A Ramsey Goodness Result for Graphs
with Many Pendant Edges

Yusheng Li and Cecil C. Rousseau

Department of Mathematical Sciences
The University of Memphis
Memphis, Tennessee 38152

ABSTRACT. Burr has shown that if G is any graph without iso-
lates and Hp is any connected graph, every graph H obtained
from Hp by subdividing a chosen edge sufficiently many times
to create a long suspended path satisfies r(G, H) = (x(G) —
1)(JV(H)| — 1) + 3(G), where 8(G) is the largest number such
that in every proper coloring of V(G) using x(G) colors, every
color class has at least 3(G) elements. In this paper, we prove
a companion result for graphs obtained from Ho by adding suf-
ficiently many pendant edges.

Let G and H be graphs without isolates. The Ramsey number r(G, H) is
the smallest positive integer p such that for any two-coloring of the edges of
the complete graph K, with colors red and blue, there is either a monochro-
matic red G or a monochromatic blue H. It is easy to show that if H is
connected and |V (H)| = s(G), then

(G, H) 2 (x(G) - I)(IV(H)| - 1) + s(C), 1)

where s(G) is the largest number such that in every proper vertex coloring
of G using x(G) colors, every color class has at least s(G) members. This
number is called the chromatic surplus of G. In case equality holds in (1),
we say that H is G-good. For a survey of results involving this concept, see
(3]. In an early result, Burr proved that if Hp is any connected graph and j
is sufficiently large, any graph H obtained from Hyp by adding j vertices to
subdivide a chosen edge and create a long suspended path is G-good [1]. An
edge in a graph is pendant if one of its vertices has degree 1. Starting with
a connected graph Hyp of order n, we can introduce j new vertices and j
pendant edges by joining each of the new vertices to some vertex in V(Hp).
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We do not expect to obtain a G-good graph from Hp by adding (arbitrarily)
a large number of such pendant edges. For example, large stars are not Cy-
good, since the bound for r(Cj, K ») given by (1) is 7(Cy, K1) > n+ 2,
whereas it is shown in [2] that 7(Cy, K1) = n + /1 — 6n11/40 for all
sufficiently large n. Nevertheless, we shall show that the collection of graphs
obtained this way contains some which are G-good.

Before giving the theorem and its proof, we need two more definitions.
The upper chromatic surplus of a graph G is the smallest integer 3(G) so
that in every proper vertex coloring of G using x(G) colors, every color class
has at most 5(G) vertices. Clearly $(G) > s(G). Let G and H denote two
classes of graphs. The class Ramsey number r(G, H) is the smallest integer
p so that in every two-coloring of the edges of K, there is 2 monochromatic
red copy of at least one member of G or a monochromatic blue copy of at
least one member of H. If G = {G}, we denote r(G, H) as r(G, H). Clearly

» r(G,H) <min{r(G,H): G € G,H € H},

but the equality does not necessarily hold. The following result gives ex-
amples to show that the difference between min{r(G, H): G € G, H € H}
and (G, H) can be arbitrarily large.

Proposition 1 Let C be the class of all cycles and let C; be the class of
all odd cycles.

(1) For any n, r(K,,C) =r(K,,C;) =2n —1.

(2) For any M > 0, there is N > 0 such that if n > N, min{r(K,,C):
C €C} > Mn, and min{r(K,,C): C€C; } > Mn.

Proof: (1). The two-coloring of E(Ka,—2) in which (R) is isomorphic to
(n = 1)K3 shows r(K,,C) > 2n — 1. Now consider any red-blue coloring
of edges of K2,—; without any blue odd cycles. It is well known that a
nontrivial graph is bipartite if and only if it does not contain any odd
cycles. Thus the graph (B) induced by all blue edges is a bipartite graph,
and the larger part induces a red complete graph of order at least ». This
proves r(Kp,C1) < 2n — 1. The remaining part follows the fact 7(Ky,,C) <
7(Ky,C1) since C; C C.

(2). Given M > 0, take a positive integer m such that m(n—1)+1 > Mn
for n > 2. In [4] it is shown that for fixed m there is a constant ¢ > 0 such
that

) n \M-1/(m-2)

Sg:gnm ™(Kyn,Ck) 2 ¢ (logn) .

Therefore there is N > 2 so that » > N implies ming<x<m 7(Kp, Ck) >
Mn. By the inequality (1) we know that for &k > m +1

™(Kn,Cr) 2 (n—-1)(k—-1)>2m(n—-1)+1> Mn.
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Thus min{r(K,,,C): C € C} > Mn and min{r(K,,C): C € C1} > Mn if
n> N.

Lemma 1 Let H be a class of connected graphs. If all graphs in ‘H have
the same order and there is a G — good graph in H, then r(G,H) =
min{r(G,H): H e H}.

Proof: Let n be the order of graphs in . Then the graph (x(G)—1)Kpn-1U
K s(G)-1 defines a two-coloring of edges of complete graph K, where p =
(x(G) —1)(n— 1)+ s(G) — 1, to show r(G,H) = (x(G) — 1)(n —1) + 3(G).
Since min{r(G,H): H € H} > r(G,H) and there is a G — good graph
H' € H, we have r(G,H') > min{r(G,H): He H} > r(G,H) = (x(G) —
1)(n — 1)+ s(G) = r(G, H'), so equality holds throughout. This proves the
lemma.

Theorem 1 Let G be any graph without isolates and suppose that H is a
connected graph of order n > 5(G). For any V C V(H) with |V| = 5(G),
let H; denote the class of all graphs obtained from H by adding j pendant
edges joining new vertices to V. If j is sufficiently large,

(G, H;) = (x(G) —1)(n+j — 1) + 5(G)
for some H; € H;. Thus v(G,H;) =min{r(G,H): H e H; }.

Proof: Since every member of H; is connected graph of order n+j > n >
35(G) > s(G), we have

(G, H;) 2 (x(G) —1)(n+j - 1) + 5(G)
for each H; € H;. To prove
(G, Hj) < (x(G) - 1)(n+7 - 1)+ 5(G),

for some H; € H;, we use induction on x(G).

If x(G) =1, then G = K, and the result is trivial. [Although this case
violates the convention under which neither G nor H have isolated vertices,
it does provide a valid basis for the induction.]

Suppose x(G) > 2 and color the vertices of G with x(G) colors such that
the color classes C,Cy, ... ,Cy satisfy

5(G)=|C1| < |Ca| < --- < |Cx| < F(G).

Set G' = G — Cy. Then x(G') = x(G) — 1 and s(G') = s(G). By the
induction hypothesis, there is N > 0 such that if j > N we can find a
specific H' € H; that is G’ — good, i.e,

(G H') = (x(G) - 2)(n+3 — 1) +5(G).
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Take Ny > N such that (x(G) —1)(n+ N1 —1)+s(G) > r(G, H). Now for
j > Ny set p= (x(G)—-1)(n+3j —1)+s(G) and let (R, B) be a two-coloring
of the edges of K, with colors red and blue. We want to show G C (R) or
H" C (B) for some H” € H;.

Suppose that G ¢ (R) and (B) contains no member of H;. Since p >
m(G,H) and G ¢ (R), we have H C (B). We can thus suppose that there
is some 1 satisfying 0 < i < j such that (B) contains some member of H;
but no member of H;+1. Then there is a partition V(K,) = (X,Y) where
| X|=n+14, |Y|=p-—n—i>(x(G)—2)(n+j—1)+s(G) such that (X)p
(the blue graph spanned by X) contains some member of H; and all the
edges oy wherez € V C V(H) C X and y € Y are red. Since H' € (V)5
we have G’ C (Y)g. Since |[V| = 5(G) > |Cy|, this gives G C (R). This
contradiction completes the proof.
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