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Abstract

In this paper we refine Whitney’s Theorem on k-connected graphs
for k > 3. In particular we show the following: Let G be a k-
connected graph with k > 3. For any two distinct vertices u and v of
G there are k internally vertex disjoint paths Pi[u,v], P[u,v], ---,
Pi{u,v] such that G — V(P;(u,v)) is connected for i = 1,2 ---,k,
where Pi(u,v) denotes the internal vertices of the path Pi[u, v]. Fur-
ther one of the following properties holds.

o G — V(Pi[u,v]) is connected for ¢ =1, 2, 3.

¢ G — V(Pi[u,v]) is connected for 1 = 1, 2 and G — V(P;i[u,v])
has exactly two connected components fort =3, 4, ---, k.

In addition some other properties will be proved.
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1 Introduction

Only finite simple graphs will be considered. In general G = (V, E) will
denote a graph with vertex set V and edge set E. Terminology will in
general follow that used in the text of Bondy and Murty [1]. Let G be
a graph and let P[u,v] be a path of G joining the vertices v and v. We
will use P(u,v) to denote P[u,v] — {u, v}, that is the internal subpath of
P[u,v]. The orientation of P[u,v] is the direction along the path P[u,v]
from u to v. For any two two vertex subsets A and B of G we let E(A, B)
denote the set of edges with one vertex in A and the other in B. We use
w(G) to denote the number of connected components of G.

The connectivity ( or more precisely the vertez connectivity) k(G) of a
graph G is the minimum number of vertices that, when deleted, leaves the
graph disconnected or with just one vertex. The edge connectivity k1(G)
is defined similarly. A graph G is k-connected if £(G) > k and a graph G
is k-edge-connected if k1(G) > k. There are books, for example [12], and
survey articles (see [3, 6, 9]) that deal exclusively with various connectivity
concepts. A fundamental result on connectivity is due to Menger.

Theorem 1 (Menger [8]) For any two nonadjacent vertices u and v of
a graph G, the marimum number of internally vertex disjoint paths be-
tween the vertices u and v is equal to the minimum number of vertices that
separate u and v.

A consequence of this is a result by Whitney.

Theorem 2 (Whitney [13]) A graph G is k-connected if and only if
there are k internally vertezr disjoint paths between each pair of distinct
vertices of G.

There are edge versions of both Menger’s and Whitney’s Theorems.
There are numerous proofs using a variety of approaches of these analogues;
in particular, proofs using the theory of flows can be found in [2] and [4].

Theorem 3 For nonadjacent vertices u and v of a graph G, the mazimum
number of edge disjoint paths from u to v is equal to the minimum number
of edges that separate u and v. A graph G is k-edge-connected if and only
if there are k edge disjoint paths between each pair of distinct vertices of G.

Mader (7] recently obtained the following result.
Theorem 4 (Mader[7]) Let G be a (k + 1)-edge-connected graph and u,

v be two distinct vertices of G. Then there is a path P[u,v] joining u and
v such that G — E(P[u,v]) is k-edge-connected.
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Concerning the (vertex) connectivity, Tutte [11] showed that every 3-
connected graph has a chordless circuit whose deletion leaves a connected
graph. The following result is slightly stronger.

Theorem 5 (Thomassen and Toft [10]) If G is a connected graph and
the minimum degree 6(G) > 3, then G has a chordless cycle C' such that
G — V(C) is connected.

Lovasz made the following conjecture.

Conjecture 1 (Lovdsz [5]) For each natural number k, there ezxists a
natural number B(k) such that for any two vertices u, v in any p(k)-
connected graph G, there is a path P between the vertices u and v such
that G — V(P) is k-connected.

In this paper, we will refine Whitney’s theorem as follows.

Theorem 6 Let G be a k-connected graph with k > 3. For any two dis-
tinct vertices u and v of G there are k internally vertexr disjoint paths
Pi[u,v), Pafu,v], ---, Pg[u,v] such that G — V(P;(u,v)) is connected for
i=1,2 ...k and further one of the following properties holds.

o G — V(Pi[u,v]) is connected fori=1, 2, 3.

e G — V(Pi[u,v]) is connected for i = 1,2 and G — V(P;[u,v]) has
ezactly two connected components fori =3, 4, ---, k

The proof of Theorem 6 will be placed in next section, as well as that
of the following theorem.

Theorem 7 Let G be a k-connected graph with k > 3. For any two dis-
tinct vertices u and v, there are k internally vertex disjoint paths Ri[u,v],
Ry[u,v], -+, Rk[u,v] between u and v such that

k

> w(G = V(Rilu,v])) < 2(k - 1)

i=1

There are many two connected graphs which have two vertices u and v
such that deleting any path between them will disconnect the graph. So
that & > 3 is best possible in some sense. The following two results are
immediate consequences of Theorem 6.

Theorem 8 Let G be a k-connected graph with k > 3. For any two distinct
vertices u and v of G, there are k internally vertezx disjoint paths Py[u,v],
Pylu,v], - -, Pclu,v] such that G—V(P;(u,v)) is connected for everyi=1,
2, .-+, k. Further, both G — V(Py[u,v]) and G — V(P,[u,v]) are connected.
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Theorem 9 Let G be a 3-connected graph and u, v be two distinct vertices
of G. Then there are two internally-disjoint paths P)[u,v] and Ps[u,v] such
that both G — V(P [u,v]) and G — V(Py[u,v]) are connected.

Corollary 1 Let G be a 3-connected graph. For any edge e € E(G) there
is a cycle C containing the edge such that G — V(C) is connected.

2 Proof of Theorems 6 and 7

The proofs of Theorem 6 and 7 will be dependent on the following basic
Lemma.

Lemma 1 Let G be a 3-connected graph and F be a subgraph of G. Let
H be a connected component of G — V(F). Then, for any two distinct
vertices z and y in H, there is a path Q[z,y] in H such that each connected
component C of H — V(Q[z,y]) is adjacent to F, that is E(F,C) # ¢.

This implies w(G — V(Q[z,3])) < w(F). In particular, G - V(Q[z, y})
ts connected if F is connected.

Proof: The result is trivial when z = y or zy € E(G). We now assume
that zy € E(G).

Since H is connected, there are paths connecting z and y in H. For
any such path Q[z,) in H, a connected component of H — Q[z, y] is called
a good component of Q[z,y] if it is adjacent to F. Otherwise it is called
a bad component of Q[z,y]. The vertices in a good component of P[z,y]
are called the good vertices of P[z,y], and the vertices in a bad component
of P[z,y] are called the bad vertices of P[z,y]. For brevity we will call
them good components, bad components, good vertices, and bad vertices
respectively.

Pick a path Q[z,y] in H such that:

1. The total number of bad vertices is as small as possible;

2. Subject to condition 1, the total number of good vertices is as large
as possible.

We shall show that the number of bad vertices of Q[z,y] is zero after
we prove the following claim.

Claim 1 Let s and t be two non-consecutive vertices in P[z,y) wihtt suc-
ceeding s in the orientation of P[z,y]. If there is a path R(s,t) with all
of its internal vertices (possibly empty) bad vertices, then there is no path
joining Q(s,t) to F with all its internal vertices (possibly empty) good.
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Proof: Suppose, to the contrary, there is a such path R[a,b] with a €
Q(s,t) and b € F. Then let

Q*[=,y] = Q[=, s]R(s,1)Q[t, .

Note that all bad vertices of Q*[z,y] are bad vertices of Q[z,y] and all
vertices in Q(s,t) become good vertices of @*[z,y], which contradicts the
choice of Q[z, y]. 0

Now, we return to our proof of Lemma 1. Suppose, to the contrary,
the number of bad vertices is not empty. Let B be a bad component of
H — Qz,y). Since G is 3-connected, |N(B) N Q[z,y]| > 3. In particu-
lar, Q(z1,41) # ¢, where z; is the first vertex of N(B) in Q[z,y] in the
orientation of Q[z,y] and y; be the last vertex of N(B) in Q[z,y] in the
orientation of Q[z, y].

From Claim 1, we see that there is no path connecting Q(z1,4) to F
with all of its internal vertices good vertices of Q[z, y]. Since {z1,y1} is not
a cut set, there are two vertices s; and ¢; and a path R(sy,?1) such that
51 € Q(x1,%1) and t; € Q[z,z1) U Q(v1,y], and all the internal vertices of
R(s1,t1) (possibly empty) are bad vertices. With no loss of generality, we
can assume that t; € Q[z, ;). Again, by Claim 1, there is no path joining
Q(t1,51) to F with all its internal vertices good vertices of Q[z,y]. Let
z3 =1, y2 = y1. Then we obtain a subpath Q[z2, y»] of Q[z, y] such that

* Q[:c2)y2] D Q[thyl]v

o No path joining Q(z2,y2) to F has all its internal vertices good ver-
tices of Q[z, y].

Recall that G is a 3-connected graph. Then {z2,y:} is not a cut set. In
the same manner, we can show that there is a subpath @[3, y3] such that

e Qz3,y3) D Q[z2, v,

e No path joining Q(z3,ys) to F has all its internal vertices good ver-
tices of Q[z, y].

Continuing in the same manner, we see that there is an infinite sequence
of subpaths Q[z;, ] C Q[z,y],i=1, 2, - - -, such that

® Q[zi+1,¥i41) D Q[zi, yi] for all i > 1.

o No path joining Q(z;, y;) to F has all its internal vertices good vertices
of Q[z,y] for all ¢ > 1.

Clearly, the above statements contradict that G is finite. O
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Proof of Theorem 6: Let G be a k-connected graph with k¥ > 3 and u, v
be two distinct vertices of G. By Whitney’s Theorem, there are k internally
vertex disjoint paths

Ql[urv]a QZ[u’v]a Qk[u:v]

between the vertices u and v. We first assume that uv ¢ E(G).

Note that G is 3-connected since k& > 3. For any connected component
C of G-V (UL, Qi[u, v]) there is a path Q;[u, v], such that there is an edge
between Q;(u,v) and C; that is, E(Qi(u,v),C) # ¢é. We randomly assign
C to one of the Qi(u,v) if E(Q;(u,v),C) # ¢ for more than one i. Thus,
we have a partition of the vertex set V(G) — {u, v}, say

V(G)—{u,v} =V uWVU---UV.

such that the induced subgraph C; = G(V;) is connected and Q;(u,v) C C;
foreachi=1,2,---, k. ‘

Since E({u,v},V;) # ¢, G — V; is connected for each i =1, 2, -+, k.
Foreach i = 1, 2, -, k, pick u;, v; € V; such that uu; and vv; € E(G).
Using Lemma 1, there is a path P*[u;, v;] C Ci such that G — P*[u;,v] is
connected for each i = 1,2, - -+, k. Let P; = uu; P*[u;, v;]v;v foreach i = 1,
2,--- k.

Now we define a new graph H with the vertex set V(H) = {p1, p2, - - -, P&}
such that p;p; € E(H) if and only if E(V;, V;) # ¢. Note that, w(G — (ViU
{u,v})) =w(H —p;) foreach i =1, 2, - - -, k. Using Lemma 1 again, there
is a path R;[u,v] C G(V; U {u,v}) such that w(G — R;[u,v]) < w(H — p;)
for each i = 1, 2, - -+, k. We pick such R;[u,v] such that w(G — R;[u,v]) is
minimum for each ¢ =1, 2, .-, k.

Since G — {u, v} is connected, H also is a connected graph. Thus, one
of the following two properties for H must hold.

A there are three vertices, say pi, ps2, and p3, such that none of them is a
cut vertex of H, that is, H — p; is connected for i = 1, 2, 3.

B H is a path p;ps---px. In this case, we have that both H — p; and
H — p;, are connected.

If A holds, replace the path P;[u,v] by the path R;[u,v] for each ¢ = 1,
2, 3.
If B holds, replace the path P;[u,v] by the path R;[u,v] for i = 1, or
k. If there is an ip # 1, k such that G — V(R;[u, v]) is also connected, we
replace P;,[u,v] by Ri,[u,v]. Otherwise we have w(G — V(R;(u,v)) = 2 for
each 2 < i < k — 1 since w(H — p;) = 2 for every 2 < i < k — 1. Then we
replace P;[u,v] by Ri[u,v] for each 1< i< k.
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So that in any case, we have k internally vertex disjoint paths between
the vertices u and v satisfying Theorem 6.

If uv € E(G), we assume without loss of generality that @, [u,v] = uv.
In the same manner as above, this time working only with Q3[u,v], - -,
Qx[u, v], we can show that Theorem 6 holds. O

Proof of Theorem 7: REasoning as in the proof of Theorem 6, recall that
w(G — V(Ri[u,v])) < w(H — p;) for each 1 < i < k. Since H is connected,
Yk w(H —p;) < 2(k — 1). Combining them, we have

k k
2 w(G = V(Rilu, o)) < D w(H —pi) <2(k - 1).
i=1

i=1
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