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ABSTRACT. Some results relating to the road-coloring conjecture of Alder,
Goodwyn, and Weiss, which give rise to an O(n?) algorithm to determine
whether or not a given edge-coloring of a graph is a road-coloring, are noted.
Probabilistic analysis is then used to show that, if the outdegree of every
edge in an n-vertex digraph is § = w(logn), a road-coloring for the graph
exists. An equivalent re-statement of the conjecture is then given in terms
of the cross-product of two graphs.

DEFINITIONS

Let G be an n-vertex digraph. V(G) will denote the vertex-set of G, and
E(G) will denote the edge-set of G. G is strongly connected if for every pair
of vertices v and w in V(G), there is a directed path from v to w. The
outdegree of vertex v € V(G), d*(v), is the number of edges originating at
v. G is aperiodic if the set of lengths of simple directed cycles in G has gcd
1. (See [Br] or [BR] for a discussion of aperiodic digraphs.)

HisTORY

The road-coloring conjecture of Alder, Goodwyn, and Weiss [AGW]
(hereinafter referred to as RCC) is a graph-theoretic characterization of
a problem from ergodic theory. Let G be a strongly connected digraph such
that d*(v) = 2 for every v € V(G). (In this paper, loops and multiple edges
are not permitted. Strictly speaking, this is not essential to the problem,
but it is required if we are to follow the path laid out by O’Brien [O] in
theorem 3 below.) Let x : E(G) — {R, B} be an edge coloring of G such
that for each v € V(G), v has one red (R) edge and one blue (B) edge going
out from it. x is called a road-coloring of G. A string I € {R, B}* will be
called a set of instructions. Given x and v € V(G), let I(v) designate the
vertex w € V(G) which is arrived at if one begins at v and follows the path
labeled by 1.
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We now give the following definition.

Definition. Let v € V(G), and let x be a road coloring of G. x is a
resolving road-coloring for v if and only if there exists an I € {R, B}* such
that for all w € V(G), I(w) = v.

(In terms of cities and roads, the problem may be stated as follows:
Suppose every city has two one-way roads coming out of it. Further, we are
interested in answering the question, “Do you know the way to San Jose?”.
Our road system has a resolving road coloring if there is a way to paint the
roads red and blue, one of each color out of each city, so that a single list
of colors correctly answers the question regardless of the city in which it is
asked.)

More generally, we allow d*(v) to be any fixed number, &, and we color
the edges from a set of § colors, &, so that no two edges out of the same
vertex have the same color. The graph then has a resolving road coloring
for vertex v if there exists an I € k* such that for all w € V(G), I(w) = v.
(Theorem 2 below shows that we only need consider the case for § = 2,
but the more general case will be needed when we consider the conjecture
probabilistically later.)

Alder, Goodwyn, and Weiss [AGW] showed the following.

Theorem 1 (Alder, et al.). Let G be a strongly connected digraph such
that d*(v) = 6 for all v € V(G). Then

G has a resolving road coloring=> G is aperiodic

They further conjectured that the above theorem can be strengthened to
“if and only if”. This conjecture has become known as the road-coloring
conjecture (RCC).

O’Brien [O] offered a partial solution by showing:

Theorem 2 (O’Brien). RCC is true for § =2 = RCC is true V6 > 2
and

Theorem 3 (O’Brien). Let G be a strongly connected digraph such that
d*(v) =8 (8§ > 2) for all v € V(G) and such that G contains a prime-length
cycle. Then

G has a resolving road-coloring <=> G is aperiodic

Friedman [F] offers further results about RCC. Observations on particu-
lar digraphs and resolving road-colorings for them may be found in [Br].

In this paper we offer an O(n?) algorithm for determining whether or not
a particular road-coloring is a resolving road-coloring, and we show that for
6 = w(logn) RCC is true for almost every strongly aperiodic digraph of
outdegree 4.
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THE ROAD-COLORING CONJECTURE IN THE
TERMINOLOGY OF FORMAL LANGUAGE THEORY

RCC is easily restated as a problem about finite automata. (See, e.g.,
[HU] for the essential principles of finite automata.) From here on, M
will refer to a strongly connected aperiodic digraph such that d*(v) = 2
for all v € V(M). Further, we will assume that M is an n-vertex graph
with the vertices labeled {1,2,...,7}. Our goal is an O(n?) algorithm for
determining whether or not M has a resolving road coloring. In the interest
of space, we offer the following lemmas without proof.

Lemma 1. M has a resolving road-coloring for a particular vertex i

0

M has a resolving road-coloring for every vertez j € V(M)

Lemma 2. X is a resolving road-coloring for M

¢

For all i € V(M) there exists a corresponding set of instructions, I,
such that I(i) = I(n) =n

We now switch to the terminology of finite automata. Let x be a road
coloring of M. To turn M into a finite automata we need only name an
initial state and a set of final states. (x describes the transition function.)
Let M; be the automaton with initial state ¢ and final state n. (There are
no other final states.) Let L; denote the language accepted by M;. The
above lemmas imply:

Theorem 4. X ts a resolving road-coloring for M

3
Vie{1,2,...n=1} LiNL, #0

The following is a well known construction for creating a finite automa-
ton, M2, such that L(M3) = L; N Ln. (L(M) here denotes the language
accepted by automaton M. We call our automaton M;"( since M?( is a
sub-graph of the usual cross-product M x M.} The states of Mi are the
elements of V(M) x V(M). There is an edge labeled “R” (“B”) from (j, k)
to ({,m) if and only if in M there is an edge labeled “R” (“B”) from j to
and from & to m.

The final state of M2 is (n, n) and the initial state is (i,n). L(M3) # 0 if
and only if there is a directed path from (i, n) to (n,n). Let a root-directed
arborescence be a directed tree in which all paths are directed to the root.
The above automata construction implies the next theorem.
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Theorem 5. X is a resolving road-coloring for M

g

contains a root-directed arborescence rooted at (n,n)

which includes nodes (i,n) forall1 <i<n-1

My

The above ideas give rise to the following algorithm.

(1) Create Mi from M and y.

(2) Perform a depth-first search from vertex (n, n) in M2 (going against
the direction of the edges), and return “true” if every vertex of the
form (i,n) for 1 < ¢ < n — 1 is encountered; otherwise, return
“false”.

It is easy to see that the above algorithm has running time O(n?), where
n is the number of vertices in M.

PROBABILISTIC ANALYSIS

In this section we examine the road-coloring conjecture from the point
of view of random graph theory. (See [Bo] or [P] for the essential ideas of
random graph theory.) Let G be an n-vertex digraph such that G is strongly
connected, aperiodic, and such that d*(v) = & for all v € V(G), where
J = w(logn). We will show that almost every such G has a resolving road
coloring.

Considering only digraphs such that every vertex has outdegree 4, let

Qsn={G | [V(G)| = » and G is loopless and without multiple edges }
and
Gsn={G |IV(@)]=n}

(i.e., loops and multiple edges are allowed in ﬁa,,, but not in Q5,.)

For G (in either ﬁg,n or Q5), let Xj be the number of directed k-cycles
in G. Let f;r(E') be the probability of E in ﬁ.s,,,, and let Pr(E) be the
probability of E in Q5. Recalling that cycles cannot repeat vertices, it is
easy to see that

Pr(Xy =m) >Pr(Xs, =m) fork>2andm> 2
and

Pr(Xy =0) < Pr(Xp =0) fork=2

268



since allowing loops and multiple edges decreases the chance that a k-cycle
exists for k¥ > 2. Thus if almost every graph in ﬁ,s',, has a k-cycle, then
almost every graph in s, does, too.

Now consider ﬁl,n. (See pages 364 — 376 in [Bo] for a discussion of
this sample space.) Further consider the (}) k-subsets of V(G). Let X;
be the Bernoulli random variable which equals 1 if and only if the ith k-

subset forms a directed k-cycle. Let Y = Z,(i)l X;. In [Bo] it is shown
that Pr(Y = m) tends to a Poisson distribution with parameter A = 1. In

particular, this means
1 1
E(Y) — % and Var(Y)— e

Now consider G1,Go,...Gs, all elements of ?21,5 superimposed on one
another to form a graph G € Q5. Let ¥ = Y0_| Vi, where Y; is the ¥

associated with G;. Then Y is less than or equal to the number of k-cycles
in G. Further,

E(?) = JE(YI) - and Var(?) = JVar(Yl) -

=] o
) o

Using Chebyshev’s inequality we get

~

Var(Y)
E(Y)?

Pr(Y =0) < -+§

A~

Thus if § =& oo, then Pr(Y = 0) — 0, and almost every graph in ﬁ,s,n
has a directed k-cycle (hence, so does almost every graph in Qs5).

McDiarmid [McD] has shown that if § = w(log n) then almost every graph
in Qs is Hamiltonian (hence strongly connected). (The strong connectivity
of every G € Qs,n for § = w(log n) can also be shown using the usual methods
of probabilistic graph theory.) Thus if we take k = 2 and k = 3 it follows
that almost every G in 2 , is aperiodic, strongly connected, and contains a
prime-length cycle. O’Brien’s result (Theorem 3 in this paper) then implies

Theorem 6. Almost every G € Qs,n for § = wlog(n) has a resolving road
coloring.

We conjecture that the above theorem is true for § > 2, but to prove such
a result would, it seems, require working in the sample space of strongly
connected, outdegree-d digraphs. We do not see how to do that at this time.

As further food for thought we point out the following tantalizing result
of McAndrew [McA].
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Theorem 7 (McAndrew). For G a digraph,

G x G is strongly connected <=> G is strongly connected and aperiodic.

Now, for M a strongly connected digraph with outdegree 2 and road-
coloring x, let x? be a road-coloring of M x M (which has outdegree 4) be
defined by x2((3,4), (k,1)) = x(%, j)x(k,1). Then (by the discussions above)

Theorem 8. x is not a resolving road-coloring for M if and only if there
exists a partition of V(M x M) into subsets Wy and W, such that (n,n) €
Wi and (i,n) € W2 for some 1 < i< (n—1), and all edges going from W,
to W, are colored RB or BR under x>.

(Note that some edges will go from W, to W, follows from Theorem 6.)
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