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Abstract

The problem of maximizing the possible number of users of a
packet radio network with time division multiplexing, when the num-
ber of slots per time frame and the maximum communication delay
between users are given, can be modeled by a graph. In this paper
a new way of edge-coloring is presented on several families of large
graphs on alphabets. This method allows us to obtain a certain im-
provement of the previous results.

1 Introduction

The problem of maximizing the possible number of users of a packet radio
network (PRN) with time division multiplexing, when the number of slots
per time frame and the maximum communication delay between users (di-
ameter) are given, can be modeled by a graph ([3, 16]). In such models,
the vertices correspond to users and the edges represent the links in such
networks. Since several links to the same user are assigned to different time
slots, several edges with a common vertex must be denoted by different col-
ors. Thus we are interested in finding edge-colorings of graphs with large
numbers of vertices for given values of their diameter and maximum degree
(large graphs).

Graphs on alphabets can be easily obtained and have proved to be quite
suitable to model large interconnection networks. Moreover, their structure
usually provides efficient routing algorithms. These graphs are constructed
by labeling the vertices with words on a given alphabet, and specifying
a rule that relates pairs of different words to define the edges.With the
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exception of the generalized compound graphs (see [12] and [13]), which
require another edge-coloring method, graphs on alphabets are among the
largest graphs known when the diameter is large (greater than twenty) (see
[15]). In this paper we present edge-colorings for some of these graphs.

2 Basic concepts and known results

A graph G = (V, E) consists of a set V' of vertices and a set E of edges that
join pairs of vertices of V. The number of vertices N = |V| is the order of
the graph. If (z,y) is an edge of E, it is said that z and y are adjacent, and
it is usually written = ~ y. The degree 6(z) of a vertex z is the number
of vertices adjacent to z, and its maximum value over V is the degree of
G, A = A(G) = maz{6(z) : z € V}. The distance between two vertices
z and y, d(z,y), is the length in a shortest path between z and y, and its
maximum value D = maz{d(z,y) : =,y € V} is the diameter of the graph.
The order of a graph with maximum degree A > 2 and diameter D is easily
seen to be bounded above by

AA-1)P -2
A5 1

The right hand side is called the Moore bound, and it is known that
when D # 1 it can only be attained for D = 2 and A = 3,7 and possibly 57
(see [1] and [7]). Hence it is worthwhile finding graphs which have a large
number of vertices, as close as possible to the Moore bound.

In this paper we deal with graphs without selfloops and without parallel
edges. An assignment of colors to the edges of a graph G so that adjacent
edges are colored differently is an edge-coloring of G. The graph G is n-edge-
colorable if it can be edge-colored by using n colors and the edge-coloring is
then an n-edge-coloring. The minimum n for which G is n-edge-colorable
is its chromatic index and it is usually denoted by x;. Vizing's theorem
states that if G has maximum degree A, then A < k; <1+ A (see for
instance [6]). An edge-coloring where the chromatic index coincides with
the degree is an optimal edge-coloring.

For small values of the degree and the diameter some edge-colorings are
presented in [2]. For general values of the degree and the diameter Bermond
and Hell [2] have shown that undirected De Bruijn and Kautz graphs have
chromatic index k) = A. The De Bruijn and the Kautz graphs have even

degree and order b
(3
(@)
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respectively. Moreover, Fiol has presented optimal edge-colorings for Se-
quence graphs ([9] and [10]). Such graphs have even diameter and order

N= (%)D (4)

N=(A;—1)'?(A2—1)%' )

for even degree and

for odd degree.

3 Edge-coloring of Bond graphs

Let |X| = dy and |Y| = dy be two sets. Vertex u of the Bond graph
B(d,,d2, k) (see [4, 5]) is a sequence u = Z1y1Z2Yy2 ... TkYk , Where 7; € X
and y; € Y, (1 € ¢ < k), such that successive elements of X must be
different; i.e., z; # 41, (1 < j < k—1). Vertex u is adjacent to the
vertices of the sets:

{uz | uz = TYrTk . . . y2Zoy1, T € X — {z4}} (6)
{uy | vy = Tryr-1Zk-1.-- 121y, Yy €Y} (7)

They have N = d;(d; - 1)""101"2c vertices, degree A = d; + dy — 1 and
diameter D = 2k. If d| = dy = d, the graph B(d,d, k) has odd degree A,
even diameter D and order

A+1\5H a1\ %!
v=(57) (%) ®)
Ifdj —1 = dp = d the graph B(d+1,d, k) has even degree A, even diameter

D = 2k and order A\D AN D-1
v=(3) +(3) ®

Now, we define the function:

o= (b, 228

where a,b € X = Zg,, such that a # b,. The edge-coloring we propose is
the following: If adjacency is according to (6), that is, for edges (u,u),
give color f(z, )+ f(z2, 1) (mod(d; — 1)), and if adjacency is according
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to (7), that is for edges (u,uy), give color yir + y (modd;) — d2. Notice
that the color of (u,uz), f(zk,z)+ f(z2, 1) (mod(d; — 1)), coincides with
the color of (u,u), f(z2,z1) + f(zk,z) (mod(d; — 1)). Also, the color of
(%, uy), Yk + y (moddz) — da, is the same as the color of (uy,u), ¥y + Y
(moddy) — d2. Thus, this edge-coloring is well defined with the colors of
type (u,u;) belong to the set {0,1,...,d; —2} and different values of z give
different colors to edges (u,u;). On the other hand, the colors of the edges
of type (u,u,) belongs to the set {—dz,—d2 +1,...,—2,-1} and distinct
values of y give different colors to the edges (u,u,). Therefore, we have
edge-colored the Bond graph with d; +d2 — 1 = A colors.

4 Edge-coloring of Delorme graphs

The Delorme graph D(d, k) has vertex set V = Zy x X*, X = Z;, d > 2,
where k is an odd integer. Vertex u = @;Z122..Zx—12% is adjacent to
vertices of the sets:

{urs1 | Yks1 = G T4 1Tk TR—1 - . . T3T2} (11)
{uo | wo = a + 152k 1Tk—2 ... T1Z0} (12)

It has degree A = 2d, diameter D = k (see [8]) and order

N=2 (%)D (13)

The edge-coloring we propose is the following: If adjacency is according
to (11), that is for edges (u,uk+1), give color z; + k41 (modd) — d, and
if adjacency is according to (12), that is for edges (u,up), give color zg +
zi (modd). Obviously, the color of (u,ug+1) coincides with the color of
(uk+1,u) and the color of (u,up) coincides with the color of (ug,u). Hence,
the colors of the edges (u, ui +1) belong to the set {—d, -d+1,...,-2,-1}
and they are all different. Furthermore, the colors of the edges (u,up)
belong to the set {0,1,...,d} and they are also all different. Therefore, we
have edge colored the Delorme graph with 2d = A colors.

5 Edge-coloring of T(d,k) graphs

We consider the graph T'(d, k), proposed in [15], where & is an odd integer,
whose vertices are represented by the sequences a;ziz3...xzk—_1x%, with
a € Z3, x; € Zgy41, such that ; # Zip1, 1 £ 1 < k—1. Vertex u =
0;z1T2 ... Tx—127k is adjacent to the vertices of the sets:

{vk+1 | V41 = 0; Tk 1ZkTk—1 - - - T3T2} (14)
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{ﬂo l iy = 1; o2y .. .:L‘k_z.’llk_l} (15)
{gla=1z120.. . 242k} (16)

and vertex % = 1;2,Z5. .. Tx_ 12k is adjacent to vertices of the sets:

{uks1 | vks1 = 0;Z2%3 - - - Tk Thyr } (17)
{0 | 9o = L; Zp—1Zk—2 ... 2170} (18)
{ulu=0z122... 7124} (19)

Such a graph has degree A = 2d + 1, diameter D = k (see [15]) and order:

mEHEDT e

The edge-coloring we propose is the following: If adjacency is accord-
ing to (14), that is for edges (u, vk+1),we give color f(zx,Zr41) + f (z2,21)
(modd) — d; if adjacency is according to (15), that is for edges (u, o),
give color f(z1,%0) + f(Zk—1,2k) (modd); and if adjacency is according
to (16) or (19), that is for edges (u,%) or (@,u), give the color d. Like-
wise, if adjacency is according to (17), that is for edges (&, Uk+1), give color
f(@k, Te41) + f(22,21) (modd); if adjacency is according to (18), that is
for edges (1, %), give color f(z1,z0) + f(Tr_1, zx) (modd) — d. The edge-
coloring is well defined since the color of (u, vk41), (1, @), (u, &), (@, 1),
(ﬁ,'l-)O) is the same as (vk+lru)1 (ﬁo,u), (ﬁ:u)’ (uk-l-l)ﬁ)a (1—10)'&): respec-
tively (the proof is similar to the proof seen in Section 3). Notice that
f(zk, Th41) + f(22,21)(modd) — d belongs to {~d,—~d +1,---,—1} while
f(z1,%0) + f(zx-1, 2 )(modd) belongs to the set {0,1,---,d — 1}. Finally,
color d does not belong to either of these two sets. So, we have edge-colored
the T'(d, k) graph with 2d + 1 = A colors.

6 CONCLUSIONS

In this paper, we describe optimal edge-colorings for some graphs that im-
prove almost all of the previous results when D is large (see the previous
results in Section 2). Furthermore, some of the results we present here
could even be improved by adding vertices without increasing either the
degree or the diameter (see [11, 14]). Next, we give a comparative table
with the best orders, for the case of large diameters.
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D even odd
K1 = A
D D-
N=(8)"+(%"" N=2(3)"
Kautz graph Delorme graph
even
D D-1 D D-1
N=(2) +(3) N=(3)"+(3)
Bond graph Kautz graph
N= () F (a5 FT ) N = (ap) (437
Bond graph T(d, k) graph
odd
N = (4 (221)7
Sequence graph

Graphs studied in this paper are displayed in boldtype.
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