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ABSTRACT. The following problem is formulated:

Let P(G) be a graph parameter and let k& and £ be integers
such that k£ > € > 0. Suppose |G| = n and for any two k-
subsets A,B C V(G) such that |A N B| = £ it follows that
P({A)) = P({(B)). Characterize G.

We solve this problem for two parameters, the domination
number and the number of edges modulo m (for any m > 2).
These solutions extend and are based on an earlier work that
dated back to a 1960 theorem of Kelly and Merriell.

1 Imtroduction

In 1960 Paul Kelly and David Merriell [KM] proved the following theorem,
with the convention that (A) is the induced subgraph on the vertex set A.

Theorem A. Let G be a graph on 2n vertices such that for every n-subset
A, (A) ~ (V\A). Then G or G belongs to the class

{K2n; Kn,ﬂy nKj, K,, x K, 204}.

a

Although this theorem carries the flavor of classical graph theory no
elaborations of this elegant result can be found in the literature. Recently
[CA] closely related problems were solved using connectivity of the Kneser’s
graphs.

Recall the definition of the Kneser graph K(n,k,£) whose vertex set is
the set of k-subsets of {1, 2, ..., n}, namely [n]*, two vertices being adjacent
if the corresponding k-subsets intersect in exactly £ elements. Clearly n >
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k > € > 0 and we shall call a triple (n, k, £) trivial if either 2k — ¢ > n
in which case K(n, k, £) contains no edges, or (n, k, ) = (2k, k,0) in which
case K(2k,k,0) is a matching, and this is the exceptional case related to
the Kelly-Merriell theorem.

Theorem B. [CA] K(n, k, £) is connected iff (n, k, £) is not & trivial triple. O

The main contribution of theorem B is that it allows one to deduce that a
property that holds for any two subsets A, B C V such that |A| = |[B| =k,
|AN B| = ¢, |V| = n and (n,k,£) is not trivial, holds for all k-subsets
of V. Thus using theorem B it was possible to prove a “completion” to
the Kelly-Merriell theorem, (here e{(A) denoted the number of edges in the
induced subgraph on vertex set A).

Theorem C. [CA] Let n > k > £ > 0 be integers such that 2k —€ < n. Let
G be a graph on n vertices such that for A,B C (G), |A|=1|B|=k 2> 2,
|AN B| = ¢ it follows that e(A) = e(B), then the following hold:

@) if (n,k,8) € {(k+1,k,k —1),(2k,k,0)} then G is regular.
@) if (n,k, &) & {(k+1,k,k —1),(2k, k,0)} then G € {Kn,Kx}. O

Theorem C suggests consideration of a larger class of graph invariant
called complete parameters, which we define below.

Let P(G) be a graph parameter (e.g., number of edges, chromatic num-
ber, independence number, domination number). We say that P(G) is a
complete parameter if for every k > 2 there exists two real numbers ax < b
such that if [V(G)| = k then P(G) € {ax, bx} iff G € {Ky, Ki}. Thus e(G)
is a complete parameter with ax = 0 and bx = (§). The chromatic number
is a complete parameter with a; = 1 and b = k, and so are the indepen-
dence number and the clique number. On the other hand the domination
number y(G) is not a complete parameter, nor is the number of edges (mod
m) for certain values of m.

A weak version of Theorem C for complete parameters is given by:

Theorem D. [CA] Let P(G) be a complete parameter, and let k > 2
and € > 0 be fixed integers such that k > €. Suppose H is a graph
on n vertices such that for every pair of k-subsets A and B satisfying
|ANB| = £ the following equality holds: P{(A) = P(B). Then forn > N(k),
H e {K.,K.}. n]

In Theorem D, N(k) = max{R(k,k),2k + 1} is a valid choice, where
R(k, k) is the classical Ramsey number for monochromatic K.

The general characterization problem that we state here is:

Problem 1. Let P(G) be a graph parameter (invariant) and let k > £>0
be integers. Suppose |G| = n and for any two k-subsets A, B C V(G) such
that |AN B| = £ it follows that P(A) = P(B). Can we characterize G?
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We shall study two incomplete parameters (after Theorem D), which are
the number of edges modulo m in the induced subgraphs of order k and
the domination number in the induced subgraphs of order k. For the first
parameter e, (A) = e(A) (mod m) we give a complete solution providing
|G| > max{R(k, k), 2k+1}. For the second parameter y(G) we shall give a
complete solution for the cases k = 2,3 and for & > 4 a complete solution
providing |G| > N(k). Lastly our notation will follow that of Bollobés
[BOJ.

2 The nunber of edges modulo m

In this section we consider the incomplete parameter e,,(A) = e(A) (mod
m) which is the number of edges modulo m in the induced subgraph on the
vertex-set A.

We shall denote by e(v: A) the number of vertices in A adjacent to the
vertex v & A.

Our main result is that for |G| > max{R(k, k), 2k+1} the graphs tha.t sat-
isfy the constraints of problem 1 belong to the family {Kp, Ky, Ko,5, Kao,5}-

We need two lemmas of some interest by their own.

Lemma 1. Let k,m > 2 be integers and G be a graph on at Jeast 2k + 1
vertices such that for any two subsets A, B C V(G), |A| = |B| = k it follows
that e(A) = e(B) (mod m). Assume further that G contains an induced
K. Then one of the following cases occurs:

1) G=K,.
2) k=1 (mod m) and G = K .
3) m=2,k=1 (mod 2) and G = K, ;.

Proof: Denote by A = V(K}) and observe e(A) =0 (mod m).

(1) Suppose k < m. Consider v € V\A.

If e(v: A) > O then either v is adjacent to all vertices of A, but then

foreachuec Ae(B) =e{((A-{u})U{v})=e(A)+k—-1=k—-1£0
(mod m), or there is a vertex u € A which is not adjacent to v and

then e(B) = e{(A — {u}) U {v}) = e(A) + e(v: A) = e(v: A) £ 0
(mod m) and in both cases e(B) # e(A) (mod m). Hence for each

v € V\A e(v: A) = 0. Suppose now u,v € V\A are adjacent. Then

for uj,u2 € A and B = (A\{u1,u2}) U {u,v} we get e(B) =1
(mod m). Hence also e(V\A) = 0 and we conclude that G =

(2) Suppose k > m + 1. Consider v € V\A.
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Let e(v: A) =t, 0 < t < k and write uy,u,...,u. for the vertices in
A adjacent to v and v, v3, . . . , vg—¢ for the non-adjacent vertices. Set
By = (A\{u1})U{v}), B2 = (A\{v1})U{v}), then e(By) = e(B2) —1.
Hence e(B;) # e(B2) (mod m).

Hence we may assume e(v: A) =0 or e(v: A) =k.

Denote by C = {v € V\A: e(v: A) = k},and D = {v € V\A: e(v: A)
= 0}.

Observe that CUD =V\A and |C|+|D| 2 k+12>3.

It is clear that if k # 1 (mod m) then C = ¢ for otherwise if v € C
and u € A then for B = (A\{u}) U {v}), e¢(B) = k—1 # 0 (mod m).
Suppose |C| > 2 (hence k = 1 (mod m)) and let uj,uz € A, v1,v2 € C,
B = (A\{u1,u2}) U {v1,v2}). Then clearly we obtain

S et e

But we must have e(B) = 0 (mod m) and also k = 1 (mod m) which is
possible only if m = 2 (since 2k —2 = 2k —4 = 0 (mod m)) and C induces
an independent set in G.

Suppose |D| > 2, uj,u2 € A, v1,v2 € D and (v,v2) € E(G). Then for
B = (A\{u1, u2}) U {v1,v2}) we get e(B) =1 =1 (mod m), hence D also
induces an independent set in G.

Now suppose v; € C, v2 € D and (vy,v2) ¢ E(G) (and clearly k = 1

(mod m) since C # ¢) and let uy,up € A. Then for B = (A\{u;,u2}) U
{v1,v2}) we get e(B) = k — 2 # 0 (mod m). Hence for every u € C and
v € D it follows that (u,v) € E(G). Now we can conclude lemma 1.

If |C| = 0 then as D U A forms an independent set in G it follows that
G=K,.

If |C| = 1 then k =1 (mod m), DU A is an independent set in G and
G= K1,,. (fOl' each BCV, |B| =k, (B) € {-Kk, K1_;¢_1}).

If |C| > 2 then m =2, k=1 (mod 2), D' = DU A is an independent set
in G, C is an independent set in G and G is a complete bipartite K, (for
each Be V, |B| =k e(B) =0 (mod 2)). D

Lemma 2. Let k,m > 2 be integers and G be a graph on at least 2k + 1
vertices such that for any two subsets A, B C V(G), |A| = |B| = k it follows
that e(A) = e(B) (mod m). Assume further that G contains a Ki. Then
one of the following cases occurs:

1) G=Kn.
2) k=1 (mod m) and G =K1, = K1U K.
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3) m=2,k=1 (mod 2) and G =K, = K, U K,.

Proof: Consider the complement G. Clearly G contains an induced K

and also e(A) = (5) — e(A) for each k-subset A of V(G). Hence for any

two subsets A, B C V(G) e(A) = e(B) (mod m). Now by lemma 1 the

structure of G is known and taking complements we are done. 0
We can now state and prove the main theorem of this section.

Theorem 1. Let k, ¢, m be integers such that k,m > 2 and k > £ > 0
and let G be a graph on n vertices n > R(k,k) for k >4,n> 7 for k=3,
n 25 for k=2.

Assume for any two k-subsets A,B C V(G) such that |AN B| = € it
follows that e(A) = e(B) (mod m). Then one of the following cases occurs.

1) G € {Kn, Ky}
2) k=1 (mod m) and G € {Kyn-1,K1n-1}
3) m=2,k=1 (mod 2) and G € {Kap, Ko}, a+b=n.

Proof: Observe first that |G| = n > max(R(k, k), 2k + 1) hence the con-
ditions of lemma 1 and lemma 2 are satisfied and there exists either K ) OT
K. inG.

Also since n > 2k+1 it follows that (n, k, £) is a non-trivial triple and the
corresponding Kneser’s graph K(n, k, £) is connected. But now it follows
that the congruence e(A) = e(B) (mod m) for |a N B| = ¢ spreads out to
all k-subsets of V(G), and combining lemma 1 and lemma 2 we are done. O

Remark. The condition |G| > max{R(k, k), 2k + 1} in theorem 1 can’t
be replaced by |G| > 2k since e.g., for m =1 (mod 2) and k = 0 (mod 2)
any graph G on 2k vertices in which for each vertex u, deg u = 0 (mod m)
satisfies for (n, k,£) = (2k, k,0) the congruence e{A) = e(V\A) (mod m)
as can be checked. This holds as well for the Kelly-Merriell graphs.

It is an open problem whether we can replace R(k, k) by 2k+1 in theorem
1, but there are few evidences that for fixed m and sufficiently large k such
that m | (%) this might be true, due to some recent results in zero-sum
Ramsey theory (see e.g. [AC]).

3 The domination number

Recall first that the domination number, denoted by v(G), is the minimum
cardinality of a set § C V such that any vertex u € V\S has a neighbor
in S.

Unlike the parameter e(G) for which e{4) = e(B) & e(A) = (B)
for A,B C V(G), |A| = |B|, (and hence the implied congruences), for
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the domination number this complementary relation is far from true, e.g.,
v(Kn) = Y(K1n-1) = 1 but y(K,) = n and y(K1,n—1) = 2. Observe also
that for any graph G containing a spanning star it follows that v(G) =1,
hence the domination number is not a complete parameter.

Our main theorem in this section is:

Theorem 2. Let k, € be integers k > € > 0, k > 2, and let G be a graph
on n vertices such that n > max{(k —1)2+1,2k+1} and for any k-subsets
A,B C V(G), |ANn B| = ¢ it follows that v(A) = v(B). Then the following
situations hold:

1) k =2 G € {Kn,Kn,2K2,C4}, the cases 2K, and Cj are valid only
for the triple (4,2,0).

2) k= 3! Ge {-I?ny Kn\tK2: 0<t< I_%J)2K21K3,3v K3 X K2,2K3, CG:
3K2, Ks\ZKl,g}, the cases K3,3, K3 X Kg, 2K3, Cs,3K2 and Ks\2K1,2
are valid only for the triple (6,3,0).

3) k=0 (mod 2), there exists a finite family of graphs Fp(k) such that
G € {Kn, K \E(H): H € Fo(k)}

4) k=1 (mod 2), there exists a finite family of graphs Fi(k) such that

G € (B Ka\tK»,0<t < lg |, K \E(H): H € Fy(k)}.

Proof: For fixed k let N(k) = max{(k — 1)2 + 1,2k + 1} and let G be
a graph on n vertices, n > N(k), satisfying the conditions of Theorem 2.
Observe that the condition n > (k — 1)2 + 1 and the celebrated Ramsey
type theorem of Chvatal [CH] implies that G contains either K1 x—1 or Ki.
Hence by the conditions of theorem 2 and using Theorem B we infer that
either for every k-subset A, v(A) = k in which case G = K, and we are
done, or for every k-subset A, v(A4) =1.

Hence from now we assume y{A) = 1 for all induced k-subgraphs of
G. Recall now the celebrated theorem of Erdés and Rado [ER] about A-
systems, which for graphs states that if G is a graph having at least k2 —k+1
edges then G contains either kK3 or K x (see e.g. [BO) p. 87-90). We shall
use this result to consider k-subsets in G and its complement G in order to
obtain more information on the structure of G.

Suppose G = K,\E(H) for any graph H for which e(H) > k% — k.

Then e(G) = e(H) > k? — k + 1 and, by Erdés-Rado, G contains a
subgraph Q € {K1 -1, 5] K2}, (we need only | £] K> and not kK3).

Now we consider two possible cases according to the parity of k.

Case 1. k=0 (mod 2).
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Then |V(Q)| = k and clearly (@) > 2 because in any case the k-subset
V(Q) induces in G a subgraph without a spanning star, contradicting the
assumption above that for every k-subset A, A C V(G), v{4) = 1.

Hence if k = 0 (mod 2) and G a graph on n > N(k) vertices is rep-
resented by G = K,\E(H), we infer that e(H) < k2 — k and |V(H)| <
min{n, 2(k? — k)} and we can now define the required class Fp(k) as fol-
lows:

Fo(k) ={H: e(H) < k? — k,|V(H)| < 2(k® — k) and for
N(k) £n < 2(k* — k) if G = K, \E(H)
then for every k-subset A of V(G), v(A) =1}.

It follows from the reasoning above that for every n > N(k) if k = 0
(mod 2) and G satisfies the conditions of Theorem 2 then G € {K,, K,\
E(H): H € Fo(k)}.

Observe that the actual construction of Fp(k) is a complicated task but
it depends only on k from complexity point of view.
Case 2. k=1 (mod 2)

Recall the possibilities for Q@ € {K1,k—1, 551 K>}

If G contains K k-1 then G contains a k-subset A without a spanning
star and y{A) > 2 a contradiction as before. Also if G contains the subgraph
.3 K, U P; then again G contains a k-subset A without a spanning star
and y(A) > 2, a contradiction.

Moreover, for k =1 (mod 2) and G = Kn\tK3, 0 <t < |3], it is easy to
verify that G has the property that for every k-subset A of V(G), v(4) =1
as required.

Hence if k = 1 (mod 2) and G a graph on n > N(k) vertices is repre-
sented by G = K,\E(H), we infer that either H = tK; or e(H) < k2 — k,
[V(H)| < 2(k* — k) and we can now define the required class Fj(k) as
follows:

Fi(k) ={H: e(H) < k* -k, |V(H)| < 2(k? — k) and for
N(k) £n < 2(k* — k) if G = K,\E(H)
then for every k-subset A of V(G), y(A) =1}.

It follows from the reasoning above that for every n > N(k) if k = 1
(mod 2) and G satisfies the conditions of Theorem 2 then G € {Ky, Ky \tK>
for 0 <t < |3), Kh\E(H): H € Fi(k)}.
Again, constructing Fj(k) is time consuming but depends on k only.
The cases k = 2,3 were completely determined by a little more work. In
case k = 2 all graphs belong to the Kelly-Merriell class, but for k = 3 there

63



exists an exception G = Kg\2Kj 2 which is a valid graph for the triple
(6,3,0) but which doesn’t belong to the Kelly-Merriell class. It is also easy
to see that for each k and any graph H on less than -'5 edges G = K,\E(H)
is a valid choice and H € F;(k) i = 0,1, showing that |F;(k)| grows rather
fast. (]
Concluding Remarks. The decision problem: “Does G satisfy the re-
quirements of Problem 1” can be solved using trivial brute-force method in
time c(k)n*, and thus is polynomial for fixed k.

The results mentioned in theorem C and theorems 1-2 show that for these
parameters the above mentioned decision problem can be solved, working

on G, in time O(JE(G)|) + ¢(k), where c(k) a constant that depends on k&
only. For an important progress see the recent papers [CY1], [CY2].
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