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ABSTRACT. The average distance in a connected weighted graph
G is defined as the average of the distances between the vertices
of G. In 1985 P.M. Winkler [5] conjectured that every con-
nected graph G contains an element e, such that the removal
of e enlarges the average distance by at most the factor £

D. Bienstock and E. Gyori proved Winkler's conjecture for
the removal of an edge from a connected (unweighed) graph
that has no vertices of degree one, and asked whether this con-
jecture holds for connected weighted graphs. In this paper we
prove that any h-edge-connected weighted graph contains an
edge whose removal does not increase the average distance by
more than a factor of h/(h — 1), b > 2. This proves the edge-
case of Winkler’s Conjecture for 4-connected weighted graphs

Furthermore, for 3-edge-connected weighted graphs, it has
been verified that the four-thirds conjecture holds for every
weighted wheel W;, p > 4, and for weighted K3 n and Kon
forn > 2.

1 Imtroduction

Throughout this paper we consider only finite, undirected, simple graphs.
Our terminology and notations will be standard except as indicated. For
undefined terms, see [3] and [4].

*This work is based on the Ph.D. Thesis written by the second author under the
supervision of the first author, and was submitted to the University of Mosul (1995).
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The concept of distance in graphs can be generalized in a most natural
manner. By a weighted graph, we mean a graph in which each edge e is
assigned a positive real number, called the weight of e, and denoted by w(e).
The length of a path P in a weighted graph G is the sum of the weights of
the edges of P. For connected vertices © and v of G, the distance dg(u, v)
is the minimum of the lengths of © — v paths of G. If all edges of G have
unit weight, then G can be regarded as a graph. Let G be a connected
graph with (or without) edge weights, the total distance T(G) is defined to

be
T(G)= Y, do(wv).

u,vEV(G)

The transmission of a vertex v of G is defined as

o(G,v) = Z dg(u,v).

u€V(G)

It is clear that 7(G) = (1) > vev(c) @(G,v). The average distance of G
is then D(G) = [2T(G)]/[p(p — 1)), where p is the order of G.
Define
n(G) = min, [D(G —w)/ID@))
n(G) = min (D(G - )/ [DG)]

Winkler’s conjecture [5] can be stated as follows: Is it true that in every
connected graph G, ro(G) < 4/3; while if G is not a tree, r1(G) < %?

In 1988, D. Bienstock and E. Gyori [2] proved that r1(G) < g— for any
(unweighted) graph G which contains no vertex of degree 1, and r(G) <
(4/3) + O(p~1/5),for any (unweighted) graph G.

In 1990, 1. Althofer [1] proved that for every h-connected graph G,
70(G) < h/(h—1), h > 2. This proves Winkler’s conjecture for 4-connected
graphs without edge weights.

In this paper we prove r1(G) < k/(h — 1), for every h-edge-connected
weighted graph G. Moreover, it has been verified that the edge version of
Winkler’s conjecture holds for any weighted wheel Wy, p > 4, K2 and
Kay, forn > 2.

It is clear that if G contains an edge e such that dg(u,v) < w(e), then
do—e(z,y) = dg(z,y) for every pair z,y of distinct vertices of G. This
implies that r1(G) = 1. Hence, we assume throughout this paper that the
weighted graphs considered satisfy the following condition.

da(u, 'v) = w(e)v (11)
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for every edge e = uv of G. This condition is called the w-condition. Let
K, be a complete weighted graph of order p. And let eg = uv be an edge
of maximum weight of K. It follows from w-condition that each shortest
u — v path of K, — eg consists of two edges. Thus there are two edges
e1 = uw and ez = wv such that dg, — eo(u,v) = w(e1) + w(ez), with,
say, w(e) > w(ez). Therefore r1(Kp) < 1+w(e2)/ Leep(k,) w(e)- Thus
T1 (Kp) < 4/ 3.

2 r; for h-edge-connected weighted graphs

In this section .we will give the proof of the main result. For every pair
{u, v} of vertices of G, choose a shortest path P(u,v) joining u and v, and
let P(G) be the set of all such shortest paths of G. If e is an edge of G,
denote by p(e) the total number ot paths in P(G) containing e.

Theorem 2.1. If G is an h-edge connected weighted graph, h > 2, then
r1(G) < h/(h—1).
Proof: Let k = min.cg(c){u(e)}-

An edge eg = uv of G is called of minimum occurrence in P(G) if u(ep) =
k. Since G is an h-edge-connected graph, then by Menger’s Theorem [4),
there are h—1 edge-disjoint paths Py, P,,..., P41 joining u and v in G—eq.

Assume that dg_, (u,v) = w(P;) £ w(P) < -+ < w(Py_1), in which
w(F;) is the weight of P;, forall: = 1,2,...,h—1. Denote by @,,Qs,...,Qx
the k shortest paths in P(G) containing ep, with Q; = eo; and let Q! =
Qi — eo, for 2 < i < k. Then T(G) = kw(eo) + 5, w(Q}) + X, where X
is the sum of the weights of all shortest paths in P(G) not containing ep.
If Q; is the shortest path joining the two vertices z and y, then QU p, is
a connected subgraph of G containing z and 3. Thus

k
T(G - e0) <w(P) + Zw(Pl U+ X

i=1

k
<kw(P)+ X+ w(Q)).

i=1

Hence

k k
71(G) < [kw(P) + X + ) w(Q)))/[kw(eo) + X + Y w(Q))]
=2 =2

=1+ k[w(P1) — w(eo)]/T(G).
Since, each edge of G occurs at least k times in P(G), then 7(G) >

312



k{3 ecp(c)w(e)}. Hence

r1(G) < 1+ [w(P) —wlea))/ 3 wle). | (2.1)
ecE(G)
Moreover,
Z w(e) > (b — w(Py).
e€E(G)
Thus

71(G) < 1+ [w(P1)/{(h - D)w(P1)}] = h/(h -1).
0o

Theorem 2.1 proves the edge case of Winkler’s conjecture for 4-connected
weighted graphs.

Corollary 2.1. If there is an edge e¢p = wv of minimum occurrence
in an h-edge-connected weighted graph G such that dg_,(u,v) < {1+
(1/3)h}w(eo), then r1(G) < 4/3.

The proof of this Corollary follows from (2.1) and the fact that
EeEE(G) 'UJ(C) Z hW(eo). (m]

Corollary 2.2. If there is an edge ep of a weighted cycle Cp of minimum
occurrence such that w(eg) > (-g-) 2 este, Wle), then 71(G) < %.

Corollary 2.3. Let ey be an edge of maximum weight in a weighted cycle
Cp. If w(eo) > (3/4) 3.z, wle), then 71(Cy) < %.

Proof: Let t be the occurrence of eg in P(Cp). Then
T(Cp) 2 A+ tw(eo),
T(Cp—eo) SA+ Y wle),

eFeo
where A is the sum of the weights of the shortest paths in P(Cp) not
containing eg. Thus
r1(Cp) < {A+1 D) w(e)}/{A+ tw(eo)}
efeo
4
< {A + gtw(eo)}/{A + tw(eo)}

< 1+ {gtu(eo)}/{A + tueo)}

<4
3"
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The 4/3 conjecture for edge case has also been verified by the authors
for special 3-edge-connected weighted graphs, such as wheels and complete
bipartite graphs Km; n, m, n > 2.

The vertex case of the 4/3 conjecture is more difficult, the authors also
considered the removal of a vertex from a connected weighted graph. It
is proved that every connected weighted graph contains a vertex whose
removal does not increase the average distance by more than a factor of
2. Moreover, we prove that the vertex version of Winkler’s conjecture is
true for h-connected weighted graphs, h > 4, weighted wheels and complete
bipartite graphs if the ratio of the maximum edge weight y to the minimum
edge weight z does not exceed certain upper bounds. Such upper bounds
for y/= are imposed to guarantee the existence of a vertex whose removal
does not increase the average distance by more than a factor of 4/3.
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