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Abstract

The Ramsey multiplicity R(G) of a graph G is defined as the
smallest number of monochromatic copies of G in any two-coloring
of the edges of K,(g), where r(G) is the Ramsey number of G. Here,
we prove that R(K,) > 4.

In the following, we consider two-colorings of the edges of the complete
graph K,, short colorings, the colors used being red and blue.

Let G be a graph. The Ramsey number r(G) is the smallest integer n
such that in each coloring of K, a monochromatic copy of G occurs. Harary
and Prins [5] introduced the notion of the Ramsey multiplicity R(G), the
smallest number of monochromatic copies of G in any coloring of K. (g).
In their table of the Ramsey multiplicities of all graphs with at most four
vertices, the only missing values were R(/{4—e), which was later determined
by Schwenk (cited in [4]), and R(K4). Up to now, the best upper bound for
R(K34) is due to Exoo [1], who showed that R(K,) < 9 by giving a coloring
of Kg with exactly 9 monochromatic K4’s, since r(K4) = 18 (e.g., see [3]).

A nontrivial lower bound for R(K4) has so far apparently not been
available. In this paper, we prove that R(K4) > 4.

We will make use of the following result: Define the multiplicity M(G; n)
of a graph G and a positive integer n as the smallest number of monochro-
matic copies of G in any coloring of K,. A well-known theorem of Good-
man [2], stated here in a form due to Schwenk [6], says:
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Theorem. R(K4) > 4.

Proof. Consider an arbitrary coloring of K)g. For an edge ij, let t = ;;
be the number of monochromatic triangles that contain ij. Then it follows
from (1):
D tij > 3 M(Ks;18) = 504. (2)
ij

We will deduce a contradiction from the following assumption: The
given coloring of K contains at most three monochromatic Kj’s.

Let ij be an edge with £;; > 4, and let 7j form a monochromatic triangle
with each of four vertices ay, ..., a,.

If one of the edges axa;, 1 < k,l < 4, has the same color as ij, then
t,J,ax, and a; form a monochromatic K4. Let us call it a “(monochromatic)
K4 of type 17 and ij a “type 1 edge”. If, on the other hand, all edges a;a;
do not have the same color as ij, then a;,...,a4 form a monochromatic
Ka4. Let us call it a “(monochromatic) K4 of type 2” and ij a “type 2
edge”. Fig. 1 shows a red type 1 and a red type 2 edge j, where solid lines
represent red edges and dashed lines blue edges:

as as as ------ as

a a4 ay

Type 1 Type 2
Fig. 1

Thus each edge ij with ¢;; > 4 is a type 1 or a type 2 edge and can
therefore be assigned a monochromatic K4 of type 1 or type 2 respectively.

The case that a;, ..., a4 form a monochromatic K4 in the same color as
ij has is impossible, because the six vertices would then form a monochro-
matic K (containing 15 monochromatic K,’s).

In the following, we assume that the coloring of K)g contains exactly
three monochromatic K4’s; denote them by K}, K2, and K3. However,
all arguments still hold or are dispensable, if there are only one or two
monochromatic K4’s. (There has to be at least one since 7(K4) = 18.) Let
M, M3, and M3 denote the sets of type 2 edges to which K}, K2, and K3
respectively are assigned as monochromatic Kj4’s of type 2.
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Case 1. There are only edges with ¢ < 4.

As a Kig contains 153 edges, then by (2) there are at least 45 edges
with ¢t = 4.

Case 1.1. Every two of the three monochromatic K4’s have at most two
vertices in common.

Let ij be an edge in one of the monochromatic K4’s, say in K}. W.lo.g.
let ij and hence K} be red. If ij is a type 1 edge, then ¢;; > 4 and so ij has
to be contained, apart from the two triangles within K}, in two additional
red triangles, say ija;; and ijb;;. Then a;; and b;; cannot be incident with
any edge in M, since the endvertices of these edges are connected to all
four vertices of K} by blue edges.

Furthermore, in this way different type 1 edges ij and #j' in K} are
assigned different vertices a;j, bij, airj», and by:j:: Otherwise there would
be either a red K5 and hence five red Ky4’s (if ij and ¢'j' are disjoint) or
two red K4’s which have three vertices in common (if ij and #'j' are not
disjoint):

Qi; = Qjrj¢ Qi; = Qyrje

Fig. 2

If all edges in K}, K2, and K3 were type 1 edges, then the edges in M,
M;, and M3 would in each case be incident with at most 18 —4—2-6 = 2
vertices, i.e. |Mj|,|Ma|,|M3] < 1. This is a contradiction, since there
are at least 45 > 3-6 4+ 3 -1 edges with ¢ = 4. So at most 17 of the
maximum 18 edges in K}, K2, and K3 can be type 1 edges. It follows that
|M1 U My U Ms| > 45 — 17 = 28. By the pigeonhole principle one set, say
M), contains at least ten edges. If K} is red, then the edges in M, are blue.

Among the edges in M) there can be no blue triangle, since it would form
a blue K4 with each of the four vertices of K}. So by Turan’s theorem the
edges in M, form a graph with at least seven vertices by, ..., b7 (a triangle-
free graph with six vertices can have at most nine edges; the extremal graph
is a K3 3).

Apart from the four vertices of K} and by,...,b7, there are seven more
vertices ¢y, ...,c7. Each of them is connected to the vertices of K} by at
least two blue edges, because otherwise there would be a red K4 which has
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three vertices in common with K1. So ¢y, ...,c7 are altogether connected
by at least 14 blue edges to K}. Consequently, there is a vertex a of K}
which has at least four blue neighbors ¢;, say c¢1,...,c4. The set N =
{b1,...,b7,€1,...,ca} then contains eleven blue neighbors of a.

If in N there are at least three vertices of K2 or at least three vertices of
K3 respectively, then in each case one such vertex is removed from N. Then
we still have |[N| > 9. Since r(K3, K4) = 9 (see [3]), in the coloring of the
K|n| spanned by the verticesin N there is a blue triangle (which together
with a forms a blue K4) or a red K4. As in both cases the monochromatic
K4 is different from K2 and K3, we obtain a contradiction.

Case 1.2: There are two monochromatic K4’s which have three vertices in
common.

Then K}, K2, and K3 together have at most 15 edges, so |M; U M, U
Ms3| > 45 — 15 = 30. Just like in Case 1.1 it follows that the edges in, say,
M, form a graph with at least seven vertices b;,...,b7. Let ¢1,...,¢7 be
defined as above, and let K} again be red. Since there are no more than
two red K,’s different from K}, five of the seven vertices c; are connected
by at least two blue edges and two vertices ¢; by at least one blue edge
to the vertices of K]. In this way, we find three blue neighbors ¢;, say ¢,
c2, and c3, of a vertex a of K}. The set N = {b,...,b7,c1,c2,¢3} then
contains ten blue neighbors of a. Since there are two monochromatic K4's
having three vertices in common, we obtain the same contradiction as in
Case 1.1 after removing at most one vertex from N.

Case 2: There is an edge ij with ¢;; = 5, but no edge with ¢ > 6.
W.lo.g. let ij be red, and let zj form a red triangle with each of five

vertices aj,...,as. Since only three monochromatic K4’s exist, there are
the following five possibilities for the edges between a,, ..., a5 :
.9 .8,
. l’ PR ~‘t ?
Type 3 Type 4
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Case 2.1: The edge ij is of type 3.
Then two red K,’s are fixed:

j
Fig. 4

If ij is the only edge with ¢ = 5, it follows from (2) that there are at
least 43 edges with ¢ = 4. Then the three monochromatic K4’s together
have at most 17 edges, and the contradiction follows like in Case 1.1 or 1.2
respectively.

If there is exactly one further edge i'j’ with ¢ = 5, it must also be of
type 3, since in the case of types 4 and 5 there are no two monochromatic
K4’s having exactly one edge in common, and in the case of types 6 and 7
we would have ij = ¢’ (see Fig. 3 or Fig. 6 below).

There are only the following two possibilities (if more vertices were
identified, then at least a fourth red K4 would result):

) 1
< 3
e b
j J'
J
Case 2.1.1 Case 2.1.2

Fig. 5

It follows from (2) that in addition to the two edges with ¢ = 5 there
are at least 41 edges with ¢ = 4. In both Case 2.1.1 and 2.1.2 the three
monochromatic K4’s together have 16 edges, and the contradiction follows
like in Case 1.1.

There cannot be a third edge with ¢t = 5, because this edge would also
have to be contained in two monochromatic K4’s. But the only possibilities
in Case 2.1.1 and 2.1.2 for such an edge are ij and #'j’.
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Case 2.2: All edges with ¢t = 5 are of one of the types 4 to 7.
Then by the type of ij all three monochromatic K4’s are fixed:

~
.

Type 4 Type 6

Fig. 6

If there were three or more edges with ¢ = 5, then two of them, say ij
and ¢'j’, would have to be of the same type (three different types do not fit
because of the colors of the monochromatic K4’s). This cannot be type 4,
6, or 7, because this would mean that i = i’j’. It cannot be type 5 either,
because then we would have #'j' = ik or #'j' = jk, so that the red triangle
ijk would form a red K4 with each vertex of the blue K,.

Thus there can be at most two edges with ¢ = 5. In the case of types
4 to 7, there are each time two monochromatic K4’s having three vertices
in common, and the three monochromatic K4’s together have at most 15
edges. (2) implies that there are at least 43 edges with ¢ > 4, and the
contradiction follows like in Case 1.2.

Case 3: There is an edge ij with t;; = 6, but no edge with ¢ > 7.

W.lo.g. let ij be red, and let ij form a red triangle with each of six
vertices ay, . ..,as. We denote the coloring of the K¢ spanned by a,,...,a¢
by C. Suppose ij is a type 2 edge, and a blue K4 of type 2 is formed by
a,...,aq, say. Then as and ag must be connected by at least one red edge
each to a1, ..., a4, because otherwise we would have a blue Kj3. Thus all
three monochromatic K4’s are fixed. But the remaining six edges from a5
and ag to ay, ..., a4 give rise to at least two more monochromatic Ky’s.

So there is no blue K4 in C, i.e. ij must be a type 1 edge. Then by
Turan’s theorem, there are at most twelve blue edges in C (the extremal
graph is a K323 2) and consequently at least three red edges. Since every
red edge in C gives rise to a red K4 of type 1, there must be exactly three
red edges forming a K 5 5, i.e. which are disjoint.
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ap az as a4 as Qg

Fig. 7

Again the three monochromatic K4’s are fixed, and there can be no
further edge with ¢ = 6. Because of the mutual position and the different
colors of the three monochromatic K4’s, there cannot be an edge with ¢t =5
either (see the definitions of types 3 to 7).

Then (2) implies that in addition to ij with ¢;; = 6, there are at least
42 edges with ¢ = 4, and the three monochromatic K4’s together have 16
edges. Again the contradiction follows like in Case 1.1.

Case 4: There is an edge ij with ;; > 7.

W.lo.g. let 2j be red, and let ij form a red triangle with each of seven
vertices ay,...,ar. Similar to Case 3 it follows that ij is a type 1 edge.
Then by Turan’s theorem, there are at most 16 blue edges in the coloring
of the K7 spanned by ay, ..., a7 (the extremal graph is a K32 2) and thus
at least five red edges. But now we already have at least five red Ky4’s of
type 1, which is a contradiction. m]
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