On two problems about (0,2)-graphs and
interval-regular graphs

Abdelhafid Berrachedi

Insitut de mathématiques, USTHB
BP 32 El Alia 16111
Alger, Algérie

Michel Mollard

LSD2(IMAG) BP 53
38041 Grenoble CEDEX 9
France
Michel.Mollard@imag.fr

ABSTRACT. We give operations on graphs preserving the prop-
erty of being a (0,2)-graph. In particular, these operations allow
the construction of non vertex-transitive (0,2)-graphs. We also
construct a family of regular interval-regular graphs which are
not interval monotone, thus disproving a weaker version of a
conjecture proposed hy H.M. Mulder.

1 Introduction

All graphs used in this paper are assumed to be simple and connected. The
Cartesian sum of two graphs G and H is the graph GO H whose vertex-set
is the Cartesian product V(G) x V(H), in which (u,v) is adjacent to (u/,v’)
if and only if either u = «' and vo' € E(H) or v = v’ and wv’ € E(G).
The Cartesian product of G and H is the graph G x H whose vertex-set is
V(G)x V(H), in which (u,v) is adjacent to (v, v’) if and only if uv’ € E(G)
and vv’ € E(H).

The hypercube @, has as vertices the elements of the n dimensional
vector space over {0, 1}; two vertices being adjacent if and only if they differ
in exactly one component. We can notice that @, = KO K.0O... OK>
(n times).

The Hamming weight w(z) of a vertex = of Q, is the number of its
non-zero components.
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For any two vertices » and v of G the interval between u and v is the set:
I(u,v) = {w € V(G)/w lies on a shortest (u,v)-path}.

The set of neighbors of a vertex u is denoted by N(u).

A graph G is said to be interval-regular if, for any two vertices v and v of
G, the number of neighbors of u lying on shortest (u, v)-paths is precisely
the distance between u and v. S. Foldes [3] proved that G is interval-regular
if and only if for any two vertices u and v there is exactly d(u, v)! shortest
(u,v)-path in G and also that the hypercubes are exactly the bipartite
interval-regular graphs.

There is only a few known constructions of interval-regular graphs.

The hypercube is also a (0,2)-graph, i.e. a connected graph in which
any two distinct vertices have exactly two common neighbors or none at
all. Up to now all known (0,2)-graphs are vertex-transitive and finding a
counterexample is a natural question. In the next section we will construct
non vertex-transitive (0,2)-graphs .

Assuming the convexity of intervals we obtain the notion of interval
monotone graph [7] [8]:

A graph is interval monotone if and only if for any « and v,

z,y € I(u,v) = I(z,y) C I(u,v).

H.M. Mulder proposed the following conjecture [7] [8].
Conjecture. An interval-regular graph is interval monotone.

This conjecture is false [6]. Recently H.M. Mulder [9] asks: what could
make all intervals convex in an interval-regular graph and can the other
interval-regular graphs be determined? For example K. Nomura [10] has
some partial results in proving Mulder’s conjecture for distance-regular
graphs.

In this direction the graph depicted in Figure 1 is a (0,2)-graph and thus
a regular counterexample to Mulder’s conjecture. In the last section we will
introduce a construction of interval-regular graphs which gives a family of
such regular counterexamples.

2 Operations on (0.2)-graphs

Various constructions of (0,2)-graphs are in the literature [4] [5] [7]. The
basic one is that the Cartesian sum of two (0,2)-graphs is also a (0,2)-
graph. The similar property does not exist for the Cartesian product of
two (0,2)-graphs G and H. Hence for H = K3, we have:

Proposition 1. G x K3 is a (0,2)-graph if and only if G is a (0,2)-graph.
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Figure 1

Some properties of the graph G x K3, also denoted by B(G), can be
found in [1].

Proposition 2. Let G be a (0,2)-graph and f an involutive automorphism
of G such that d(u, f(u)) =1 Vu € V(G). The graph obtained by deleting
the matching {uf(u),u € V(G)} is a (0,2)-graph.

Let f be an involution of a graph G and G(f) (G’(f) respectively) the

graph obtained from G by identifying (joining respectively) in G each pair
of vertices {u, f(u)}.
Proposition 3. [5] Let G be a (0,2)-graph and f an involutive automor-
phism of G. If for every u € V(G) we have d(u, f(u)) > 4, then G'(f) isa
(0,2)-graph.

This result can be easily generalized by the following theorem:

Theorem 1. Let G be a (0,2)-graph and f an involutive automorphism of
G without fixed point. If for every u and v in G such that N(u)NN(v) # 0
we have f(v) & N(u) then G'(f) is a (0,2)-graph.

The following theorem give a similar property for G(f).

Theorem 2. Let G be a (0,2)-graph and f an involutive automorphism of
G without fixed point. If for every u and v in G such that N(u)NN(v) # 0
we have N(u) N N(f(v)) =0 then G(f) is a (0,2)-graph.

Proof: Let ¢ be a common neighbor of two vertices e and b of G(f). Then
clearly there exist three vertices in G say u, v, w such that a = {u, f(u)},
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b= {v, f(v)}, c= {w, f(w)} and w is a common neighbor of v and v. As
G is a (0,2)-graph, let z be the second common neighbor in G of u and
v, so {z, f(z)} is a second common neighbor in G(f) of the vertices a and
b. Assume that a and b have in G(f) a third common neighbor {t, f(¢t)},
as w and z are two common neighbors in G of u and v, it follows that
neither ¢ nor f(t) is a common neighbor in G of » and v. We have in G,
without loss of generality ¢ adjacent to u so ¢ is also adjacent to f(v) thus
t € N(u) N N(f(v)), whereas N(u) N N(v) # 0, a contradiction, then G(f)
is a (0,2)-graph.

Corollary 1. Let G be a (0,2)-graph and f an involutive automorphism of
G. Iffor every u € V(G) we have d(u, f(w)) > 5, then G(f) is a (0,2)-graph.

For a graph G, let G* be the graph obtained from G as follows: V(G*) =
V(G) x{1,2,3,4} and (u,?) and (v, 5) are adjacent in G* if and only if one
of the following three conditions is satisfied:

(a) wv € E(G) and i = j and are odd

(b) wv € E(G) and i # j and both are even

(c) u = v and the parities of ¢ and j are different.

The reader can easily check the following result:
Theorem 3. For every (0,2)-graph G, G* is a (0,2)-graph.

Theorems 1, 2 and 3 allow the construction of classes of (0,2)-graphs;
some of which are non vertex-transitive. For instance the graph G of Figure
1 is a non vertex-transitive (0,2)-graph obtained in three ways:

(a) Gis K}
(b) G is Qs(f) where f is the automorphism defined by

u+ 00111 ifu; =us
fw)= .
u+4 11111 otherwise

(c¢) G is Q4(f) where f is the automorphism defined by

Flu) = u+0011 ifu; =up
"~ Yu+1111 otherwise

Furthermore this regular graph is interval-regular but not interval mono-
tone. In the next section we will give the construction of a family of such
graphs.
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3 A construction of interval-regular graphs

Theorem 4. Let f be an involutive automorphism without fixed points of
Q. such that w(u) and w(f(u)) have the same parity for every vertex u.
Then Q. (f) is an interval-regular (0,2)-graph.

Notice that the edges of Q. (f) are of two kinds: the edges of Qy (say
blue edges) and the perfect matching {uf(u),u € V(Qn)} (red edges).

The proof of theorem 4 is an immediate consequence of the four following
propositions:

Proposition 4. A shortest path in Q.,(f) uses at most one red edge.

Let II be the set of the shortest paths in @, (f) using at least two red
edges.

Let p be a (z, y)-path in II such that the distance between z and y is min-
imum among all elements of I1. Clearly d{z,y) > 3. Let p = z,a,b,p’,%.
By minimality of p the edge za is red and thus ab is blue. Now consider
the vertex f(b). We have f(a) =z and ab € E(Q,). Thus zf(b) € E(Qx)
and z, f(b),b,p’,y is a path of II. Then d(f(b),y) = d(z,y) — 1 and the
path f(b),b, p’,y is also in II, contradicting the minimality of d(z,y).

Proposition 5. If there is a shortest path in Q. (f) between z and y using
a red edge then every geodesic (or shortest path) between x and y uses a
red edge.

If the edge uw is red then |w(u) — w(v)] is even else |w(u) — w(v)] = 1.
Then if there exists a path using a red edge between = and y with length
L, the parity of |w(z) — w(y)]| is the parity of L — 1 and if there is a path
between z and y of length L using only blue edges then |w(z) — w(y)| and
L have the same parity.

Proposition 6. If there is a shortest path in Q) (f) between = and y using
only blue edges then = and y are joined by exactly d(x,y)! geodesics.

This is an immediate consequence of Proposition 5 because the shortest
paths between z and y use only the edges of Q,, and there is exactly d(z, y)!
geodesics in Q.

Proposition 7. If there is a shortest path in Q;,(f) between = and y using
a red edge then z and y are joined by exactly d(z,y)! geodesics.

Let S; be the set of (z,y)-shortest paths such that, starting from z, the
ith edge is red. The set S of all (z,y)-shortest paths is the disjoint union
of the S; fori=1,...d = d(z, ).

Let p = =zo,...%i—1,%i,...,Z4 be a path of S; (with zg = z, z4 = ¥,
i > 2). We have f(zi—1) = z; and z;_2z;—; € E(Qn). Then we have
f(zi—2)z; € E(Q,) and the path g(p) = zo,...zZi—2, f(zi—2),Zi)...,Ta
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is in S;—;. Thus g is clearly a one to one mapping from S; to S;_; and
|Si| = |Si-1] = |S1] for i > 2.

Let Sp be the number of shortest (f(z),y)-path and let p = z, f(z),p’, ¥
be a path of S;. The subpath h(p) = f(z), p’, ¥ is in Sp and uses only blue
edges, but h is a one to one mapping and |S;| = |So| = (d(z,y) — 1)L

The proof that @}, (f) is a (0,2)-graph is left to the reader. o

Corollary 2. For all n > 5 there exists a n-regular graph, interval-regular
but not interval monotone.

Let f be the mapping from V(Qn—1) to V(Qn—1) defined by

Fu) = {u+c if uy £ up

u+d otherwise
where ¢ = 11110...0 and 4 = 00110...0.

1) fis clearly an involution such that for all u,% and f(u) have the same
parities.

2) f is an automorphism. Since f is involutive, it suffices to prove that
if z and y are any adjacent vertices of Q,_; then f(z) and f(y) are
adjacent.

Let ¢ and j be two integers such that f(z) =z +¢, f(y) =y +d.
first case: i = j then f(z) + f(y) = z+y then f(z) and f(y) are adjacent.
second case: 1 # j then z and t differ at one of the two first components.
But f(z) + f(y) = z + ¥+ 11000...0. Thus f(z) + f(v) is of weight 1 so
f(z) and f(y) are adjacent.

By Theorem 4 the graph G, = Q),_,(f) is interval-regular. Consider in
G,, the interval I(z,y) where z = 0...0 and y = 1110...0. It is easy to
check that z and y cannot be at distance less than 3 in G,, thus d(z,y) =3
and I(z,y) = {abc0...0}. Let » = 100000...0 and v = 01100...0 two
vertices of I(z,y) then I(u,v) = {u,v,01110...0,10010...0} ¢ I{z,y}.
So Gy, is not interval monotone. o

In fact Gy, is isomorphic to K3 DQn_s.

For n > 7 an interesting other family of interval-regular graphs obtained
from Theorem 4 is Q/,_;(f) where f is defined by:

FuruguaUs . .. ugi—qug; ... Uok—1U2k) = T1TRULUS . . . Ui Ui—1 - - - U2KURK~1
ifn=2k+1 f(u1u2u3'l.'.4 .o U1 Ui . . - Uok—3Usk—2Udk—1) = W1 TUU4UZ - . .
UiUgi—1 . . . U2k—2U2k—3 U2k—1 if n = 2k.

These graphs are not isomorphic to K; 0Q,_s and are also not interval
monotone (the interval 7(0...0,10110...0) is not convex).

To conclude we can notice that all known counterexamples to Mulder’s
conjecture are not vertex-transitive.
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