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ABSTRACT. We derive upper bounds for the number of edges in
a triangle-free subgraph of a power of a cycle, extending results
of an earlier paper by Bondy and Locke. In particular, the
solution found for the case m = 20 is a decomposition of 3C2°
into odd complete graphs.

Introduction

We recall some of the terminology which was introduced in [1]. For positive
integers m and n such that n > 2m + 1, we denote by C,, ,, the graph with
vertex set {0,1,... ,n—1} and edge set {ij : i —j = +k( mod n),1 <k <
m}; the graph Cp, » is a circulant, the m-th power of the n-cycle C} », and
is sometimes denoted C*. For a graph G and a positive integer x, we write
zG for the graph obtained from G by replacing every edge by z parallel
edges. Let Ty, ,, be a triangle-free subgraph of Cy, 5, with the maximum
number of edges, and put

s BT | _ | ETng) |
™" | E(Cm,n) | mn

If n =2m+1, Gy, » is isomorphic to the complete graph K,,. In this case,
by Turén’s theorem [3],

| BT 1= | 5| =

and hence
n+1 m+1

bmin = on  2m+1
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For n >> m, Chung and Trotter [2] prove that

5862 — \/'<t,,.,.<5t1‘/_ ~ 612.

Chung and Trotter’s lower bound results from alternately colouring d ver-
tices along Cp,» White, followed by d vertices black for a suitable choice
of d. This colouring induces a bipartite subgraph, Bmn 4, of Crnn. The
maximum value of | E(By, 5,4) | is attained when

d=d,,,=l0.5+ (m;-l)J and 2d|n.

Aaron Meyerowitz (personal communication) noted that there are two
values of d which achieve the maximum value of | E(Bmmn,4) | for some
specific m. We give a short argument to demonstrate this.

Let fm,a= 21| E(Bmn,a) |- Then

m—d
fma= (Ez-}- Z(d—’))
=¢1_i(d(d+1) +(m_d)d_(m—d)(m—d+1))

2 2
m2+m
=2m—-d+1- 5
Thus .
m2+m
fm,d+l—2m—d——2d+2.
Now,
fmd = fmd+1
2 2
<=>—d+1—m ;'m=—d—m ;_m

<= 2dd+1)=m24+m
= 22d+1)?=(2m+1)2+1.
This last equation is a Pell equation in the variables a =2d+ 1 and 8 =
2m + 1. Solutions are given by
=1, a1=5, fo=1, b1 =7, ait2=6aiy1 — o, Biy2 =601 — fi.
The first few values of m for which there are two choices of d are thus
m=23, m=20and m = 119.

In (1], Bondy and Locke introduced a method to compute a good upper
bound on ¢y .. In the case 2d | n, the upper bound coincides with the
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lower bound and thus exact values of t,, » were calculated for 2 < m < 16
in these cases.

In this note, we establish similar results for 17 < m < 24. We use the
same general method as in [1). The upper bound will be derived from a
linear program. The method used in that paper generated O(2™~2) con-
straints, tested each constraint to see if passed through the proposed primal
solution, B n, and then ran a linear program on these constraints. For
example, in the case m = 16, approximately 2!¢ constraints are generated,
but only 353 constraints are needed for the linear program. Of these, only
10 actually show up in the dual solution that was found.

To extend the values of m for which we can compute the upper bound, it
becomes necessary to reduce the number of constraints to which we apply
the complementary slackness test. To avoid storage and time problems, it
would also be desirable to reduce the number of constraints that are used in
the linear program. The results in [1] were obtained by using a mainframe.
An additional goal of this project was to trim the work down sufficiently
that it became possible to use a personal computer. The programming was
done in maple using exact arithmetic and the revised simplex algorithm
(rather than maple’s simplex package).

Upper Bounds

Again, we recall the method of [1]. Our goal is to find a suitable integer z
and a decomposition of zC,, ,, into edge-disjoint complete graphs and from
this decomposition determine the upper bound for the size of a largest
triangle-free subgraph of C,,, .. We say that an edge ij of C,, , is of type
k,1 <k <m,ifi—j=+xk( modn). There are exactly n edges of type
k in Cp 5 for each k, 1 < k < m. Let =i denote the proportion of these
edges belonging to the triangle-free subgraph Ty, n, 1 < k£ < m. Then

tm'

| ETna) | _ Zz

We derive an upper bound ¢, for ¢ n, valid for all n > 2m+-1, by deriving
an upper bound for Y} | z.

Let K[ay,az,...,a,] be the complete subgraph of Cy, , With vertex set
{a1,as,...,a,}, where each a; is a nonnegative integer and a; < as < --- <
a, < a3 +m. Consider the rotations K[ay + y,a2 + 4, ... ,ar + ] of this
graph, where 4 = 0,1,... ,n — 1, and additions are performed modulo n.
These n complete graphs together cover each edge of type k precisely once
for each each pair 4,7 such that 1 < i < j <r and a; — a; = k. On the
other hand, by Turén’s theorem, each of these complete graphs contains

at most I.';—z_l edges of Ty, ». Thus, K[ay,as,...,a,] determines an linear
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inequality I[ai,as, ... ,ar] in the zi’s, namely

Y Tae < l’;J :

1<i<j<r
For instance, I[0, 1,2, 3, 5] is the inequality
3zy + 3z2 + 223 + x4 + 25 < 6.

In each Klay,as,...,ar], we may assume that a; = 0 and thus that
{e1,a2,...,a,} € {0,1,...,m}. Even subsets (of cardinality greater than
two) do not help, since K2, can be (2a — 2)-covered by copies of Kaq—1
and the resulting constraints are just as strong. Thus we need only consider
2™-1 subsets.

We are only interested in the those inequalities that are tight at the
proposed primal solution B n 4, Nnamely

ox = 3—1(1,2,3,... d—1,d,d—1,...,2d—m).

In [1], each of the 2™~ subsets of odd cardinality was tested. To save some
calculation time, it was noted that

Ifay,az,... ,a62r+1] and I[0, azr41 — G2r, G2r41 — G2r—1, ... ,Q2r+1 — G1]
are the same inequality (04)

and thus we may assume that 2a,+1 < a3 + azr4+1. Thus, we check approx-
imately 2™~2 constraints.

For m = 16, this is a large number of constraints to generate and test.
We now show that this number can be severely reduced. For the first
few values of m, the inequalities I[ay, a, ... ,a2r4+1] Which are tight at the
primal solution led to the following observation.

Observation
I[ay,a2,... ,a2r4+1] is tight at the proposed primal solution if and only
if for any set S of d consecutive integers, chosen from {0,1,2,...,m},

I {al,ag, - ,a2,-+1} Nns |€ {T,T-l— l}.

We restate this in a format that is useful for implementing on a computer,
allowing I[ay, az, ... ,a2r+1] to be tested in O(r) steps without generating
the inequality. Simply generating the inequality takes O(r2) steps. A fur-
ther saving is achieved by grouping inequalities and testing several at the
same time.

Theorem 1. I[ay,a,...,a2r41] is tight at the proposed primal solution
only if
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(i) {al’a2)"' ’a‘l'} c {0:1:'-- ’m-d} and {ar+2:af‘+3s--- aa21'+1} c
{d,d+1,...,m};

(ii) furthermore, a,;j41 > aj+d, for j=1,2,...,7r and a,y; < ajy1 +
d-1,forj=1,2,...,r}.

For a given r, we generate two subsets
S1={ay,...,a,} C{0,1,... ,m—d}
and
S2 = {@r42,ar43,... 62041} C {d,d+1,... ,m}.

We have already noted that we may assume that a; = 0. We now test
whether or not the 2r values chosen satisfy condition (ii) of Theorem 1.
If not, we generate other sets (usually in a nested fashion). If the values
chosen so far do satisfy Theorem 1(ii), then we generate the inequality
I[al,ag, Y BT TR ag,.+1] for each a,y1 with a,4 < %agﬂ.l, Qry1 > Ay
and Gryy 2> Qg —d+1.

During the running of the program, it became obvious that if (0;) is
avoided and if a; = 0, then very few of the generated inequalities were
the same. For example, I[0,3, 5,6,15,19,20] and [0, 1,3, 6,15,16,20] are
identical, but, for m = 20, this is the only inequality generated twice. This
permits a time saving during the setup phase, since we do not need to check
that each generated inequality is distinct from the previously generated
inequalities. However, it may add a few columns to the linear programming
problem.

The number of inequalities generated by this method is at most
m—d+1
m m—d\ fm—d+1
wn-9 3 (72 (M)

< (2d+2-m mA i —d+1\?2
- 2 Z r

r=0
< 2d+2—m) 2m —2d+2
= 2 m-d+1 J°
We compare this with the number of distinct inequalities through the pri-
mal solution in Table 1. It is obvious that we have grossly overcounted

the number of inequalities and that (ﬁ:ﬁ‘ﬁz) is closer to the true order

of magnitude. The factor ( 2,'::3';.*1'2) helps explain why the number of in-

equalities makes a large jump when m —d+1 increases. One should observe

the difference between the actual of number inequalities and the column for
om—2,
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m | d actual [m—d+1 2:;31*;!) (2tz=m) [(ME=m) (zg;gﬁl) gm-2
2 2 2 1 2 4 1
3 | 2 3 2 6 1.5 9 )
4 3 5 2 6 2 12 4
5 4 6 2 6 2.5 15 8
6 | 5 8 2 6 3 18 16
7 5 17 3 20 2.5 50 32
8 6 23 3 20 3 60 64
9 7 26 3 20 35 70 128
10 | 7 65 1 70 3 210 256
11 8 7 4 70 3.5 245 512
12 | 9 92 4 70 1 280 1024
13 10 104 4 70 4.5 315 2048
14 10 272 5 252 4 1008 4096
15 | 11 308 5 252 45 1134 8192
16 | 12 353 5 252 5 1260 16384
17 12 919 6 924 4.5 4158 32768
18 13 1045 6 924 5 4620 65536
19 | 14 1162 6 924 5.5 5082 131072
20 | 15 1288 6 924 6 5644 262144
20 | 14 3622 7 3432 5 17160 524288
20 |14& 15 | 701

Table 1

For m = 20 we stored a 20x1308 matrix. It is obvious that space con-
siderations become important. We can still run larger problems without
storing the system of inequalities. We use the revised simplex algorithm,
keep the basis matrix B and either B~ or the eta-matrix factorization of B.
For each pivot, regenerate the inequalities until a suitable entering column
is found. For many of the pivots, we hope that the entering column will be
found near the beginning of the search through the possible inequalities.

This approach was used for the cases 21 < m < 24. We store B, B!,
a list Ty, ... , T, such that I[T;] corresponds to the i** column of B and,
for each T; we store a number p;, where p; is the number of inequalities
generated up to and including T;. The numbers p; are used to ensure that
the simplex algorithm does not cycle. Since we generate the T; in the same
order for each pivot, p; is simply the index for the column which would
correspond to I[T;] if we were to store the entire matrix. Thesets T, ... ,Tm
are stored for the purposes of verification of the solution. At this stage of
the process, one of the tests for redundant columns was removed since it
takes as long to perform the test as to decide whether the generated column
corresponds to an entering variable. One version of the linear program
was run which generated the T; from largest to smallest, but this version
generated more columns than were generated by running from smallest to
largest.

There are two seemingly reasonable ways to get an initial feasible solu-
tion. An obvious initial basic feasible solution is obtained by beginning with
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B = I and c an m-vector of ones. An alternate initialization is provided by

setting
Bn_, 0
B'""'( 0 ' 1)

and setting c to be the appropriate vector. We do not assume that any
of the inequalities in the solution for the case m — 1 are actually used in
the solution for the case m. However, this may save several of the initial
iterations. Of course, it is also possible that this might lead to a particularly
bad basic solution that we would not normally have hit.

It might be possible that some random choice of inequalities might pro-
vide a better initial solution for the simplex method. However, rather than
choosing a random set of inequalities, perhaps a better yet initialization for
case m might be to stretch the covering from case m — 1. Thus, for each
I[T;] obtained in case m — 1, use I[T}] for case m, where

Ti={(jeTi:j<diu{ij+1:5€Tinj>d}

A curious feature is that the 20 complete graphs from m = 20 when
stretched only gave rise to a rank 19 matrix. There would be no way to
choose one more constraint to obtain a rank 21 matrix. Even if there is a
column that can be appended to the stretched basis from the previous case,
it is not immediately obvious that the initial basis matrix thus formed will
give a non-negative solution.

However, we can combine the previous two ideas.
For m = 23, we started with

Bn 0
Bz"‘:(gz 1)'

and set up a special matrix A’ representing the stretched inequalities (called
Tgiretehed in appendix) obtained from the solution to the case m = 22. Each
of these inequalities satisfies the conditions of Theorem 1 and, therefore, is
an equality at the presumed primal solution. This will be true whenever
dmt1 > dn.

For each pivot, we look first at the columns of A’ before generating the
remaining inequalities. Since the number of pivots taken using this method
for the case m = 23 was 255 and the number of pivots taken for the case
m = 22 without this modification was 1278, it appears to have been a useful
refinement. This seems especially likely since a slight error in the first input
of Tgiretehed led to a significantly larger number of columns generated.

We note that dgs = 17 = da3 and thus the stretched inequalities from
the case m = 23 might not pass through the primal solution for the case
m = 24. However, the stretched inequalities approach for the case m = 24
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does indeed give fewer columns generated than we had for the case m = 21
with either of the two starting bases. It would seem that manipulating a
solution to the case m — 1 is a worthwhile enhancement for any case m.

The case m = 20 admits two values of d. In most cases there is only one
value of d, but 4/ (™) falls between two values d; and da. One of these will

be chosen as d. Let z! and z? denote the primal solutions corresponding
to d; and d3. It may be that taking the inequalities that are tight at both
z! and x2, together with a few extra inequalities (perhaps from triangles)
that are tight at z*, might speed up the computations even further. This
approach has not been tried by the author.

The coverings of C»; 5 starting from different bases cover each edge 20
times, and use many of the same complete graphs. This may suggest some
robustness to the solution process. The coverings of Ca3n starting with
the same basis, but favouring slightly different complete graphs, again use
many of the same complete graphs. But here we see some evidence that
conditions we impose can affect the complexity of the solution.

We note that the dual solutions are more complex than the primal so-
lutions. It would be nice to cover Cp, »n Wwith complete graphs so as to
minimize the total number of times each edge is covered, subject to the
covering being a solution to the dual problem. In the linear programming
approach, any solution is expressed in terms of rational numbers, and a
suitable multiple yields an integer covering. One could conceivably min-
imize the covering with an integer programming approach, although the
running time would probably be prohibitive.

We should perhaps note that the covering of Cag , obtained by the linear
program covers each edge three times. One might hazard a guess that
C119,n will also have a small covering.
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Appendix

n = 17 (819 inequalities) d =
ZT) T2 23 T4 T3 T T T3 T9T107117127137 14215216217
61[{0,3,13) 0,060000006 006000 0]-x< 12
21{0,3,14) 0,029000000 200 20,0, 0)x< 4
21[0,5,15) 0,000,20000, 20,000, 20, 0}x< 4
81[0,5,16) 0,000280000038000 0,8, 0)-x< 16
121[0,6,15) 0,0,0,0, 0,12 0,0,12, 0, 0, 0, 0, 0,12, 0, 0}x< 24
51{0,6,14) 0,000015050000035 00, 0]'x< 10
131{0,6,16] 0,0,0,0,0,130,0,0,13 0, 0, 0, 0, 0,13, 0]-x< 26
71[0,6,17) 0000070000700 0 0,0 7)x< 14
5[[0,1,10.12,17] 55003505055, 55 0,0, 0, 5, 5)x< 30
31(0,2, 7,14,17) 0,330308600 3,030 3, 3,0 3]'x< 18
21{0,2, 7,14,16) 0,400,204020,0 20, 4 0, 2 0]-x< 12
51{0,2,10,14,17) 0,55500550505005,5, 0, 5]-x< 30
31{0,3, 8,14,17) 0,0,603,3,03,3,030086,0,0, 3)x< 18
21(0,4, 8,13,17) 0,00,6200,24,000 40,00, 2)x< 12
101[0,1, 2, 9,13,14,17] 30,10,10,20,10, 0,10,20,10, 0,10,20,20,10,10, 10, 10}-x<120
21[0,1, 4, 8,13,15,17) 2,4,2,6,2,0,4,2,40,2 2 4, 2 2 2 2]x< 24
31[0,2, 3,10,13,15,17] 3,9633,0863,063 3,6 3,60, 3)-x< 36
40,40,40,40,40,40,40,40,40, 40, 40, 40, 40, 40, 40, 40, 40}-x<410
40 E‘._., z; <410
ar < %,—’;
m = 18 (1045 inequalities) d = 13
71[0,4,15) 0, 007000 0 0 0, 7, 0, 0, 0, 7,0, 0, 0)x< 14
1[0,5,15) 0, 0,0 0 1 0 0 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0}Jxx 2
61[0,6,16) 6, 0, 0,0 0 6 00 0 6 0 0, 0, 0, 0, 6, 0, 0].x< 12
1{0,7,17] 0,0 90 0 00 1, 0 0, 1, 0, 0, 0, 0, 0, 0, 1, 0]xs 2
41{0,7,18] 6, 0,0 0 0 0, 4 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4)x< 8
291{0,8,17) 0,0 0 0 0 0 029,29, 0, 0, 0, 0, 0, 0, 0,29, 0].x< 58
51{0,1, 7,14,16) 5 5 0 0, 0, 510 0, 5 0, 0, 0, 5 5, 5 5, 0, 0)x< 30
151[0,1, 8,14,18) 15, 0, 0, 15, 0, 15, 15, 15, 0, 15, 0, 0, 15, 15, 0, 0, 15, 15).x< 90
191[0,2, 7,15,17) 0,38 0, 0,19, 0,19,19, 0,19, 0, 0,19, 0, 38, 0, 19, 0).x< 114
111[0,2, 8,14,18) 0,11, 0,11, 0,22, 0,11, 0,11, 0,11, 0, 11, 0, 11, 0, 11].x< 66
251[0,2, 9,14,18) 0, 25, 0, 25, 25, 0,25 0,50, 0, 0,25 O 25 0, 25, 0, 25).x< 150
211{0,3, 6,16,17) 21, 0,42, 0, 0,21, 0, 0, 0, 21,21, O, 21, 21, 0, 21, 21, 0).x< 126
131{0,3, 8,15,18) 0, 0,26 0, 13, 0, 13,13 0,13, 0,13, 0, 0, 26, 0, 0, 13)x< 78
101{0,3, 9,14,18] 0, 0, 10, 10, 10, 10, O, 0, 20, 0, 10, 0, O, 10, 10, O, 0, 10).x< 60
111[0,4, 5,16,17) 22, 0, 0,11,11, 0, 0, 0, 0, 0, 11, 22, 11, 0, 0, 11, 11, 0].x< 66
9I(0,4, 7,15,18) 0, 0,18, 9, 0, 0, 9, 9, 0, 0, 18, 0, 9, 9 0, 0, 9x< 54
171[0,5, 6,16,18) 17,17, 0, 0, 17,17, 0, 0, 0, 17, 17, l7 17, 0, 0,17, 0, 17).x< 102
81[0,1, 2, 6,13,14,17) 24, 8 8,16, 8, 8 8 8 0, 0,16, 16, 16, 8, 8 8, 8, 0).x< 96
104,104,104,104,104,104,104,104,104,104,104,104,104, 104, 104,104,104,104).x< 1128
13 = %
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80

133

C19

)))))))))))))))))))

19 (1162 inequalities) d = 14

98,98,98,98,98,98,98,98,98,98,98,98,98,98,98,98,98,98,98).x< 1120

14,15,18)
14,15,17)

18]
19)
18
19
19
19]
19]
19
19
18
19]
18]
19]

————— =~ o~ &

1
2
2

1[0
910
510
21[0

m = 20 (1288 inequalities) d

222666”
VIVIVIVIVIVIVI
TET=E T
.......
.......

7, 15, 16, 19)

15, 20]
17, 19)
16, 20]

10
1[0
1o
1o
1[0
1[0
1[0

3
H

C20

(3,3,3,3,3,3,3,3,3,3,3,333,3,3,3, 3, 3, 3] .x< 36
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15.

21 (3554 inequalities) d
(Solution using intial basis of By,

m
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incqualities generated = 108865, number of pivots = 996, inequalities generated per pivot = 109
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m = 22 (4101 inequalities) d = 16

711{o, 7,20) [0 00009 07,0 00007,0000 007, o0 0x<142
8710, 9,21] [0 000 0 0 0 0,87, 0, 0,87, 0, 0, 0, 0, 0, 0, 0, 0,87 0 x< 174
1221{0,10,21] [0 0 0 0 0 0 0 0 0122122, 0, 0, 0, 0, 0, 0, 0, 0, 0,122 0} x< 244
1{0,10,22} (o o0 0000902001010 000000.00 I1x 2
70i{o, 2, 7,18,20} [ 0140, 0, 0,70, 0,70, ©, 0, 0,70, 0,7, 0, 0,70, 0,40, 0,70, 0, 0).x< 420
1[0, 2, 8,18,20) [0 200010910120 100010 2010 0xX 6
1310, 3, 6,18,20) [ 013,26 0, 0,13, 0, 0, 0, 0, 0,13, 0,13,13, 0,13, 13, 0,13, 0, 0] x< 78
61{o, 3, 6,19,20) [6 012 0036 0 0 0 0 00 6 6 0 6 6 0 6 6 0, 0].x 36
431{0, 3, 7,19,20) [43, 0,43,43, 0, 0,43, 0, 0, 0, 0, 43,43, 0, O, 43,43, 0, 43, 43, 0, 0) x< 256
231{o, 3, 9,19,21) { 023,23, 0, 0,23, 0, 0,23,23, 0,23, 0, 0, 0,23, O, 23,23 0,23 0x< 138
7s1{o, 3,11,17,22) {0 07, 07,7, 0,7, 0, 015, 0, 0,75 0, 0,75, 0,75, 0, 0,75.x< 450
191{0, 4, 7,19,21) [ 0191919 0, 0,19, 0, 0, 0, 0,19, 0,19,19, 0,19, 0,19, 0,19, 0] x< 114
481{0, 4,10,18,23] {0 0 0,9, 0,43 0, 43, 0,43, 0,43 0,438 0, 0, 0, 96 0, 0, 0, 48.x < 288
7810, 4,10,19,22) {0 07,7, 0,7, 0 07,7, 0,7, 0, 0,78 0, 0,78 73 0, 0, 78x< 468
2110, s, 8,20,22) [ 0.21,21, 0,21, 0, 0,21, O, 0, 0,21, 0, 21,21, 0,21, 0, 0,21, 0,21 .x< 126
ssifo, 5, 9,19,22] { o, o 555535, 0 0, 0,855, 0, 05555 0 0,55 O, 55 0, 0,55 .x< 330
8to, 8, 9,20,22) (o0 8 0880003808038 08 0 8 0 0 8 0 §x< 4
111{0, 5,10,20,22] { 01,0 0220 0 0 022 011, 0, 0,11, 0,11, 0, 0,11, 0, 11)x< 66
o, 6, 8,20,27) {01400 0 7 0 7 0,0, 0,7 014, 0, 7, 0, 0, 0, 7, 0, 7x< 42
10, 1, 2, 8,16,17,21] (153, 51, O, 51, 51, S1, 51,102, 51, 0, O, O, S1, 51,102,102, 51, O, 51, 51, 51, 0] x< 612
481[0, 1, 2, 9,16,17,22) (144, 48, 0, O, 48, 43, 96, 96, 43, 0, O, O, 48, 43, 96, 96, 48, 0, 0, 48, 48, 48] x< 676
2f0, 1, 2,1016,17,21) {6, 2, 0, 2, 2, 32, 2 32 2 2 2.0, 0, 32 4 4 2 0 2 2 2 0x< 24

(332,352,352,352,352,352,352,352,352,352,352,352,352,352,352,352,352,352,352,352,352,352] .x <4642

czz:%%

inequalities generated = 169058 number of pivots = 1278 inequalities generated per pivot s 132

m = 23 (4283 inequalities) d = 17
Using slightly incorrect version of Tj5retched,

3161(0, 7,21) 0, 0,0 0 0 0315 0, 0, 0 9 0 0316, 0, 0, 0, 0, 0, 0315 0, 0]x< 632
s511{0, 8,21) 0, 0,0 0 0 0 085, 0, 0, 0, 0551, 0, 0, 0, O, 0, O, 0551, O, 0.x< 1102
2581[0, 9,21] 0, 0,0 0 0 0 0 032, 0 028, 0, 0, 0, 0, 0, 0, 0, 0,25, 0, 0)x< 516
2721(0,10,22) 6, 0 0 0 0 0 0 0 0272 027 0, 0 0, 0, 0, 0, 0, 0, 0272, 0}.x< $44
2681(0,11,22) 0, 0,0 0 0 0 0 0 0 05%6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0263, 0].x< 536
1431[0, 2, 7,19,21) 0,29, 0, 0,143, 0,143, 0, 0, 0, 0,143, 0,143, 0, 0,143, 029, 0148, 0, 0)x< 838
17100, 2, 8,19,21) 0,34, 0 0,17, 0,34, 0,17, 0, 0)x< 102

1001(0, 3, 8,19,22) 0, 0,200, 0,100, 0, 0,100, 0, 0,000, O, 0,100, 0,100, 0,200, 0, 0,100, 0}.x< 600

[
[
(
[
[
{ 0,
t , 0, 0,17, 0,17, 0, 0,17, 0,17, 0, O,
{ [}
401[0, 4, 7,20,22) [ 0,40, 40, 40, O, 0,40, 0, © 40, 0, 40, 0, 40, 0}x< 340
(
[
[
(
[
[
[

o,
, 0, 0, 0, 40, O, 40, 40, O,
2051[0, 4, 8,20,22) 0,205, 0,410, 0, 0, 0205, 0, 0, 0,205, 0,205, 0,205, 0,205, 0,205, 0,205, 0].x< 1230
971[0, 4, 9,19,23) 0, 0, 0,194,97, 0, 0, 0,07,97, 0, 0, 0,97,97, 0, 0, 0,194, 0, 0, 0, 97).x< 582
1851[0, 4,10,19,23] 0, 0, 0370, 0,185 0, 0,185,185, 0, 0,185, 0,85, 0, 0, 0,70, 0, 0, 0,185).x< 1110

0, 0,150,150, 0,150, 0, O, 0,300, 0, 0,150, O, 0,150, O, 0,150,150, 0, 0,150.x< 900

0, 0, 0116, 0, 0,53 5, 0, 0,838, 0, 0,8, 0, 0, 0116, 0, 0, 0, 58}x< M8
, 10, 0, 9, 0, 0,10, 0, 10,10, 0,10, 0, 0,10, 0, 10).x< 60
0, 0,60, 0, 60, 0, 0,60, 0, 60}.x< 360

150![0, 4,10,20,23]
$81{0, 4,11,19,23]
1080, 5, 8,21,23) o, 10, 10, 0, 10, 0, ©
601{0, 5,10,21,23) o, 60, 0, 0,120, 0, 0, 0, 0, 60, 60, O, 60,
4101(0, 5,11,20,23) [ o, o410, 0410410, 0, 0410, 0,410,410, 0, 0410, 0, 0,410, 0,410, 0O, 0,410].x_<_ 2460
780, 1, 2, 4,17,18,20) 225,225,150, 75, 0, O, O, O, O, O, O, O, 7S, 7S, 73,225,150,150, 75, 75, O, 0, 0]x< 900
sifo, 1, 2, 4,17,19,20) [ 15,15, 10, S, 0, 0, 0, 0, 0, 0, O, O, 5, ©0,10,10,10,10,10, S, 0, 8, 0Jx< 60
8sifo, 1, 2,11,17,18,22) (253, 85, O, 85, 85, 85, 85, O, 65, 85,170, O, O, O, 65,170,170, 85, O, 85, 85, 85, 0].x< 1020
29I[0, 1, 3, 9,17,18,23) ( $8, 29, 29, O, 29, 83, O, 83, 88, 0, O, 0, o, 58, 29, 29, 53, 29, 0, 29, O, 29, 29].!5 M8
35210, 1, 3,10,17,18,23) (704,352,352, 0,352,352,704,352,352,352, 0, 0,352,352,352,352,704,352, 0,352, 0.357,352].!5 4224
941[0, 1, 3,11,17,13,23] [188, 94, 94, 0, 94,183, 94, 94, O, 94, 94, 94, 0, 84, W, 54,183, 94, 0, 94, 0, 94, 94}.x< 1128
[ 8 s s 3 9 8 8 9, 3 3 59 6 8 68 5,8 8 8 38, 8 1, s, 8).x< 19890
Here, column sums are s = 1445.

34
€1 = 35
inequalities generated = 86904, number of pivots = 747, inequalities generated per pivot = 116
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m = 23 (4283 inequalities) d = 17
Using corrected version of Tjiretched,

1330, 7,21) [0 0 0 0 9 0135, 0, 0, 0, 0, 0, 0,03, 0, 0, 0, 0, 0, 0,133, o, 0).x< 276
2031(0, 8,21} [0 0 0 0 o0 o 023 o 0 0 0283 0 0, 0, 0, 0, o, 0,203, 0, 0).x< 406
109i[o, 9,21) (o o 0 0 0 o o 0,10, o 0,109, 0, 0, 0, 0, 0, 0, 0, 0,109, 0, 0].x< 218
741{0,10,22] [0 0 0 0 000007 07, 00900 o0o0o0o0no 0, 74, 0).x< 143
1421[0,11,22) [ 0 0 0 000 0 0 0 024 0,0 0 0 0, 0, 0, o, 0, 0,142, 0}.x< 234
6sifo, 2, 7,19,21) [ 0130, 0, 0,65 0,65 0, 0, 0, 065 o065 0, 0,65 0,30, o 65, 0, 0].x< 390
100, 2, 8,19,21] [ o 2 000101001, o0 1, 0, 0,0 1,0 2 0 1, 0 0x£ 6
0lfo, 3, 8,19,22} [ 0. 080, 040, 0 0,40, 0, 0,40, 0, 0,40, 0,40, 0, 0,80, 0, 0, 40, 0).x< 240
161fo, 4, 7,20,22] [ 0 16 16,16 0, 0,16 0, 0 0 0 016 01616 0,15 o, 1s 0,16, 0l.x< 96
8210, 4, 8,20,22) [ 0.82 0164, 0 0 0,82 0 0, 082 o082 o6 o 82, 0,82, 0,82 0).x< 492
3alfo, 4, 9,19,23] [ 0 0 0663, 0 0 033,33 0 0, 0,333, 0, 0, 0,66, 0, 0, o, 33).x< 198
1031[0, 4,10,19,23) [ 0 0 0206 0103 0, 0103103 0, 0103 0,03, 0, 0, 0,206 0, o, 0,103].x< 618
601[0, 4,10,20,23) [ 0. o 6060, 0,60, 0, 0, 0120, 0 0,60, 0 0,60, 0, 0,60, 60, 0, 0, 60).x< 360
4lfo, 5, 3,21,23) [0 4 4,0 4,0 0 4 0,00, 0, 4, 0 4, 4, 0, 4 0, 0, 4, 0, 4x< 4
241{0, 5,10,21,23) [ 0,24 0 0,43 0 0 0 032424 0,24, 0, 0,24 o0, 24, 0, 0,24, 0, 24).x< 144
1641(0, 5,11,20,23) {0, 0164, 0,164,184, 0, 0,164, 0,164,164, 0, 0,164, 0, 0,164, 0,164, 0, 0,164).x< 934
301fo, 1, 2, 4,17,08,20) [ 90, 90, 60, 30, 0, 0, 0, O, O, O, O, 0, 30, 30, 30, 90, 60, 60, 30, 30, 0, 0, 0].x< 360
20, 1, 2, 437,1920) [ 6, 6 4, 2, 0 0, 0, 0, 0, O, 0, o, 2, 0, 4, 4, 4, 4, 4, 2, 0 0, 0x< 24

910, 1, 2,10,17,18,22] (87, 29, 0, 29, 29, 0, 29, 58, 29, 29, O, 29, 0, 0, 29, 63, 53, 29, 0, 29, 29, 29, 0).x< 348
SHO, 1, 2.11,17.1822)  [15, 8, 0, 5, 5, 5, 5 0, 5 510, 0, 0, O, 5, 10, 10, S, 0, 5 5 5 0.x< 60
13510, 1, 3,10,17,18,23]  [270,135,135, 0,135,135,270,135,135,135, O, 0,135,135,135,135,270,135, 0,135, 0,135,135).x< 1620
SSH[0, 1, 3.11,17,18,23] (110, S5, 55, 0, §5,110, 55, 55, 0, 85, 55, 85, 0, 85, S5, 55,110, 55, 0, 55, 0, 55, 55).x< 660
[575,575,sn,s7s,s7a,s1s,573,s'rs,sn,s73.s7s.s'la,sn.s73,510.573,513,573,578,313.575.573,5131.:snss

234
€33 = 391
inequalities gencrated = 31796, number of pivots = 255, inequalities generated per pivot = 125
1{0,5,9,20,23] was in the basis of solution, but with value zero.

m = 24 (12302 inequalities) d = 17

3stfo, 7,21] [0 0 0 0 0 0330 0 0 0 0 03, 0 0 0 0, 0, 0,3, 0, 0 0x< 76
191[0, 8,22) [0 0 0 0 0 0 015 0 0 0 0 019 0 0 0, 0 0, 0, 0,19, o, 0)x< 338
991(0, 9,22) [0 o 0 0 0 0 0 099 0 0 09,0 0 0, 0 0, 0, 0 0,99, o, 0).x< 198
151(0,10,22) [0 0 0 0 0 0 0 0 015 015 0 0 0, 0, 0, 0, 0.0 015 0 0x< 30
171f0,11,22] [0 0 0 0 0 0 00003, 0000900000010 0)x< 34
991[0,11,23) [0 0 0 0 0 0 0 0 0 019,89, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,99, 0)x< 198
361[0, 3, 7,20,22] [ o 363636 0, 03, 0 0, 0 0 03 0,3, 0,3, 03636 0,35 0 0x< 216
141[0, 3, 8,20,22] [ 014,14, 0,24, 0, 0,14, 0, 0, 0,14, 0,14, 0, 0,14, 0,14, 14, O, 14, O, 0).x< 84
191{0, 3, 9,20,23) {0 038 0 019 0 015 0,19 0, 0,19 0, 0,19, 0, 0,33 0, 0,19, 0)x< 114
231(0, 3,12,18,24] [0 0,23 0 04 0 0,23, 0 0,46 0, 0,23 0, 0,23 0, 0 23, 0, 0, 23).x< 133
301[o, 3,12,19,24] [ 0 0230 0,30, 0,3, 03, 0, 0,60, 0, 0, 0,3, 0, 0,30, 0,30, 0, o0, 30).x< 180
1s1[o, 4, 8,20,22) [ 015 030 0 0 015 0 0, 015 0,15 0,15 0,15 0,15 0,15 0, 0.x< %
211[o, 4, 8,21,23) [ 0,21, 0,42, 0, 0, 0,21, 0, 0, 0, 0,271, 0,21, 0,7, 0,21, 0,21, 0, 2, 0)x< 126
81fo, 4, 9,20,23) [0 0 8 8 8 0 0 0 80 80 08 0,8 0 0 8 8 0, 0 8 0)x< 48
sifo, 4, 9,21,23] [0 5 0 5 5009.@0s500 350350035 0S5.0s5 05 0x< 3
641[0, 4,10,20,24) [ 0 0 0123 0,64 0 0 0128 0, 0, 0,64, 0,64, 0, 0, 0,128 0, 0, o, 64].x< 334
7o, s, 7,20,22] [ 014 0 0 7 0, 7 0 0 0 0,0, 7 0,14, 0, 7, 0,0, 7, 0, 7, 0, 0x< 42
asifo, s, 7,21,22] (33,33 o 038 033 0 0 0, 0 0 03333,3, 0, 0 0,333, 0, oJx< 228
121fo, $,10,22,24] [ 012, 0 0,24 0, 0 0 0,12, 0,12, 0,12, 0, 0,12, 0,12, 0, 0,12, o, 12}x< 72
231[0, 5,11,20,24) £ 0 0 023232, 0 02, 013, 012, 02, 0 0, 0,232 0, 0, 0, 29x< 133
31[0, 5,12,19,24) [0 0 0 0 6 060 0006030000460 0 0o 3x< 18
3ifo, 6, 9,20,23] [ 0 0 6 0 0 3 003 023003%6003°003 .00 3 0)x< 18
3110, 1, 3,10,18,19,24] {62,31,31, 0,31,31,31,31,6231, 0 0, 0313131, 31, 62,31, 0,31, 0,31, 3)x< 32
861[0, 1, 3,11,18,19,24] {172, 86, 86, 0, 36, 85, 86,172, 0, 66, 86, 0, 86, 0, 86, 86, 86,172, 86, 0, 86, O, 86, 86).x<1032

8

(272,272,272,272,272,272,272,272,272,272,272,2 .272.277.27?,272,272,272.272,272,212,2?2,272,271].!$3901

- 6
en=5

102
inequalities generated = 70835, number of pivots = 350, inequalities generated per pivot = 202
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