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Abstract. A graph G = (V, E) is a loop niche graph if there
is a digraph D = (V, A) such that zy € E iff there exists z EV
such that either zz and yz € A4 or 2z and zy € A. If D has no
loops, G is a cyclic niche graph, and if D is acyclic, G is a niche
graph. We give a characterization of triangle-free cyclic niche
graphs, and apply this to classify grids.

1. Introduction

Let D = (V, A) be an acyclic digraph. Then the niche graph
corresponding to D is the graph G = (V, E) where there is an
edge between two distinct vertices z and y of V if and only if for
some 2 in V either there are arcs zz and yzin D or there are arcs
zz and zy in D. A graph G is a niche graph if there exists an
acyclic digraph D such that G is the niche graph corresponding
to D, and D is then called a food web for G. Niche graphs
are a variant of competition graphs; see [4] for a survey of this
area. As has been done with competition graphs, the definition
of niche graph has been relaxed to allow food webs that are not
acyclic [1,6]. If a graph has a food web that may have loops
and/or cycles, the graph is a loop niche graph, and if it has a
food web that may have cycles but not loops, it is a cyclic niche
graph. Clearly all niche graphs are cyclic niche graphs, and all
cyclic niche graphs are loop niche graphs. However graphs can
be loop niche without being cyclic niche (for example K 3) and
cyclic niche without being niche (for example Cy). Figure 1 gives
the food webs for these two examples. :

Classifying niche graphs in general appears to be- difficult.
In the remainder of this paper we will restrict our attention to
triangle-free graphs. In this case some classification results have
been obtained.
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Theorem 1 [1,6]. No triangle-free graph of mazimum degree
at least 5 is a loop niche graph.

Theorem 2 [5]. Every tree of mazimum degree at most 3 except
K, and K3 is a niche graph.

Theorem 3 [6]. Let C be a caterpillar; i.e. a tree in which
all vertices of degree more than 1 lie on a path called the spine.
Then C is loop niche if and only if C has mazimum degree at
most 4 and the spine of C does not consist solely of an even
number of vertices of degree 4.

We will extend the technique that was used in proving Theo-
rem 3 to cyclic niche graphs, and use this to obtain some further
classification results.

2. Interlacings and Interlaceable Coverings

Let G be a triangle-free graph. We start by considering how
to create food webs for certain of the subgraphs of G that consist
of only a pair of paths or a pair of cycles.

Given two (not necessarily disjoint) paths P and P’ in G
of lengths differing by at most 1, we first define an interlacing
from P to P'. Choose a consecutive ordering of the vertices along
P, say vov;...v,, and along P’, say wow...wn (wherem =n—1,
n or n 4 1). Then the interlacing I is one of the following sets
of m+n+1 arcs:

Ifm = n+1 then I = {vowo, Vow1, V1W1, V1W2, +..) VnWn, VnWns1}-
If m = n—1 then I = {vowg, vV1Wo, V1W1, VoW1, +.ey Un—1Wn—1, VnWpo1}-
If m = n then I = {vowo, vows, v1w1, V13, vey Un—1Wn, UnWy } OF
{vowo, Viwo, V1W1, VWi, ...y UnWn-1, VpWn}-

If one of the paths has length 0, there is a unique interlacing
from P to P'. Otherwise, since there are two possible orderings
of the vertices for a path, there are two possible interlacings from
P to P’ when their lengths differ by exactly 1, and four possible
interlacings when their lengths are equal. For example, the paths
abc and def have four possible interlacings: {ad, ae,be,bf,cf},
{ad, bd, be,ce,cf}, {af,ae,be,bd,cd} and {af,bf,be, ce,cd}.

Similarly, given two cycles C and C’ in G, both of length n
(where n > 4) we define an interlacing from C to C’. Choose
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a consecutive ordering of the vertices around C, say v;...v,, and
around C’, say w;...w,. Then the corresponding interlacing is
the set {vlwl,vlwg,vzwg,vgws,...,vnwn,vnwl} consisting of 2n
arcs. Since there are two possible orientations for a cycle, and
n possible starting points in ordering it, C and C" have 2n pos-
sible interlacings. Figure 2 illustrates one of the eight possible
interlacings of two 4-cycles.

From the definitions of loop niche and interlacing we get im-
mediately the following lemma.

Lemma 1. Let H and H' be two subgraphs of a graph G that
are either a pair of paths of length differing by at most 1 or a
pair of cycles of equal length, and let I be an interlacing from
H to H'. Then HU H' is a loop niche graph with food web
D= (V(HUH'),I).

For a triangle-free graph G, we define an interlaceable cover-
ing to be two subgraphs H and K of G, each of maximum degree
at most 2, such that the (not necessarily disjoint) union H U K
contains every edge of G and there exists a one-to-one corre-
spondence between the components of H and the components
of K that maps cycles to cycles of the same length and paths to
paths of length differing by at most 1. The following theorem
(from [6], in which an interlaceable covering was called a Pd/Py
decomposition) is a useful tool in detecting loop niche graphs.
We sketch the proof since we will be adapting it to cyclic niche
graphs.

Theorem 4 [6]. Let G be a triangle-free graph. Then G is a
loop niche graph if and only if G has an interlaceable covering.
Sketch of proof: If G has an interlaceable covering with sub-
graphs H and K, then for each pair of corresponding compo-
nents choose an interlacing from the component in H to the
component in K. By Lemma 1, the union of all the interlacings
provides the arc-set for a food web, so G is a loop niche graph.
Conversely, suppose that G = (V, E) is a loop niche graph with
food web D = (V, A). Then since G is triangle-free each vertex
in D has in-degree and out-degree at most 2. Define a graph
H by V(H) = {v € V|v has out- degree at least 1 in D} and

23



E(H) = {zy| there exists z € V such that zz,yz € A}. Simi-
larly, define a graph K by V(K) = {v € V/|v has in-degree at
least 1 in D} and E(K) = {xy| there exists z € V such that
zz,zy € A}. Since G is the loop niche graph of D, H and K
are subgraphs of G and HU K covers the edges of G. Since G is
triangle-free, each component of H and K has maximum degree
at most 2. For each component C of H, let C’ be the subgraph
of G induced by the heads of all arcs of D whose tails are in
V(C). Then C' is a component of K; pair C and C’. This gives
the required interlaceable covering. (]

Figure 3 gives an example of a loop niche graph G with food
web D and interlaceable covering P. In this example, the paths
gh and abc of P are paired, and the arcs in the food web D that
create the edges gh, ab and bc of these two paths in G are the arcs
of the interlacing {ga, gb, hb, hc}. Similarly, the cycles cefd and
ehif are paired, with interlacing {ce, ch,eh, €, fi, ff, df, de}.
Finally, the paths ij and d are paired, with interlacing {id, jd}.

Determining whether an acyclic food web can result from a

given interlaceable covering is difficult, since a cycle can result
from combinations of arcs from several different pairs. However,
determining whether a loopless food web can result from a given
interlaceable covering is much easier, since it is only necessary to
check whether each pair of components has an interlacing that
does not contain a loop. The graph G in the example above is
in fact a cyclic niche graph, since the cycles cefd and ehif have
the alternate interlacing {cf, ct, i, eh, fh, fe,de,df} that does
not contain a loop. Thus the next result, which follows from the
proof of Theorem 4, can be useful in determining cyclic niche
graphs.
Theorem 5. Let G be a triangle-free graph. Then G is cyclic
niche if and only G has an interlaceable covering such that each
corresponding pair of components in the covering has an inter-
lacing that does not contain a loop.

As an example of the application of Theorems 4 and 5, we
give an infinite class of loop niche graphs that are not cyclic
niche. Let G, = K 4, and for n > 1 let G, be determined from
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Gn-1 by adding to each vertex v of degree 1 in G,_; three new
vertices of degree 1 adjacent to v (so v now has degree 4 in G,,).
Gs is illustrated in Figure 4.

Theorem 6. The graph G, is loop niche but not cyclic niche
foralln > 1.

Proof. We first define the subgraphs H and K of an interlace-
able covering (see Figure 4). We use Py to refer to a subgraph
which is a path of length k — 1. For each vertex v of degree 4
having exactly three neighbours of degree 1, choose two of these
neighbours and remove the P; connecting them (leaving v as a
vertex now of degree 2). Altogether, this removes 4 x 32 P;’s
from G, From the remains of G,, for each vertex of degree 4
at distance 2 from exactly three vertices of degree 1, choose two
of these pendant vertices and remove the Ps connecting them.
This removes 4 x 3"~3 P;’s from G,. Now repeat this process,
removing 4 x 3"~~! Py.,’s from G, for i = 1,2,...,n — 1. What
remains is a spider with a central vertex of degree 4 and four
legs each of length n; split this at the vertex of degree 4 giv-
ing two Pany1’s. Put one of these Ps,,,’s into H and the other
into K. Then put into K all of the P,,_;’s that were removed
from a vertex of the Pp4 now in H, and put into H all of the
Pyn1’s that were removed from a vertex of the Py,y; now in
K. Repeat this process outward, finally putting into K all of
the Ps’s that were removed from a vertex of a path now in H
and vice versa. The subgraphs H and K now each contain one
Ppny1 and 2 x 3"t Py y’s fori = 1,2,...,n — 1. Thus we can
pair each P in H with a distinct P, in K, and so H and K
form an interlaceable covering for G,. By Theorem 4, G, is a
loop niche graph. Now let H and K be the two subgraphs of
any interlaceable covering for G,. Since all components of H
and K have maximum degree at most 2, and since H U K covers
the edges of G, it follows that for every vertex of degree 4 in
Gh, two of the incident edges must be in H and the other two
in K. Thus all components must be paths starting and ending
at vertices of degree 1 in Gy, and so every interlaceable covering
for G must, as the one above does, consist of 4 x 3n—i-1 Pyiyys,
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for i = 1,2,...,k — 1, and two Pya41’s, each of which has the
central vertex of G, as its centre vertex. The two Pan41’s must
be paired with each other, since all other path components have
length at most 2n — 2. But all four of the possible interlacings
between two Pin4i’s contain an arc from the centre vertex of
one Py,y1 to the centre vertex of the other, which in G, gives a
loop. Thus, by Theorem 5, G, is not a cyclic niche graph.

3. Application to Grids

We now apply the results of the last section to classify the
m x n grids (i.e. the Cartesian products Pp x Py).

The 1 x n grids are the paths P,; these are all known to be
niche graphs [3] except for P,, which is loop niche only.

The 2 x 2 grid is the cycle Cy. By Figure 1, Cy is a cyclic niche
graph (and by [3] it is not a niche graph). The 2 x 3 grid is a
niche graph, since it can be decomposed into two C4’s that pair
with each other without cycles (Figure 5). Similarly the 2 x 4
grid is a niche graph, since it can be decomposed into two Fe’s
that pair with each other without cycles (Figure 5). Note that in
the food webs for both the 2 x 3 grid and the 2 x 4 grid, the two
leftmost vertices have in-degree 0 and the two rightmost vertices
have out-degree 0. Thus if, for example, two of the food webs
for the 2 x 3 grid are placed side by side and the two rightmost
vertices of the first identified with the two leftmost vertices of
the second, no cycles are created and the result is a food web for
the 2 x 5 grid (Figure 5). This construction can be generalized
to any 2 X n grid.

Theorem 7. Fvery 2 X n grid is a niche graph, for n > 3.

Proof. If n is odd, take (n — 1)/2 copies of the food web for
the 2 x 3 grid, place them in a row, and identify the two vertices
on the right of each web with the two vertices on the left of the
next web. The result is an acyclic food web for the 2 x n grid.
If n is even, take one copy of the food web for the 2 x 4 grid and
(n — 4)/2 copies of the food web for the 2 x 3 grid, place them
in a row, and identify the two vertices on the right of each web
with the two vertices on the left of the next web. The result is
an acyclic food web for the 2 x n grid. O
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Once the grids become large enough to have a vertex of degree
4, they do not appear to be niche graphs. We tested the 3 x 3
grid by exhaustive computer search, and determined that it is
not a niche graph. It is not practical to do this for much larger
grids, but we have found no way of showing them to be niche
graphs (nor have we found any reason why they should not be).
However by defining appropriate interlaceable coverings we can
show that these grids are all cyclic niche graphs.

Theorem 8. FEvery grid other than the 1 x 2 grid is a cyclic
niche graph.

Proof. Let G be an m x n grid. We have already considered all
cases where m < 2 (and, by symmetry, where n < 2), so suppose
that m,n > 3. Label the rows of the grid from top to bottom
with 1,2,...,m, and label the columns of the grid from left to
right with 1,2,...,n. Then we will describe for each case how to
dissect the grid into the subgraphs H and K of an interlaceable
covering.

Case (i) m and n are both odd (Figure 6). Consider the vertex
v in row ¢ and column j. If 7 4+ j is even, split v so that the
edges (if any) above and to the left remain together and the
edges (if any) below and to the right remain together. If 7 +
is odd, split v so that the edges (if any) above and to the right
remain together and the edges (if any) below and to the left
remain together. Once this has been done for every vertex, the
result is (m — 1)(n — 1)/2 Cy’s and n + m — 2 P,’s. Place all
the Cy’s whose top edge is in an odd-numbered row into H, and
the remainder into K, then pair each C; in H with the C, in
K immediately below and to the right. Place the P,’s on the
top row and on the leftmost column into K, and the P;’s on the
bottom row and on the rightmost column into H, then pair each
P, in the top row with the corresponding P; one column to the
left in the bottom row, and each P in the leftmost column with
the corresponding P, one row up in the rightmost column. This
gives an interlaceable covering. Since each C4/Cj pair has only
one vertex in common, and since none of the P,/P; pairs have
any vertices in common, each pair can be interlaced without
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creating a loop. Thus G is a cyclic niche graph.

Case (ii) m is even and n is odd (Figure 7). Consider any vertex
v in row i. If i is even, split v so that the edges (if any) above
and to the left remain together and the edges (if any) below and
to the right remain together. If i is odd then split v so that the
edges (if any) above and to the right remain together and the
edges (if any) below and to the left remain together. Once this
has been done for every vertex, the result isn—1 Pzp,’s and m—1
P,’s. Put the P,,,’s alternately (from left to right) into H and
K, pairing each P,,, going into H with the following P, going
into K. Put the P;’s in the leftmost column into K and those in
the rightmost column into H, pairing each P; in the rightmost
column with the corresponding P, one row down in the leftmost
column. Place the vertex at the top right corner as a P, into H
and pair it with the P, at the top of the leftmost column. This
gives an interlaceable covering. The only paired components
with any common vertices are the paired P,,,’s, which have m
vertices in common: vertex 4k + 2 (numbered from the top) of
the H component is vertex 4k + 1 (also numbered from the top)
of the K component and vertex 4k + 3 of the H component is
vertex 4k + 4 of the K component, for k = 0,1,...,(m—-2)/2. In
particular, neither of the two centre vertices of the H component
are in the K component, all common vertices before the centre
of the H component occur in the first half of the K component,
and all common vertices after the centre of the H component
occur in the second half of the K component. So, if the H
component ordered from top to bottom is interlaced to the K
component ordered from bottom to top, the interlacing has no
loops. Thus G is a cyclic niche graph.

Case (iii) m and n are both even, and without loss of generality
m < n (Figure 8). For each vertex v, split v so that the edges
(if any) above and to the left remain together and the edges
(if any) below and to the right remain together. The result is
m + n — 2 paths, in the order (from top left corner to bottom
I’Ight) P3, P5, P7, seny P2m—11 Pgm, cany sz, P2m-1, ...P7, Ps, P3 (With
n—m Pyy,’s). Put these alternately into H and K, and pair the

28



first with the last, the second with the second last, and so on
finally pairing the two middle paths with each other. This gives
an interlaceable covering. The only paired components with any
vertices in common are the two middle paths, which are both
Py,_1’s if m = n, and both P,,,’s if m < n.

Suppose first m = n, and consider the two middle Py,_,’s,
one an H component and one a K component. These share
vertices 1, 3, 5, ..., 2m — 1 (counting from the top left). So
the centre (mth) vertices of these H and K components are not
common vertices, all common vertices before the centre of the K
component occur before the centre of the H component, and all
common vertices after the centre of the K component occur after
the centre of the H component. Thus if the H component or-
dered from the top left is interlaced to the A component ordered
from the bottom right, the interlacing has no loops (though it
does have 2-cycles). Thus G is a cyclic niche graph.

Now suppose m < n, and consider the two middle P,,,’s, one
an H component and one a K component. Then (still counting
from the top left) vertex 2k — 1 of the H component is vertex 2k
of the K component, for k = 1,2,....m. Then the set consisting
of the arcs from vertex 1 of the H component to vertex 1 of the
K component, and from vertex : of the H component to vertices
t— 1 and 7 of the K component, ¢ = 2,3,...,2m, is an interlacing
with no loops. Thus G is a cyclic niche graph. (]
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Figure 1. C, is cyclic niche, and K, , is loop niche

Figure 2. One of the interlacings of two 4-cycles
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Figure 3. An interlaceable covering P of a graph G,
with a corresponding food web D
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Figure 5. Interlaceable coverings and acyclic food webs for
the 2 x 3, 2 x 4 and 2 x 5 grids

Figure 6. An interlaceable covering for an odd by odd grid
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Figure 7. An interlaceable covering for an even by odd grid

Figure 8. Interlaceable coverings for even by even grids
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