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Abstract

For a positive integer d, the usual d-dimensional cube Qg is de-
fined to be the graph (K>)%, the Cartesian product of d copies of
K>. We define the generalized cube Qqx to be the graph (&7%)¢ for
positive integers d and k. We investigate the decompositions of the
complete graph K, and the complete k-partite graph K a-1 into
generalized cubes when k is the power of a prime and d is any pos-
itive integer, and some generalizations. We also use these results to
show that Qs divides Kos.

1 Generalized Cubes

By a decomposition of a graph G, we mean a collection of subgraphs
Gi,...,Gn whose edge sets partition the edge set of G. In this case we
may write G = Gy + ...+ G,. If each subgraph G is isomorphic to a fixed
graph Gy we say that Gy divides G, and write G = nGo.

Let d and k be positive integers. We define the generalized cube Q41
(hereafter called a cube) to be the graph (K} )¢, the Cartesian product of
d copies of K. Alternately, if F' if a set with k elements, then Qg is the
graph with vertex set V = F¢ and edge set E the set of all {z,y} with =
and y in V such that = and y differ in exactly one coordinate. If & = 2
we get the usual d-dimensional cube, denoted Q4. It is easily seen that
[V| = k¢ and |E| = d(k — 1)k%/2.

If F is an additive group we define w and W on V by w(z1,z2,...,24) =
I{i:z; # 0} and W(zy,z2,...,24) = 1+ 2Z2+...+ 24, and call w(z) and
W (zx) the weight and parity of z, respectively. Then {z,y} is an edge of
Qa, iff w(z —y) = 1, which implies W(z) # W(y). Thus Qq, is k-partite,
with V' partitioned into sets

Vo={z€eV:W(z)=a},a€F, (1)
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each with k4~! elements. We note that this partition may depend on the
group F'. For example if F = Z,, then Q2 4 contains a cycle of length 8
with vertices in Vo |J V4, but if F = Z2, then in Q2,4 no cycle of length 8
has vertices with only two parities.

Let Kpnmyxn denote the complete m-partite graph with exactly n vertices
in each part and let Ky, . m, denote the complete ¢-partite graph whose
i'™ color set has m; elements. Let ™G denote the multigraph formed by
replacing each edge of a graph G with m parallel edges.

In this study, we examine the decompositions of complete multigraphs
and of complete multipartite multigraphs into cubes. We note here that
since K divides (I)? (i.e. Qq,x) for all positive integers k and d, these
decompositions are somewhat related to both affine geometries (in the com-
plete graph case) and to group divisible designs (in the complete multipar-
tite graph case). (See Hall [4].)

We remind the reader that an affine plane of order k is a decomposition
of Kyz into Ki’s. Thus, an affine plane of order £ can be obtained from a
decomposition of Kj2 into Q2 ’s.

Despite the relation of our decompositions to affine geometries and to
group divisible designs, we are not aware of any similar results or method
in the literature.

2 Cube Decomposition of Complete Graphs

We will prove theorems about decompositions of both Ky a-1 and Kja
into cubes when £ is a prime power, but need two lemmas first.

If F is a ring with unit 1 we let e; denote the element of V with ith
coordinate 1 and all other coordinates 0.

Lemma 1 Let F be a field with k elements, and regard V as a vector space
over F. Suppose B is a linearly independent subset of V with m elements.
Define C = {ab: a € F\{0},b € B}, and let G(B) be the graph with edge
set E(B) = {{z,z+c}:2 € V,c € C}. Then G(B) is isomorphic to k%™
vertez-disjoint copies of Qm k.

Proof: Let B = {b1,bs,...,bm}. Extend B to a basis B’ = {by,b2,...,b4}
for V. Define f : V — V by f(z1,z2,...,24) = Zz;b;. Since B’ is a
basis, this is a permutation of V and so when extended to the edges of
Ky« gives a graph isomorphism. Now the edges {{z,z 4+ ae;} :z € V,a €
F\{0},1 < i < m} are isomorphic to k=™ isomorphic copies of Qm k,
one for each choice of the last d — m coordinates of . Note that f takes
such an edge into {Zz;b;, Lx:b; + ab;} € E(B). Since |C| = (k — 1)m and
|E(B)| = k%(k — 1)m/2, which is k%~™ times the number of edges of Qp, 1,
the theorem statement follows. 0
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Lemma 2 Let d and k be integers grealer than 1. If m is an inleger such
that 0 <m < d, then
gm-1 kd-1
<15,

m

and
k™ —1 k-1

*—Dm ==

Proof: To prove the first inequality it suffices to show that k™~!/m <
[£™/(m + 1)] for each integer m > 0. This is straightforward for m < 3,
so assume m > 4. Note that mk/(m + 1) > 1.5 and k™~!/m > 2. Then

) N k™ k™

—-1= -1<L
m m+1) m 1 m+1 1"I‘m+l

|-

Likewise to prove the second inequality it suffices to show that (k™ —
1)/(k=1)m < |(k™+1=1)/(k—1)(m+1)] for m > 0. This is straightforward
for m < 3, so assume m > 4. Note that (k™*! — 1)m/(k™ — 1)(m + 1) >
E™tlm/k™(m+ 1) > 1.5 and (k™ —1)/(k — 1)m > k™ /km > 2. Then

k™ — 1 (k™ —Dm k-1
k—Dm = k™ = D)(m+1) (k- )m

A | Emtl —1
—_—— 1L | ——].
(k-1)(m+1) - I'(lc - (m+ 1)J
Thus, the proof is complete. 0

The following theorem is a consequence of the Edmonds matroid parti-
tion theorem [2]; its first appearance is [6].

Theorem 1 Let n be a positive integer, and let S be a subset of a vector
space such that for any finite subset T of S we have |T| < n-rankT. Then
S can be partitioned into n disjoint linearly independent subsets.

In the theorems that follow we make the convention that Q. is empty
for » = 0. The k = 2 case of the following theorem appears in [3].

Theorem 2 Suppose that k is a power of a prime. Write k%! = gd+r,0 <
r < d. Then Kiyra-1 can be decomposed inio q copies of Qax and kd-r
vertez-disjoint copies of Q.

Proof: We take the vertices of Kpyre-1 to be V = F¢, where F is a
field with & elements, and V is partitioned into the sets V, of (1), so
that the edges of Kjyga—1 are all {z,y} with W(z) # W(y). Let R =
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{e1,e2,...,e,}. We claim that V}\R can be partitioned into q bases for V,
where V is regarded as a vector space over F. By Theorem 1 it suffices to
show that if T is any subset of V}\ R, then

|IT| < g¢-rank T (2)

Let rank T' = m. Then (2) is clear if m = 0, and, since |V;}\R| = ¢d, if
m = d. Note that if Y is any m-dimensional subspace of V', then |Y N V;| <
k™=1. Thus it suffices to show that k™! < |k%!/d|m for 0 < m < d,
and this is the first inequality of Lemma 2.

Now we invoke Lemma 1. By it each basis B C W for V generates a
subgraph G(B) of Kjyye-1isomorphic to Qq,, while if » > 0, then G(R)
is isomorphic to k%" edge-disjoint copies of Q.. We must show that all
these subgraphs of K} a-1 are edge-disjoint.

Suppose that B; and B are disjoint linearly independent subsets of V;,
but E(B,) and E(Bz) are not disjoint. Say that {z,z+ab1} = {y, y+5b.},
with o, 8 € F\{0},b; € B;,bp € B;. If ¢ = y, then ab; = Bb,. But
a = W(aby) = W(Bb2) = B, so by = b,, which is a contradiction. Otherwise
z =y+ fBby and y = ¢ + aby. Then aby = —pb,, leading to the same
contradiction.

Since the number of edges of Ky a1 is

(k= 1)k?1/2 = g -d(k — 1)k%/2 + k4" - r(k — 1)k" /2,

the proof is complete. O

Theorem 3 Suppose that k is a power of a prime. Write (k4—1)/(k—1) =
gd+7,0 <r < d. Then Kia can be decomposed into q copies of Qqr and
k4= vertes-disjoint copies of Q.

Proof: As in the last proof we take F' to be a field with k£ elements and
consider V' to be a vector space over F. Let W be the set of all elements of
Vo\{0} which have first nonzero coordinate 1, and let R = {e,ea,...,e,}.
Note that |W| = (|Vo| = 1)/(k—1) = (k%! —1)/(k — 1). We will show that
Z = (Vi [UW)\R can be partitioned into ¢ bases for V.

By Theorem 1, it suffices to show that if T C Z, then |T| < g-rank T'.
Let m = rank T. The desired inequality holds for m = 0 and m = d, the
latter case following from |Z| = ¢gd. Now if Y is a subspace of V of rank m,
then YO\ V1 <k™land YOAW < (k™' =1)/(k-1),since ifc e YW
and @ # 1, then ez ¢ YW. Thus |T| < k™1 + (k™1 - 1)/(k-1) =
(k™ — 1)/(m — 1), and so it suffices to show (k™ — 1)/(k — 1) < gm for
0 < m < d. But this is the second inequality of Lemma 2.

Now by Lemma 1 each basis B generates a subgraph G(B) of Kya
isomorphic to Qg, while if 7 > 0 then G(R) consists of k%" edge-disjoint

240



copies of Qrx. We claim that these subgraphs are all edge-disjoint. It
suffices to show that if By and B, are disjoint linearly independent subsets
of Vi W, then G(B1) and G(By) are edge-disjoint. Say that {z, z+ab;} =
{y,y+pb2}, with o, 8 € F\{0},b; € By,bs € B,. If z = y, then ab, = Bbs.
Then oW (b)) = W(ab,) = W(Bb2) = BW (b3), and so b, and b, are both in
V1 or both in W. In the first case, the proof is as for the previous theorem.
In the second case, @ = # by the definition of the set W. But then &, = b,,
which is a contradiction. Likewise if £ = y + 8, and y = = + ab;, then
aby = —Bb;. Then @ = —f and b; = b, in the same way.
Since the number of edges of Ky« is

kO (kS —1)/2 = ¢ - d(k — 1)k%/2 + k4T - r(k — 1)k" /2,

the proof is complete. D

By counting edges we see that a necessary condition for Qg to divide
Ky is that d(k —1) divide k% — 1, and Theorem 3 says that this is sufficient
when £ is a prime power. However, this condition is not sufficient for general
k. For example, Q221 cannot divide K441 since Ko, divides Q2,21 and it is
well known that K3; does not divide K44, (see 4], Theorem 12.3.2.)

Our next result determines exactly when d(k — 1) divides k% — 1 when
d (but not necessarily k) is a prime power.

Theorem 4 Let p be prime and d = p*, witht > 0 and k > 1. Then
d(k—1)|k? ~ 1 if and only if k=1 (mod p).

Proof: First assume d(k — 1)]k? — 1. Since p|k% — 1, p does not divide k.
Then k? = k (mod p) by Fermat’s theorem. Successively raising to the
power p gives kP = kP (mod p), k?° = k?* (mod p), etc. Thus

k=kP=k"=..=k% (modp).

But k¥4=1 (mod p) by assumption.
Now suppose k =1 (modp). If K =1 (mod p¥) for some S > 0,
then

KP = (1+p°u) = 14+p-pou+(p(p—1)/2)P%u)? +...=1 (mod p5+1).

Applying this result ¢ times gives K =1 (mod p®*?). In particular, if
k-1 = p*v, where p does not divide v, then ¥?' = 1 (mod p**?). We
see that p"**|k4 — 1. Also vk — 1 and k — 1]k — 1, so v|k? — 1. Thus
vp*tt = (k- 1)d|k? - 1. a]

There are 272 cases for d and k less than 100 when d = p* and k are
both prime powers and k =1 (mod p), implying that Q4 divides K.
Theorems 2 and 3 can be extended to regular complete multigraphs.
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Theorem 5 Letd, k, and m be positive iniegers with k a power of a prime.
Write mk9—! = qgd+7r,0<r < d, and m(kd - 1)/(k— 1) = qod+74,0 <
ro < d, and denote ™Ky ra-1 and ™ Kya by Gy and G2, respectively. Then
G; can be decomposed into q; copies of Qar and k4" copies of Qy, i for
i=1,2.

Proof: We will only sketch the proof for i = 1. Let B l=qgd4+r,0<r<
d. We consider ™ K} re-1 as m copies of Kjyre-1 and apply the proof of
Theorem 2 to each one, replacing the set R in that proof by sets

Rl = {el,...,er},Rg = {Cr+1,...,82r},...,Rm = {e(m_l)r+1,...,em,},

where the subscripts of the e; are taken modulo d. This gives mq copies of
Q-

Now write mr = dg3+ 73,0 < r3 < d. Then the sequence e;,e2,...,emr
can be split into g3 bases {ey,...,eq4} and a set R with r3 elements, gener-
ating g3 additional copies of Q4 and k%="2 copies of Qr, k. But mk4~! =
(mgq + g3)d + r3, so by the uniqueness of quotient and remainder in the
division algorithm ¢; = mq + ¢3 and r; = r3. 0

3 An Application of Hamming Codes

In the remainder of this paper we will consider only ordinary cubes Qg, so
that £ = 2 and F is the field Z,.

If d = 2',t > 0, then Theorem 2 says that Kji-1 9¢-1 can be decom-
posed into 291 /d = 29-'~! copies of Q4. By means of Hamming codes we
will exhibit decompositions of more general complete bipartite graphs into
copies of Q4.

We remind the reader of some basic Hamming code facts; for details see
[5]. Given an integer ¢ > 1 set n = 2' —1 and m = n—%. The corresponding
Hamming code is a subgroup C of Z} with 2™ elements such that every
nonzero element of C has weight > 2. This implies that if z and y are
distinct elements of C, then w(x — y) > 2.

Now set d = n+1, and let H be the subset of Z§ formed by appending
a d** coordinate (0 or 1) at the end of each element of C so as to make its
weight even. Then H is a subgroup of Vp (see (1)), and w(z —y) > 2 for
distinct elements £ and y of H. In fact this holds if z and y are distinct
elements of any fixed coset of H in V. Note that there are 2" /2™ = d such
cosets. If, as usual, we consider the vertices of Q4 to be Z4, then if distinct
vertices z and y of V; are adjacent in Qg to the same vertex in V; we have
w(z — y) = 2, and so z and y must be in different cosets of H. Let the
cosets of H in Vy be Hy, H,, ..., Hg.
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Theorem 6 Let t > 1 be an integer, d = 2!, and m = d -t —1. It
is posstble to list the vertices of Qq of even weight as v1,vs,...,v9a-1 s0
that if ¢ is the graph isomorphism on Kja-i ga-1 that is the identity on
Vi and sends v; € Vp inlo viyq4, the subscripts taken modulo 29~!, then
QRd, #(Qa), $*(Qa), - - -, #*" ~1(Qa) forms a decomposition of Kpa-1 54-1 into
copies of Qg.

Proof: Let n = d — 1, and order the elements of Vj as v, vs,...,von,
where vy € Hy,v2 € Ha,...,vq € H4,v441 € Hy, and in general v; € H,
whenever i = r (mod d). Let V) = {w;,ws,...,we=}. Note that Kan a

has 22" edges, Qg has d2" edges, and 22"/d2" = 2™, Thus it suffices to
show that the graphs ¢*(Q4),0 < i < 2™, are edge disjoint.

Suppose the edge {v,w} € ¢'(Qa)N ¢’ (Qa), where 0 < i < j < 2™,
Then there exist edges {va,w}, {ve, w} € Q4 such that ¢'(vs) = ¢/(vs),
so that a + id = b+ jd (mod 2"). But d|2”, so this implies that a = b
(mod d). Then v, and v, are in the same coset of H. But both are adjacent
to w in Qg, so we must have ¢ = b. Then id = jd (mod 2"),0ori = j
(mod 2"~*). Since n —t = m, this is a contradiction. 0

In the language of [10] the last theorem shows that Kjs-1 pa-1 has anr, s-
cyclic decomposition into copies of @4, where r = d and s = 0, and Theorem
1 of that paper can be applied to extend this to a cyclic decomposition of
K3d-1444,24-1 for any positive integer q. There is also a direct proof, which
we omit since it is nearly identical to that of Theorem 6.

Theorem 7 Let g > 0 andt > 1 be integers,d = 2!, and m = d—t—1. Lel
Kya-14442¢-1 have the vertez partition Vy,Vy. Then it is possible to list the
elements of Vy as v1,v2, ..., V941444 S0 that if 1 is the graph isomorphism
that is the identity on Vi and sends v; € V{ into v; +d, the subscripts taken
modulo 29~ +qd, then Q4,%(Qa), ..., ¥* +1-1(Qy) forms a decomposition
of Kaa-1444,2¢-1 inlo copies of Qq.

4 A Cube Decomposition of Ky

Some necessary conditions for the existence of a d-cube decomposition of
K, are:

(4.1) if n > 1 then n > d,
(4.2) d|(n — 1) (since Qg is d-regular and K, is (n — 1)-regular), and
(4.3) d24|n(n — 1) (since |E(Qq)| = d2%! and |E(K,)| = n(n — 1)/2.)
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For a fixed d, these necessary conditions require that n lies in certain con-
gruence classes modulo d.

In 1981, Anton Kotzig [7] proved the following results concerning Q-
decompositions of Kp:

Theorem 8 Ifd is even and there is a Qq-decomposition of Ky, thenn =1
(mod d2¢).

Theorem 9 Ifd is odd and there is a Qq-decomposition of Kp, then either
(a) n=1 (mod d2¢) or
(b)) n=0 (mod2¢) and n=1 (mod d).

Theorem 10 There is a Q4-decomposition of K, if n=1 (mod d2¢).

The previous three theorems by Kotzig established the sufficiency of
conditions (4.1)-(4.3) for the cases when d is even and when d is odd and n
is odd. The case d odd and n even remains open for d > 5. If d is an odd
prime number, then the open case reduces to solving the following problem

(8)-

Problem 1 If d is an odd prime and n = (d+1)29~! (mod d2¢), then
Qg4 divides K,,.

We note that case d = 3 and n = 16 (mod 24) was first settled in [9].
Moreover, 3-cube decompositions of both K, and ’\Km,n are investigated
in [1].

Our previous results can be applied to show the following.
Theorem 11 We have Kgg = 57Qs.

Proof: Using Theorem 2 with k£ = 2 and d = 4 and 5 gives

Kzs=2Q4 3)
and
Ki6,16 = 3Qs + 16Q1, (4)
and Theorem 3 with d = 5 gives
K3z = 6Qs + 16Q1. (5)

Note that since the copies of Q; are vertex-disjoint in (4) and (5), 16Q,
amounts to a 1-factor of the original graph. We will denote a 1-factor with
n edges by Fy.






Now Kgg = 3K3z + Kaz 32,32, so (5) allows us to remove from Ko 18
copies of Qs, leaving 3F16+ Ka2 32,32 = 3F16+12K)6,16. See the first graph
in Figure 1, where the thin lines represent Fi¢ and the thick lines K¢ 16. Let
the 16 vertices in the leftmost group be a;,as, ..., as, b1, ..., bz, then in suc-
ceeding groups (clockwise) ci,...,¢s,d1,. .., ds, etc., alphabetically. Sup-
pose these are numbered so that we have the edges {a1,d1},...,{as,ds},
{b1,e1},.--,{bs, cs} in the remaining Fy¢. Likewise let the other two copies
of Fy¢ have edges {e:, he}, {fi, 9t} {ir, 1}, and {5, k:}.

We use (4) on each of the 9 copies of Kig,16 not marked with a *,
removing 27 more copies of Q5 and leaving the second graph in Figure 1.
In fact we can take out any 1-factor Fys of K16,16 and what is left can be
decomposed into three copies of Q5. Thus we can get the graph of Figure 2,
where each circle represents 8 vertices, the thin lines copies of Fg in which
adjacent vertices have the same subscript, and the thick lines copies of Kz 3.

Now we will use (3) and the fact that Qs = Q4 X K2 to decompose the
graph remaining into copies of Q5. There exists a copy of Q4 inside the
K3 s consisting of edges {c,,e;} that is symmetric in the sense that {cs, et}
is an edge if and only if {e,, c;} is. Denote this by (¢, ¢) and its complement
in Kg 3 by [c, €]; by (3) [c, €] is also a symmetric copy of Q. Likewise let eh
denote the Fg with edges {e:, h:}. We extend the notation to other letters
in the obvious way, so that, for example, {c,,e:} is in (c,e) iff {hs, i} is
in (h,j). Then (c,e) + eh + (hj) + jc is isomorphic to Q@s, and, for that
matter, so is [c, €] + el + [Ib] + be.

We can find 12 such examples in the graph of Figure 2, namely

(ce) +eh + (hj) +jc,  (gi) +il + (Ib) +bg, (k) + ad + (df) + fF,

(cf) + fi+ (jg) +g¢, (hi)+ia+ (al)+1h, (kb)+ be+ (ed) + dk,
[ce] + el + [Ib) + be,  [hj] + jk + [ka] +ah, [df] + fg + [9i] + id,
[cf]+ fa+[all +1c, [hi]+ie+ [ed] +dh, [kb] + bj + [jg] + gk.

It can be checked that each F3 appears once in this list and each pair cor-
responding to a Kz g twice, once with parentheses and once with brackets.
Thus we have 12 more copies of Qs, for a grand total of 18 + 27+ 12 = 57.

a
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Bicyclic Directed Triple Systems
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Abstract. A directed triple system of order v, denoted DT'S(v), is said to
be bicyclic if it admits an automorphism whose disjoint cyclic decomposi-
tion consists of two cycles. In this paper, we give necessary and sufficient
conditions for the existence of bicyclic DT'S(v)s.

1. Introduction

A directed triple system of order v, denoted DT'S(v), is a v-element set
X of points, together with a set 3 of ordered triples of elements of X, called
blocks, such that any ordered pair of points of X occur in exactly one block
of §. We denote by [z,y, 2] the block containing the ordered pairs (z,v),
(v,2) and (z,2). A DTS(v) exists if and only if v = 0 or 1 (mod 3) [6].

An automorphism of a DTS(v) is a permutation of X which fixes £.
The orbit of a block under an automorphism 7 is the image of the block
under the powers of 7. A set of blocks B is said to be a set of base blocks for
a DT'S(v) under the permutation = if the orbits of the blocks of B produce
the DT'S(v) and exactly one block of B occurs in each orbit. A DTS(v)
admitting an automorphism consisting of a single cycle is said to be cyclic.
A cyclic DT'S(v) exists if and only if v = 1, 4, or 7 (mod 12) [4]. A DTS(v)
admitting an automorphism consisting of a fixed point and a cycle of length
v — 1 is said to be rotational (or I-rotational) and exists if and only if v = 0
(mod 3) [2].

These types of automorphism questions have also been addressed for
other triple systems. Colbourn [3] proved that if 7 is an automorphism of
a two-fold triple system of order v then, under the appropriate necessary
conditions, the two-fold triple system can be directed to form a DTS(v)
which also admits 7 as an automorphism. A Steiner triple system of or-
der v, denoted ST'S(v), is said to be bicyclic if it admits an automorphism
consisting of two disjoint cycles. A bicyclic STS(v) admitting an automor-
phism consisting of a cycle of length N and a cycle of length M (where
N < M) exists if and only if N =1 or 3 (mod 6), N # 9, N | M, and
v=N+M =1or3(mod 6) [1, 5]. The purpose of this paper is to present
necessary and sufficient conditions for the existence of a bicyclic DTS(v).
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