(W, w, ) U P, (w,w)) U P, (w,w)) U P, (w,w,), where {P, (w, ,w,)} is the set of
disjoint { w,,w,,w, }-bridges. Put R, =P, (w,w,) U P(w,w,), R, :=P,(w,w,)
U P(w,w,)and R,:= P, (w,w,) U P,(w,w,). Then HhasaPD containing
R.R,and R,.

Case 3. G has cycles C,and C,such that [V (C)) nV(C,)| < 1.
Since G is 2-connected, there exist two paths connecting C, and C,,P,:= P
(u,u,)and P,:=P (v,v,)such thatu z v, { u,,v, }Jc V(C)), ,# vy, {u,,v, }Jc V
(C,),and V(P )NV (P,)=D.
Let Q, and R, be the disjoint «,— v, paths of C, and let Q, and R, be the disjoint
u,_v, paths of C,. Putting H=C,uC, WP, UP,, T, =0, UP, UQ,, and T, =R,
UP, UR,, H has a PD containing T,and 7,. Thus we finish the discussion of all
cases and the proof of Lemma 3.

Lemma 4. [fa 2-connected graph G contains none of subgraph in (1)~(3) in
Lemma 3, then there exists a vertex u such that G — u is a tree.

Proof. Since G is 2-connected G has acycle C.  Let B be the set of paths
(possibly not internally disjoint) which are C -bridges. We consider two cases :
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Case 1. B. =@. In this case clearly G =C, so G contains none of the
subgraphs in (1)~ (3) in Lemma 3. Then there exists a vertex u of G such that
G —uisatree.

Case2. B.#QD. PutW. =y, .,{uv}, where B=B_. Note that|W,|
=2.

Subcase 2.1. |W.| =2 for every cycle C. Since each component of G — W, is
a path, G has none of the subgraphs in (1)~ (3) in Lemma 3, so for every ue W,
G —u is a tree.

Subcase 2.2. |W.| = 3 for some cycle C. Suppose { P,:=P (u,v), P,:=P
(x,w)} € B.. Then|{u,v,w,x}|23. IfP, and P, are not internally disjoint C-
bridge, then H := C UP, UP, contains a subdivision of K, so we may suppose
that P, and P, are internally C-bridge. If |{u,v,w,x}|> 4, then H contains two
cycles which are disjoint. Then we suppose that |{u,v,w,x}] =3 and u =x .

Let Q, be a u-v path which does not contain w.

Similarly, Let @, be a v-w path which does not contain « and let Q, be a u-w
path which does not contain v. If G—u hasacycle C’ then V(C ") NV (P,
V@, -u)#Jdand V(C ") NV (P,UQ, —u ) =D since G has not two disjoint
cycles. Putting H "= C UP, UP, —u , G contains at least one H ’-bridge R.
However, if H “has an endvertex of R, then H UR contains some of subgraphs
in (1)~ (3), which is a contradiction.  Then G — u has no cycle.

3  Main Results

Theorem 5. Let G be a 2-connected graph. G has a PDD if and only if there
exists a vertex v such that G —v has no cycle.

Proof. Necessity: Suppose that there exists a vertex « such that G — v has no
cycles. If G has a PD, then this partition is also a PDD with respect to «,
which contradicts Lemma 2.

Sufficiency: Suppose G has no PD. Then, by Lemma 3 and Lemma 4, there
exists a vertex u such that G — v is a tree.

Corollary. Every 3-connected graph has a PD.
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Theorem 6. Let G be a 2-connected graph. G has a SD if and only if G is not
a cycle.

Proof. Necessity is trivial by the definition of SD.  Suppose that G has no
SD. Since a PD is an SD, by Theorem 5, there exists a vertex v such that G — v
isatree. By Lemma2 G hasa CD :D,,D,,...,D, such that exactly one of these,
say D,,isacycle. If G is not acycle, in this partition there exists a path such
that either of endvertices of it is a vertex of D,. Then D,UD,,D,,...D, isanSD
of G.

A block is a graph G is a maximal subgraph which has no cut vertex. Then
a block of a graph is the subgraph induced by a cut edge or a maximal 2-
connected subgraph of G.
Let C (G ) be the set of cut vertices of G. A block B of G is an end-block if
IVG)YNC(G)<]. LetX(G):={veC(G);3IBe End(G),veV (B)},
where End (G ) is the set of end-blocks of G. Let 7, be a connected subgraph
that contains X (G ) and is a maximal with respect to this property. 7, is a
tree whose end vertices are in X (G ). LetA ;=Uey i, B.

Lemmaé6. C(G)cV(T,).

Proof. To the contrary, if there exists a vertex v e C (G ) =V (T, ), then there
exists a component D of G — v such that V(D ) nV (T, ) = &, since T, is
connectedand veV (T,). SinceX(G)cV(T,),veVX)andX (G)nV
(D)=@. Then there exists an end-block

B € End(G) such that V(B)c V(D). From the definition of X (G ), V(B)
N X (G ) =D, which contradicts V(D )NV (X )=D.

Lemma 7. Let B a block that is not an end-block of G. Then |V(T;)nV
(B)| 2.

Proof. Since B is not an end-block, [C(G)nV(B)|=22. ByLemma6, C
(G)c V(T,). Thiscompletes the proof of Lemma 7.

Lemma 8. IfGisatree, G has a PD.
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Proof. The proof is given easily by induction on |V (G )|, and is omitted.

Lemma 9. Ifa graph G has a cut vertex, then A, has a good decomposition
with respect to X (G ).

Proof. LetBe NE(G). IfBisacutedgeof G,by Lemma7,then B=¢ ¢
ET,) (")

Put NE (G ), by Lemma 7, then |V(T, )NV (B) 22. Putting H =<V
(T, )N V(B)>,,by Lemma 1, B-E (H ) is a good sub graph with respect
toV(H). Putting NE ’(G ) ={B,,B,.....B, }, for any i, B,is a good decomposition
¢, with respect to V (B,) "V (T,;). On the other hand, by Lemma 8, a trec T,
hasaPD ¢,.,. ByB=eeE(T,) wehave A(G)=T, U (u,B,), where i
runs from I to m . Therefore { ¢,.9,....,+ ) is a good decomposition of A,
with respect to X(G).

Lemma 10. Let G be a 2-connected graph and u €V (G ). If G - u has a
cycle, then G has a good decomposition with respect to u.

Proof. Let C be a cycle of G —u. Since G is 2-connected, there exists a C-
bridge P (x,y ) that contains «. Denote two internally disjoint paths connecting
xand y by P (xy) and P, (xy ). Consider also P, (x,u ) and P, (yu ).
which are subpaths of P (x,y ). Putting H := P (x,y ) U C, both E (P.(xy))UE
(P,(yu))and E (P, (xy)) U E (P, (x,u) ) are a PDD of H with respect (o u.
Since |V (H )| 2 2 and G is 2-connected, by Lemma 1, G - E (H )is a good
subgraph with respect to V(H ). By (1) and (2 ) of Lemma3, G has a good
decomposition with respect to u.

Let BeEnd (G)and V(B)N C(G)={v ). An end-block B of G

withcut vertex v is good it B—v is either one point set or B — v has a cycle,
and otherwise B is bad, B is said if B — v is a tree with order at least two.

Theorem 11.  Let G be a graph with cut vertices. Then G has a PD if and
only if G has no bad end- block.
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Proof. Necessity: Suppose that G has a bad cnd-block and has a PD ¢ .
ForueV(B)n

C (G ), the restriction ¢|, of ¢ to B is a PDD of B with respect to u, which
contradicts Lemma 2.  Sufficiency: Suppose every end-block B is good. Let
ueVB)NX(G).

If B is 2-connected, by Lemma 10, B has a good decomposition with respect to
u. From now on, when B is a edge, for convenience sake we rcgard B itself as
an element of a good decomposition with respect to u.

Case |. | X(G)j=2. ByLemma9, E, has a good decomposition ¢, with
respect to X (G ).  For each element u of X (G ), we correspond to an element,
say B,, of End(G) containing u(*').  Let ¢, be a good decomposition of B,
with respect (o « by the same argument in the proof of Lemmal0Q. Choose any
element of ¢, containing u and denote it by P (). Also chose any element of
¢, containing « and denote by P (u)( *Y).,  Then ¢, u)u ¢(u)isapathof G
containing # as an interior vertex.  This operation applies to all elements
of X(G ). If for each B €End (G ) add ¢, to ¢, .which is a good
decomposition with respect to V(B)n C(G ), then we have a PD of G.

Case 2. [X(G)=1. PuX(G)={u} Everyblockof G is end-block
containing « and there exists at least two such blocks. Let B, and B, be any
two end-blocks of G, and for each i, 1 £i < 1, let ¢, be a good decomposition of
B with rtespect o w.  On the discussion in the case |, considering a
decomposition ¢, of B, instead of B, and ¢, of B,instead of A, we can show
the existence a PD of G by a similar discussion as in the case 1.

Theorem 12. Let G be a graph having cut vertices. Then G has SD if and
only if no two bad end-blocks have a common vertex.

Proof. Nccessity: Suppose B, and B, bc bad end-blocks having « as a
common vertex and both have an SD, ¢. Let ¢ * be a subdivision of ¢.
Then ¢’ is a CD of G . Considering restrictions of ¢ “ to B, and B,, B, and B,
give PCD's ¢, and ¢, with respect to u respectively.

By Lemma 2, there exists a cycle C,e ¢, and acycle C, € ¢, such that E(C, ) ©
E(B,)E(C,)cE(B,). ThenCed 'and C,€ ¢, so it means that there
exists at least two bad end-blocks of ¢ ©  having u as an interior vertex, which
contradicts that ¢ " is a CD of G.
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Hence if G has an SD, then G has no bad end-blocks having exactly one
common vertex.

Sufficiency: For each ue X (G ) suppose that there exists at least one bad-block
containing . The proof is similar to the proof of sufficiency of Theorem 11.
However, in (*') in the proof of Theoremll, for each ue X (G ) when we
correspond to an element of End (G ) containing u, if there exists a bad end-
block B containing «, we choose B as B,. Then we choose a CD in Lemma 2
as decomposition ¢,of B, in (*).  Since ¢, has exactly one cycle C  we may
consider C as a element of ¢, containing « in (*'). Then C UP, (u ) is a string
of G and contains # as an interior vertex. Under the above condition the
existence of an SD of G can be proved by the similar discussion in the proof
of the sufficiency of Theorem 11.
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