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ABSTRACT. We show that for each fixed k > 3, the INDEPEN-
DENT SET problem is NP-complete for the class of k-regular
graphs. Several other decision problems, including IRREDUN-
DANT SET, are also NP-complete for each class of k-regular
graphs, for k > 6.

1 Introduction

A graph is said to be k-regular if every vertex has degree k. Well-known
examples of regular graphs include Cayley graphs, n-cubes, and toroidal
meshes. Regular graphs are important in VLSI design because a chip hav-
ing a regular structure is generally easier to construct and is more scalable.
Most multiprocessors (mesh, butterfly, cube-connected cycles, systolic ar-
rays) have regular designs [7].

Given a graph G = (V, E) with vertex set V, a set S C V is independent
if no two vertices in S are adjacent. The decision problem INDEPENDENT
SET asks, for a given graph G and integer m, if G has an independent set
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with at least m vertices. It is well known that this problem is NP-complete
([4], p.194). In fact, the problem’s restriction to comparability graphs and
bipartite graphs are both NP-complete as well. However for many classes
of graphs (e.g. trees, permutation, chordal, split, interval, claw-free, Halin)
the problem is in P [2, 5].

Relatively few decision problems are known to be NP-complete for k-
regular graphs. For example, for 3-regular planar graphs, PARTITION
INTO PERFECT MATCHINGS, INDEPENDENT SET, and HAMILTO-
NIAN CIRCUIT are NP-complete. For 4-regular planar graphs, DOM-
INATING SET, CONNECTED DOMINATING SET, and MAXIMUM
LEAF SPANNING TREE are NP-complete [4].

Our main result, demonstrated in Section 3, is that for every k > 3,
INDEPENDENT SET is NP-complete for the class of k-regular graphs.
We know of no result like this in the literature. ! We suggest that for
many problems there exists a constant ¢ such that for all £ > c the problem
restricted to k-regular graphs is NP-complete. In Sections 4 and 5 we show
that the decision problems associated with the graph parameters I' and
IR are also NP-complete for k-regular graphs when k > 6. Note that we
cannot expect these results for k < 3, since a 1-regular graph consists only
of disjoint edges, and a 2-regular graph consists only of disjoint cycles.

2 Main idea

Our reduction will be from the decision problem in propositional logic
known as NOT-ALL-EQUAL 3SAT. In this variation of the more famil-
iar 3SAT, we are given a set C of clauses, each of which is a disjunction of
exactly three literals over a set of variables U. We are asked whether there
is a truth assignment to the variables such that each clause in C has at
least one true literal and one false literal. This problem is known to be NP-
complete ([4], p.259). For the remainder of this paper, let C = {C}, ... ,C,}
be a fixed instance of NOT-ALL-EQUAL 3SAT.

For simplicity, we will first consider 4-regular graphs, and then later
explain how our construction can be modified to k-regular graphs, for any
k > 3. We appeal to the reader’s tolerance of our informality, as a precise
description of our construction would be mired in a lot of confusing detail.

Given C, we construct a 4-regular graph G(C) like the one shown in
Figure 1. For each i, let D; denote the clause obtained by negating each
literal in C;. We will call C; and D; mates. As seen in Figure 1, G(C)
contains a triangle associated with each clause and a triangle for its mate.
Thus, there are 2n triangles. The vertices of each triangle are labeled

1Recently, in [6] Kratochvil, Proskurowski, and Telle obtained a class of NP-
completeness results for the H-COVER problem involving k-regular graphs H for each
k> 2
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with the literals in the associated clause. It will be helpful to envision the
triangles of clauses and their mates appearing next to one another.

The a-fence

The c-fence

Figure 1. The graph G(C) for k = 4

Next, for each variable z € U we construct a so-called z-fence, as follows.
For each occurrence of either z or Z in C we associate two parallel edges,
called a gate. The gates are then placed in a cycle, and bipartite graphs
K5 are inserted between the gates, as shown. The a-fence in Figure 1 has
three gates. Without loss of generality we may assume that each z € U
occurs at least twice, so that each z-fence has at least two gates (this avoids
a problem of multiple edges). In each z-fence, the vertical “fenceposts” of
the gates are labeled alternately with z and z as shown. Note that since
there are exactly 3n occurrences of literals in C, there are exactly 3n gates
in G(C) and the total number of vertices in G(C) is (3n)4 + (2r)3 = 18n.

Finally, edges are placed between triangles and gates. Since each gate in
an z-fence corresponds to some occurrence of  or Z, we join the vertices
in each fencepost to the corresponding vertices in the clause-triangle and
its mate, in the manner shown. It is clear that G(C) is 4-regular. The
fenceposts of vertices in an z-fence are marked alternately by z or z. We
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say that vertices marked = have positive parity and those marked Z have
negative parily.

We now claim there is a not-all-equal truth assignment for C if and only
if G(C) has an independent set of cardinality at least 8n. First, suppose
C has a not-all-equal assignment. Then each triangle will have a vertex
corresponding to a true literal. Select one such vertex in each of the 2n
triangles. Within each fence, select all the vertices in fenceposts that are
associated with false literals. Let S be the set consisting of the 2n vertices
selected from triangles and the 6n vertices selected from the gates. It is
easy to see that S is independent.

Conversely, assume G(C) has an independent set S of at least 8n vertices.
Then since each of the 2n triangles can have at most one vertex in S, and
each of the 3n gates can have at most two vertices in S, S must contain
exactly one vertex from each triangle and two vertices from each gate. Note
that within each z-fence, either all positive vertices or all negative vertices
must be chosen. This defines a truth assignment to the variables. The
presence of edges between triangles and z-fences shows that it is a not-all-
equal truth assignment.

Figure 2. A component of Gx(C)

3 Independence for k > 3

Now let k > 3 be fixed. We replace each gate of G(C) with k — 2 parallel
edges and each K32 with K2 x—2, constructing the graph in a similar way.
This graph is denoted Gi(C), a component of which is shown in Figure 2.
It is clearly k-regular. Note in the case when k = 3 each z-fence is just a
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cycle. The size of a largest independent set in a graph G is denoted Gy (G).
It is easy to mimic the argument in the previous section to prove that

Lemma 1 C has a not-all-equal truth assignment if and only if
Bo(Gk(C)) = 3(k — 2)n + 2n.
Since each map C — Gg(C) is computable in polynomial-time we have

Theorem 1 For each k > 3, INDEPENDENT SET is NP-complete for
the class of k-regular graphs.

4 Irredundance for k > 6

A set S is irredundant if each u € S has a private neighbor. That is, for
each u € S, the set
Nu] - N[S—u] #0.

Here N[X] denotes the set of vertices either belonging to X or adjacent
some member of X. The largest cardinality of an irredundant set in G
is denoted IR(G). Independent sets are irredundant, so we always have
Bo(G) < IR(G). It is known that the corresponding decision problem,
IRREDUNDANT SET, is NP-complete [3]. For technical reasons (to be
explained later), we will assume that k& > 6.

Lemma 2 C is not-all-equal satisfiable if and only if IR(Gk(C)) > 3(k —
2)n + 2n.

The “only if” half of this lemma follows from 8o(Gx(C)) < IR(G«(C)) and
Lemma 1. Since the “if” part is somewhat complicated, we postpone it
until Section 5. This lemma implies

Theorem 2 For each k > 6, IRREDUNDANT SET is NP-complete for
the class of k-regular graphs.

Another well-studied graph parameter is I'(G), the largest cardinality of
a minimal dominating set. Its related decision problem is also known to be
NP-complete [1]. It is well known that for any graph G,

Po(G) <T(G) < IR(G). @)

Inequality (1), together with Lemma 1 and Lemma 2, are enough to estab-
lish

Lemma 8 C is not-all-equal satisfiable if and only if I'(Gk(C)) = 3(k —
2)n+ 2n.
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Proof: If C has a not-all-equal truth assignment, then by Lemma 1 we have
Bo(Gx(C)) = 3(k — 2)n+ 2n, so by (1) we have I'(Gx(C)) = 3(k — 2)n+2n.
Conversely, if T(Gx(C)) > 3(k—2)n+2n, then by (1) we have IR(Gx(C)) >
3(k —2)n+2n, and so by Lemma 2, C has a not-all-equal truth assignment.

Theorem 3 For each k > 6, the decision problem for T’ is NP-complete
for the class of k-regular graphs.

Note that the conclusion of Theorem 3 will hold for any graph parameter
sandwiched between S and IR. Another such parameter is called the upper
fractional domination number, denoted I'y, which is studied in [1].

5 Remaining Details

We now outline the proof of Lemma 2. Let S be an irredundant set in
G(C), of maximum size, having cardinality > 3(k — 2)n + 2n. We must
show that C has a not-all-equal truth assignment. By Lemma 1, it suffices
to show that S is independent.

We will assume that each fence has an odd number of gates. That is,
each variable z occurs (as z or Z) an odd number of times. This causes
no loss in generality since, if z occurs an even number of times, we may
add the two clauses z VvV % and v V z V %, for some unused variable v.
Both z and v will then occur an odd number of times, and C will have a
not-all-equal truth assignment if and only if the modified set of clauses is
not-all-equal satisfiable.

In this section, some of our lemmas, in particular Lemma 6, seem to
require that k > 4. And a close look at Lemma 7 seems to require k > 6.
Therefore we now assumne k > 6 without further mention.

The following lemma is an interesting observation about cycles having
length = 2 mod 4.

Lemma 4 Let T be a cycle of length 2(2j+1) > 6, and let U be a maximum
irredundant set in T. Then U must be independent.

Proof: Since T has even length, it has an independent set of size J—'Izl, and
therefore an irredundant set of size > ]_'121 It suffices to show that any
irredundant set of size > 1—72'1 is independent. We induct on j. When j =1,
T is a 6-cycle and the result is easy to verify. Now assume the hypothesis
for all cycles having length = 2 mod 4, but smaller than the length of T,
and let U be an irredundant set containing at least half the vertices of T.
By way of contradiction, assume there exist adjacent vertices z and y in
U. Consider the path r,u, z,y,v, s. By irredundance, none of r,u,v,s can
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be in U. Now form the cycle T by deleting u,z,y,v and joining r and
s. The length of T" is = 2mod 4, U’ = UNT" is irredundant in T”, and
contains at least half the members of T”. By the induction hypothesis, U’
is independent. But this implies that the elements in U’ alternate in 7.
However, neither r nor s is in U’; this is a contradiction.

Lemma 5 If a gate has three or more vertices in an irredundant set S,
then no two of them are adjacent.

Proof: Suppose there exist a,b,c € S in a gate such that a and b are
adjacent, and b and c have the same parity. It is easy to see that b will not
have a private neighbor.

Lemma 8 Each gate of Gi(C) contains at most k — 2 vertices in any irre-
dundant set S.

Proof: If not, two vertices in S would be adjacent, contradicting Lemma
5.

Lemma 7 Each component of Gx(C), shown in Figure 2, contains at most
2 + 3(k — 2) vertices in any irredundant set S. Equality is possible only if
each triangle has ezactly one vertez in S.

Proof (Sketch): From Lemma 6, each of the three gates contains at
most k — 2 members. Hence it suffices to show that whenever any triangle
contains more than one vertex in S, the component has strictly fewer than
2+ 3(k — 2) vertices in S. An exhaustive case-by-case analysis shows that
this is the case. Instead of providing these tedious details we provide the
following helpful comments. If a triangle has two vertices in S then each
will require a private neighbor in an adjacent gate. This eliminates at least
one vertex from each of two gates. Note also that when a gate is adjacent
to two vertices in S in (different) triangles C; and D;, then the gate can
have only two vertices in S, on opposite sides of the gate. One pathological
situation occurs when both triangles have three members. Then each gate
can have at most two vertices in S, so there are at most 12 vertices in S in
the component. Since we require 12 < 3(k — 2) 4 2, it is necessary to have
k>6.

Lemma 8 Each gate contains ezactly k — 2 vertices in any mazimum ir-
redundant set S, each triangle contains ezactly one member, and no two

vertices in S in a gate are adjacent.

Proof: The vertices of G(C) can be partitioned into exactly n components,
like that in Figure 2. By Lemma 7 each component has at most 3(k—2)+2
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vertices in S. Since we are assuming | S| > 3(k — 2)n + 2n, we must have
exactly 3(k — 2) + 2 vertices in each component. By Lemma 6, each gate
must each have (k — 2) vertices, and by Lemma 5 no two vertices in the
same gate are adjacent. By Lemma 7, each triangle each has one vertex in
S.

Lemma 9 The private neighbor y of a vertez x in a mazimum irredundant
set i3 never on the opposile side of the same Ki_2 k-2 component.

Proof: By Lemma 8, either y or its neighbor 3/’ in the same gate, must be
in S.

Lemma 10 In any mazimum irredundant set S in Gi(C), the private
neighbor of a vertez in a gate is either itself or its neighbor in the same
gate.

Proof: Since each triangle contains a vertex in S, the private neighbor
must be in the same fence. But by Lemma 9, it cannot be outside of the
same gate.

Let T be a cycle induced by all vertices in the same level of a fence. By
Lemma 10, each vertex in U = SNT has a private neighbor in T, and so is
irredundant in T'. We also know U has cardinality half the length of T" since
(by Lemma 8) exactly one element from each gate is selected. Moreover,
the length of T is = 2 mod 4. By Lemma 4, we must have

Lemma 11 The vertices in U are independent, and therefore alternate
inT.

This implies that if » € U, the neighbor of v in its gate is not a private
neighbor. So by Lemma 10, its private neighbor can only be itself. We may
apply the same argument to each of the other cycles, and we see that every
member of S in a fence has itself as a private neighbor. At this point, we
can stop; we have shown S is independent.

We leave open the question regarding Theorems 2 and 3 when k = 3,4, 5.
We conjecture that these problems are also NP-complete, but it appears
that a new construction will be required to show this.
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