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ABSTRACT. Broersma and Hoede studied the Ps-transformation
of graphs and claimed that it is an open problem to character-
ize all pairs of nonisomorphic connected graphs with isomorphic
connected Ps-graphs. In this paper, we solve the problem to a
great extent by proving that the Ps-transformation is one-to-
one on all graphs with minimum degree greater than two. The
only cases that remain open are cases where some degree is 1 or
2, and examples indicate that the problem seems to be difficult
in these cases. This in some sense can be viewed as a coun-
terpart with respect to Ps-graphs for Whitney's result on line
graphs.

1 Introduction

Broersma and Hoede [1] generalized the concept of line graphs and intro-
duced the concept of path graphs. We follow their terminology and give
the following definition. Denote by IIx(G) the set of all paths of G on k
vertices (k > 1). Note that a path does not have repeated vertices. The
path graph P.(G) of a graph G has vertex set IIx(G) and edges joining pairs
of vertices that represent two Pi-paths if and only if the union of which
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forms either a path Py or a cycle Ck in G. The way of describing a line
graph stresses the adjacency concept, whereas the way of describing a path
graph stresses the concept of path generation by consecutive paths.

For a graph transformation, Griinbaum [2] refers to two general problems.
We state them here for the Ps-transformation.

Characterization Problem: Characterize those graphs that are Ps-
graphs.

Determination Problem: Determine which graphs have a given graph
as their Ps-graphs.

Broersma. and Hoede [1] studied the Ps-transformation and, among other
results, presented a solution to the characterization problem. H. Li and Y.
Lin [5] found, and corrected, a flaw in that paper. For the Determination
Problem, Broersma and Hoede [1] found two pairs of and two classes of
nonisomorphic connected graphs with isomorphic connected P3-graphs. It
is not difficult to find more pairs of that kind of graphs. These examples
show that Whitney’s result [7] on line graphs (i.e. if G and G’ are connected
and have isomorphic line graphs, then G and G’ are isomorphic unless one
is K1,3 and the other is K3) has no similar counterpart with respect to Ps-
graphs. They claimed that it is an open problem to characterize all pairs
of nonisomorphic connected graphs with isomorphic connected Ps-graphs.
Recently, we proved [6] that the Ps-transformation is one-to-one on all
graphs with minimum degree greater than three as well as on many having
minimum degree three. In this paper, we obtain a stronger result that the
Ps-transformation is one-to-one on all graphs with minimum degree greater
than two, i.e., they are completely determined by their Ps-graphs. This can
be regarded as best possible in the sense that P3(Cs) = Cg = P3(S(K1,3))
(see [1]).

2 Preliminaries

In what follows, all graphs are undirected, connected and simple with at
least four vertices. As usual, d(u) denotes the degree of a vertex v and N (u)
denotes the neighborhood of u. For a non-negative integer d, we denote by
Ga the class of all connected graphs with minimum degree at least d.

We shall follow Beineke-Hemminger [3] treatment of Whitney’s Theorem,
which in turn reflects Jung’s ideas in [4].

A graph isomorphism from G to G’ is a bijection f : V(G) — V(G’) such
that two vertices are adjacent in G if and only if their images are adjacent
in G'. We let T'(G, G’) denote the set of all isomorphisms from G to G’, for
G = @', that is the automorphism group I'(G) of G.

We shorten I'(Ps(G), P3(G’)) to I's(G,G’) and call the members Pj3-
isomorphisms from G to G’. One easily sees that under a Ps-isomorphism,
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two P3-paths in G form a P, if and only if their images do the same (that
is, two P3-paths forming a P, cannot map to P3-paths forming a Cs-cycle
in G').

For f € I(G,G'), define f* : I3(G) — I3(G’) by f*(uvw)
= f(u)f(v) f(w), and call f* the mapping induced by f. Welet I'*(G,G’) =
{r’|f eT(G,G"}.

Note that f* is not defined for connected graphs with fewer than three
vertices. Also note that the two isomorphisms of the graph P; induce the
same *-function; however, under our assumptions, G is connected with at
least four vertices and so the following results are immediate.

Theorem 1 ([6]) Let G,G’ € G. Then
(1) I*(G,G") CT3(G, &");

(2) the mapping T : T'(G,G’) — I'*(G,G’) given by T(f) = f* is one-to-
one.

The following definitions are needed.

If P3 = uvw, then v is called the middle vertez of the path. The set of
all the P3-paths with a common middle vertex v is denoted by S(v) and
any subset of S(v) is called a star at v. A mapping f : II3(G) — II3(G’) is
called star-preserving if the set f(S(v))is a star in G’ for every vertex v of
G

From [6], we have the following results.

Theorem 2 Let G,G’ € G2 and let f : II3(G) — M3(G’) be a bijective
mapping. Then f is induced by an isomorphism from G to G’ if and only
if both f and f~1 are star-preserving P3-isomorphisms.

Lemma 3 Let G,G’ € Gy and let f be a Ps-isomorphism from G to G'.
Then f is star-preserving if and only if for every edge wv of G f(z1wv),- -,
f(zruv) have a common middle vertez and f(uvy),:-- , f(uvy,) have a
common middle vertez, where z1,--- ,z, and y1,--- ,y, are neighbors of u
and v, respectively.

3 Main Results

Lemma 4 Let G and G’ belong to Gz and let f be a P3-isomorphism
Jrom G to G'. If f has the property that for some edge wv of G and
N(@w)\v = {z1,22,-- ,z,}, f(z1uv), f(z2uv),---, f(z,uv) have a com-
mon middle vertez in G’, then f(S(u)) is a star of G'.
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Proof. Since f(ziuv), f(z2uv),: -, f(z,uv) have a common middle ver-
tex, we need only show that for any z;uz; € S(u), f(ziuz;) and f(z;uv)
have a common middle vertex.

Since G € G3, z; has at least two neighbors p and q other than u. Since
z;uv is adjacent to both pz;u and gz;u in P3(G) and f is a Ps-isomorphism
from G to G’, we know that f(z;uv) is adjacent to both f(pz;u) and f(qz;u)
in P3(G"). There are just two possibilities.

Case 1. f(pziu) and f(z;uv) have a common edge other than the common
edge of f(gziu) and f(z;uv).

Case 2. One of the two edges of f(z;uv) is the common edge of f(pz;u)
and f(gz;u).

Now we consider z;uz;, which is adjacent to both pz;u and gz;u in P3(G).
Since f is a P3-isomorphism from G to G’, f(z;uz;) must be adjacent to
both f(pz;u) and f(gx;u) in P3(G'). Thus f(x;uz;) must have a common
edge with each of the f(pz;u) and f(qz;iu).

If Case 1 holds, then f(z;uv), f(ziuz;), f(pziuv) and f(gziu) must form a
C4in G'. If we let f(z;uv) = o'V’ and f(zyuz;) = c'd, then f(pziu) = a'd
and f(gziu) = b’d’. Consider z;uv. Since f(zjuv) has a common middle
vertex with f(z;uv), we know that f(z;uv) = €’a’ or €'t/ for some edge
¢’ of G’. This implies that f(z;uv) is adjacent to f(pz;u) or f(gziu) in
P3(G"). Since f is a Ps-isomorphism from G to G’, z;uv is adjacent to pz;u
or gz;u in P3(G), which yields a contradiction. Therefore, only Case 2 can
hold. Then since f(z;uz;) has a common edge with each of the f(pz;u) and
f(gziu), we know that in this case f(x;ux;) must have a common edge with
f(ziwv), ie., f(ziuz;) has a common middle vertex with f(z;uv), which
completes the proof. o

The next lemma is crucial in the following.

Lemma 5 Let G,G’ € Gz and let uv be an edge of G. If f is a Ps-
isomorphism from G to G, then f(S(u)) is a star of G’ if and only if
f(S(v)) is.

Proof. Let f(S(v)) be a star of G’ and let g3, -- - ,y; be the neighbors of
v. Then the set of Ps’s {f(uvy:)li = 1,2,---, s} have a common middle
vertex.

Let z,--- ,z, be the neighbors of u. Then for i = 1,2,.-- ,r, f(z;uv)
is adjacent to f(uwy;) for any j =1,2,.-.,s. Since G € G3, ,5 > 2 and
so f(zjuv),--- , f(z,uv) have a common edge s't’, also, ¢/t’ is the common
edge of f(uvy),-- -, f(uvys). By Lemma 4, we know that f(S(u)) is a star
of G’. The proof is complete. a
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Theorem 6 Let G,G’ € Gs. If f is a P3-isomorphism from G to G, then
f 1is star-preserving if and only if G has a vertez v such that f(S(v)) is a
star of G'.

Proof. The necessity is obvious. For the sufficiency, let u be any vertex of
G. If u = v, then we already know that f(S(u)) = f(S(v)) is a star of G'.
Otherwise, u # ». Since G is connected, we have a path in G connecting
v and u, say v = v1v2 : - - v = u. Since f(S(v)) = f(S(v1)) is a star in G,
from Lemma 5 we know that f(S(v2)),--- , f(S(vk)) = f(S(u)) are stars of
G', which completes the proof. (]

The following results are much stronger than those in [6].

Lemma 7 Let G, G’ € G3 and assume that the mazimum degree A(G) > 4.
If f is a P3-isomorphism from G to G/, then f is star-preserving.

Proof. From Theorem 4 of [6] and Theorem 6, this follows immediately. O

Lemma 8 Let G,G’ € G3 and G have o triangle. If f is a P3-isomorphism
from G to G’, then f is star-preserving.

Proof. If A(G) > 4, then from Lemma 7, the conclusion follows.

Now let G be 3-regular. Let the vertices z1, z2 and u induce a triangle of
G. Since G is 3-regular, we know that » has another neighbor v different
from z;, and z3. Let N(v) \ v = {y1,%2}. The remainder of the proof can
be obtained from the proof of Theorem 8 [6] and Theorem 6. (n}

Theorem 9 Let G,G' € G\ {Ks3}. Then f is a Ps-isomorphism from
G to G’ if and only if f is induced by an isomorphism of G onto G'. Fur-
thermore, for any G, G’ € G3, P3(G) is isomorphic to P3(G') if and only if
G is isomorphic to G'.

Proof. From Theorem 2, we need to prove that both f and f~! are star-

preserving. Since G’ has the same property as G, we only need to show
that f is.

The ”if” part is obvious. For the "only if’ part, we distinguish the
following cases.
Case 1. A(G) > 4.
By Lemma 7, f is star-preserving.
Case 2. G is 3-regular.
Subcase 2.1. G has a triangle.
By Lemma 8, f is star-preserving.
Subcase 2.2. G is triangle-free.
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Let uv be any edge of G and let N(u) \ v = {z1,z2} and N(v) \u =
{y1,y2}. Then z,,z5,u,v,y and y, must be six different vertices and no
two of them are adjacent. Assume that f is not star-preserving. Then by
Theorem 6, f does not preserve any stars of G, so, f(z1uv), f(z2uv), f(uvy;)
and f(uwvyz) must form a 4-cycle. If f(zjuv) = a'b’ and f(zouv) = dd’,
then f(yyuwv) = b'¢’ and f(youv) = a'd’. Consider N(z1) \ v = {21, 22}
and N(zz2) \ u = {w;,ws}. Since both f(21z,u) and f(zoxu) are adjacent
to f(xi1uv) = o'V, whereas both f(wizou) and f(wexou) are adjacent to
f(zouv) = d'c/, we know that, no matter how they are adjacent, there are
just two possibilities:

(1). The 4-cycle of G’ formed by the four edges a’, ', ¢ and d’ must have
a vertex with degree at least 4 and so A(G’) > 4. In this case, since f~!
is a P3-isomorphism from G’ to G and A(G’) > 4, by Lemma 7, we know
that £~ is star-preserving and therefore A(G) > 4, a contradiction.

(2). Similarly considering N(y1) \ v = {s1, 52} and N(y2) \ v = {t1,¢2},
we obtain that G’ must be isom’orphic to K33, again a contradiction to
that G’ € G3 \ {K3,3}.

The two contradictions show that f must be star-preserving.

For the second part, we need only consider f~!, the Ps-isomorphism
from G’ to G, and we arrive at the piont that G is also isomorphic to K3 3.
Hence, we also have G = G'. o

Corollary 10 Let G € G3 \ {K3s3}. Then the automorphism group of
P3(G) is isomorphic to that of G.

Proof. This follows immediately from Theorems 1 and 9. o
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