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Abstract

A path of a graph is mazimal if it is not a proper subpath of any
other path of the graph. The path spectrum is the set of lengths of all
maximal paths in the graph. A graph is scenic if its path spectrum is
a singleton set. In this paper we give a new proof characterizing all
scenic graphs with a Hamiltonian path; this result was first proven
by Thomassen in 1974. The proof strategy used here is also applied
in a companion paper in which we characterize scenic graphs with
no Hamiltonian path.
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1. Introduction

A well-studied parameter in the field of graph theory is the length of the
longest path of a graph. Because computing this parameter enables one
to decide, for example, whether a graph has a Hamiltonian path, it is a
difficult parameter to compute. Continuing an arbitrary path by simply
wandering around in the graph may produce “wrong turns” which hinder
or prevent the extension of the path into a longest path. In this paper, we
are interested in determining those connected graphs in which “wandering”
from either end of an arbitrary path never fails to yield a longest path. We
call such graphs scenic graphs because every path in such a graph extends
to a longest path visiting the same number of vertices as a “scenic tour” of
the graph. Note that a longest path of a scenic graph is not necessarily a
Hamiltonian path; that is, a scenic graph may not be traceable.

A path in a graph is a sequence of distinct vertices in which consecutive
vertices are adjacent. The length of a path is the number of edges in the
path. A path P is a subpath of Q if the sequence corresponding to P
appears as a consecutive subsequence of Q. A subpath P of a path Q is
proper if P # Q. If P is a proper subpath of Q, then we shall say that P
extends to Q, Q ezlends P, or @ is an ezlension of P. A path is mazrimal
if it is not a proper subpath of any other path, or equivalently, if it has no
extension. The path spectrum of a connected graph G is the set of lengths of
all maximal paths in G. The concept of path spectrum was first introduced
by Jacobson et al. [3]. We define a connected graph to be scenic if its
path spectrum is a singleton. A graph with a Hamiltonian path is called
traceable.

A traceable graph is scenic if and only if every path is contained in
a Hamiltonian path. Graphs with this property were first characterized
by Thomassen [6] in 1974. The purpose of this paper is to give a new
proof characterizing all scenic graphs with a Hamiltonian path. The proof
strategy used here is also applied in a companion paper [4] in which we
characterize scenic graphs with no Hamiltonian path.

The notion of scenic graphs extends two avenues of research in graph
theory. The first avenue of research investigates contexts in which “max-
imal implies maximum,” as in the concept of well covered graphs for the
parameter of independence (see Plummer’s paper [5] for a survey of well
covered graphs). In a scenic graph, every path extends to a maximum
length path, or equivalently, every maximal path is a maximum path. So
scenic graphs exhibit this phenomenon. The second avenue of research con-
cerns the idea of being able to find a longest path by randomly extending
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the path from one of its endvertices. Chartrand and Kronk [1] give the
following definition: “A traceable graph G is called randomly traceable if
a Hamiltonian path always results upon starting at any vertex of G and
successively proceeding to any adjacent vertex not yet encountered.” Ran-
domly traceable graphs can be viewed as structures in which any maximal
‘one-way’ extension of any path (with one endvertex fixed) is a Hamiltonian
path. Fink [2] has investigated a related notion of randomly near-traceable
graphs. Chartrand and Kronk obtain the following result.

Theorem 1.1 (Chartrand and Kronk). A graph is randomly traceable
if and only if it is isomorphic to one of the following graphs: K, Kpp or
Chn.

We will see that traceable and scenic (i.e.,‘two-way’ extendible) graphs
form a much larger family than randomly traceable (i.e., ‘one-way’ ex-
tendible) graphs. Except for paths P, (n > 1), cycles C,, (n > 3), the prism,
and the cube, traceable scenic graphs emerge from cliques, K, (n > 1), and
from the complete bipartite graphs K, and K, 541 (p > 1). We now intro-
duce some notation to explain this more precisely. The union of ¢ disjoint
edges (a matching) will be denoted by tK,. The graph obtained from K,
by removing the edges of a copy of tK3 (1 < t < n/2) is denoted by
K, —tKj. The complete p x p bipartite graph plus (resp. minus) an edge
is denoted Kp, + Ky (resp. K,, — K2). The graph obtained from the
complete p x p bipartite graph by adding one edge into each partite set is
denoted Kpp + 2K,. The prism (K¢ — Cs) is the graph obtained from K
by removing the edges of a six-cycle, the cube (K44 — 4K2) is the graph
obtained from the complete 4 x 4 bipartite graph by removing four disjoint
edges. If H € {K3,2K3, K, 4}, then Kp p11+ H denotes the graph obtained
from the complete p x (p + 1) bipartite graph by adding all the edges of H
to the largest partite set containing p + 1 vertices. In this paper we give
a new proof of the following theorem first proven by Thomassen [6).

Theorem 1.2. A iraceable graph is scenic if and only if it belongs to one
of the following families:
O[Ka] = {Kn, Kn—tK2 (1<t<n/2)},
O[Kpp) = {Kpp,Kpp— K2, Kpp+ K2, Kpp+ 2K, },
O[Kppt1] = {Kppt1, Kpps1 + Ka, Kpp41 + 2K,
Kpps1 + K14 (1< g < p)}

v {Pn, Cn, prism, cube}.
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In Section 2. we show that the graphs defined in Theorem 1.2 are in fact
traceable, scenic graphs. The proof of Theorem 1.2 for triangle-free graphs
is given in Section 3.. The main tool in characterizing traceable scenic
graphs with triangles is the following result:

o A lraceable scenic graph remains traceable and scenic after the re-
moval of the vertices of any mazimal clique of order al least three.

We prove this ‘clique removal theorem’ in Section 4. (Theorem 4.1). The
reverse operation — extending traceable scenic graphs by adding disjoint
cliques — is called cligue eziension, and it is discussed in the last two
sections.

Let w = w(G) denote the order of a maximum clique of G. In Section
5. we show that all traceable scenic graphs with w > 5 have the form
K, —tK,, forsomen > 5 and 0 < ¢ < n/2, and we describe all traceable
scenic graphs with w = 3 or w = 4 that can be obtained from triangle-free
traceable scenic graphs via clique extension. The proof of Theorem 1.2
concludes in Section 6. where it is shown that any traceable scenic graph
can be obtained from a triangle-free traceable scenic graph or from a clique
by successively applying at most two clique extensions.

2. Traceable Scenic Graphs

In this section we show that the graphs given in Theorem 1.2 are in fact
traceable and scenic. Because every graph G in ®[K,JUB[K, ,JUS[K)p p41]U
¥ is traceable, G is scenic if every non-Hamiltonian path P C G extends
to a Hamiltonian path of G. It is obvious by inspection that the graphs in
®[Kn] U ¥ have this property. The vertices in each partite set of a K, or
a Kpp+1 (p > 1) are adjacent to all the vertices in the other partite set.
Thus any path P extends until both of the partite sets are exhausted, i.e.,
P extends to a Hamiltonian path in both cases. To see that K, , — K> is
scenic, suppose that zy is missing from K, ,. If both = and y are vertices
of P, then P extends to a Hamiltonian path as in a K, p. If one of z and
Yy, say ¥, is not covered by P, then P extends to a maximal path Q in the
copy of Ky_1,, in Ky, not containing y. Both endpoints of @ are in the
same partite set (opposite to y); therefore one of them is adjacent to y, and
Q extends to a Hamiltonian path in K, — K.

To see that K, , + K3 is scenic, let £, and z; be the endvertices of the
additional edge (in the same partite set). If the edge z,z2 is not covered by
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P, then P extends to a Hamiltonian path as in a K, ,. If )22 is an edge
of P, then identify z; and z in K, 5, and consider the resulting graph that
is isomorphic to K,_;,,. The path P’ we obtain from P by contracting
z1z2 extends to a Hamiltonian path in Kp,_,, which in turn defines a
Hamiltonian extension of P in K, ,. The same argument may be used to
show that any path P in Kp 41 + K2 is extendible to a Hamiltonian path.
Similarly, any path P in Kpp 4+ 2K is extendible to a Hamiltonian path.
Hence Kpp41 and each graph in ®[K} ;] is scenic.

For p > 2, consider Kp p41+ H, where H is one of the graphs K; 4 (1 <
g < p),2K, or K3 added to the (p + 1)-element partite set of K}, p41. If
a non-Hamiltonian path P does not contain an edge of H, then P extends
to a Hamiltonian path as in K, p41. Otherwise, P N H is either an edge
Y1y2 or a 3—path (y1,y2, ys). Identify y; and y; in the first case and y1, y2
and y3 in the second case, and remove all edges of H incident with the
identified vertex. Thus we obtain either K,_;, or a scenic graph from
®[K, p). In both cases our path P’ extends to a Hamiltonian path of the
truncated graph and defines a Hamiltonian extension of P in K, p41 + H.
Hence every graph in ®[K)p p41] is scenic.

When discussing triangle-free traceable scenic graphs in the next section
we need the following lemma.

Lemma 2.1. For p > 4 and 1 <t < p, the graph G = Kpp — LKz is
traceable and scenic if and only if G is a cube or a Kpp — K>.

Proof. Let {zi,...,zp} and {y1,...,yp} be the partite sets of K,, and
assume that some t—element subset of { z;3; : 1 < i < p } defines the
missing t/(3. First we show that p > 5 implies ¢t < 1. If this is not true,
say 1y, Zplp ¢ E(G)! then (xls Y3,%2,Y4,23,.--,Yp-1,Tp-2, Y2, Zp-1, yp)
is a maximal non-Hamiltonian path, because it misses ¥, and z, that are
nonadjacent to its endvertices x; and yp. Next we show that for p = 4, if
t > 1then t # 2 or 3. Assume that this is not true, and let z 1y, z4ys ¢
E(G) and z2y» € E(G). In this case (z1,¥s,Z2,¥2,23,¥4) is a maximal
non-Hamiltonian path, because it misses y; and x4 that are nonadjacent to
the endvertices z; and y4. o
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3. Triangle-free Traceable Scenic Graphs

If a traceable scenic graph G is unicyclic (i.e., it has at most one cycle),
then clearly G is either a path or a cycle. In this section we show that
if G is triangle-free and not unicyclic, then G is either a cube or one of:
Kpp, Kpp — K2 or Kppy1 (Theorem 3..1). An important first step in this
proof is to show that G must be bipartite.

We now introduce some nonstandard notation to simplify the presen-
tation. We will say that a vertex v € V(G) stars (resp. antistars) a set
X C V(G - z) if vz € E(G) (resp. vz ¢ E(G)), for all z € X. For an z-y
path P we will also use the notation (z, P,y) or (z,...,y). If (z, P,y) and
(u,@,v) are disjoint paths with y and u adjacent, then their concatena-
tion is a path we denote by either ((z, P,y), (v,Q,v)), (=,...,y,(u,Q,v)),
((z, P,y),u,...,v), or (z,...,¥,u,...,v). A similar natural extension of
this notation is used for concatenations of concatenated paths. In general,
if H is a subgraph containing a spanning z—y path, then (z, H,y) denotes
an arbitrary such path.

Theorem 3.1. If G is a triangle-free traceable scenic graph, then G is one

of:

Pn, Cn (n > 4), cube, Kpp, Kpp — Kz and Ky p41.

Proof. Let G be a triangle-free traceable scenic graph. If G is a tree,
then G = P, because it must contain a Hamiltonian path. If all cycles of
G are Hamiltonian, then G = C,, (n > 4). Hence we may assume that G
has a non-Hamiltonian cycle.

Consider a longest non-Hamiltonian cycle C that obviously contains
k > 4 vertices (G is triangle-free). Let z and y be arbitrary consecutive
vertices of C. Because G is scenic and traceable, the spanning path (z, C, y)
has an extension to a Hamiltonian path. Assume that the path extending
C are P = (z,21,...,2") and @ = (y,41,...,¥") with lengths a and b,
respectively (a > b > 0). By the choice of C, a > 0 holds. Because C is
a longest non-Hamiltonian cycle of G, the only edges induced between P
and @ are zy and possibly z°y*.

There are two cases to consider: for some C,z,y, P and @, we have
a,b> 0 and z*y* ¢ E(G) (Case 1); or for every choice of C,z,y, P and Q,
either b = 0 or z*y* € E(G) (Case 2). Observe that in the second case we



may always assume that b = 0 by choosing P as a maximal extension of the
path (z,C,y) at z. We denote by z’ and ¥ the two consecutive vertices of
C such that (z,y,2',7') is a subpath of C.

Case 1. Because z*y* ¢ E(G), the path (y°,...,y1,(y,C,z')) has no
extension at y*. Hence it has an extension at its other endvertex z’, say
(z',2},...), where 2| must be a vertex from P. By the choice of C, the
only possibility is 2§ = z;, that is 2’z; € E(G). The same argument
repeated for the path (z*,...,z;,(z',C,y')) shows that yy; € E(G). Then
& n,y,2',z1,(z,C,y)) is a cycle longer than C, therefore it must be a
Hamiltonian cycle . Consequently @ = b = 1, that is C covers every vertex
of G different from z* and y*. The argument above also implies that all
of the vertices of C are alternately adjacent to z* then y*. That is, z* is
adjacent to every other vertex of C starting from z, and y* is adjacent to
every other vertex of C starting from y. Because G has no triangles, ¥ must
be even, and G must be a p x p bipartite graph (p > 3). Observe that any
vertex from C can be swapped either for * or for y*, hence G must be a
supergraph of K, — pK3. For p = 3, we obtain G = K33 — K>, and for
k > 4, G is either a cube or a K, , — K3, by Lemma 2.1.

Case 2. Because z*y* € E(G) holdsif b > 0, we may assume that b = 0 and
P is a maximal extension of (z,C,y) at z such that (z*,...,z,,(z,C,y)) is
a Hamiltonian path. If P contains just one edge (a = 1), then G = K, p41
follows easily from that fact that G is scenic and triangle-free. Indeed, z*
must be adjacent to every other vertex on C implying that k is even and
G is a p x (p+ 1) bipartite graph. Furthermore, every vertex nonadjacent
to * can be put into C by swapping with z*. This implies that G must be
complete.

Assume that a > 1. If z*y ¢ E(G), then the path (y, C, z’) extends with
the edge z'z,. Consider the cycle C' = (z,21,2',¥,...,z) that has length
k, and consider the extension of (z;,C’, z') into a Hamiltonian path with
P' = (zy,...,2*) and Q' = (z',y). The two endvertices of the extension,
z* and y, are nonadjacent so this reduces to Case 1. Hence, z*y € E(G).
By the same argument, z* is adjacent to every other vertex of C starting
from y. Similarly, z; is adjacent to every other vertex of C starting from z.
The cycle (z,z1,...,2*, (¥, C,z)) misses only y and z’ from C and includes
vertices zy,...,z* of P. Therefore, by the choice of C, it follows that ¢ = 2.
To conclude the proof, apply symmetric arguments by swapping vertices of
C for z* or z) to deduce that G = K . (]
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4. Clique Removal

Using the earlier notation, if K is a clique and z,y are among its vertices,
then (z, K,y) denotes an arbitrary spanning path of K from z to y.

Theorem 4.1. If G is a traceable scenic graph and K is a mazimal clique
of G containing al least three vertices, then G — V(K) is also traceable and
scentc.

Proof. Suppose, to the contrary, that H = G-V(K ) is either not traceable
or not scenic. In particular, H has a maximal path P = (u,...,v) which
is not a Hamiltonian path of H. If u = v, for every such P, then it follows
that H has no edge (Case 1). Otherwise u and v are distinct for some
non-Hamiltonian maximal path P (Case 2).

Case 1. Because H contains no edge and is nontraceable, it has at least
two (isolated) vertices. Let v be one of these vertices. By the maximality
of K, v has a nonneighbor z in K. Let w be a vertex in K — z. The path
(z, K, w) extends in G to a path containing v. Hence vw € E(G). Let y
be vertex of H different from v. The path (v,(w, K, z)) extends to path
including y. Thus zy € E(G). Let z be a vertex of K different from z
and w. If yz ¢ E(G), then (v, (w, K, z)) is a path that does not extend to
include y. If yz € E(G), then (y, (z, K, )) is a path that does not extend
to include v.

Case 2. Let P = (vp,v1,...,vs) be a maximal path in H which is not
a Hamiltonian path of H (h > 0). Because P extends to a Hamiltonian
path in G, one may suppose that vyz € E(G) for some z € V(K). Clearly
Y = V(H) \ V(P) is nonempty, and since P is maximal in H, neither vo
nor vy has a neighbor in Y. Note also that Gy — the graph induced by
the vertices of Y — is a traceable induced subgraph of G, because the path
(vo, ..., vn, (2, K,y)) for some y € Y can be extended to a Hamiltonian
path of G.

First we show that some interior vertex of P has a neighbor in Y (in
particular, h > 2). For a contradiction, suppose that there are no edges
from P to Y. If vo is adjacent to some vertex z € V(K) \ {z}, then no
vertex of Y is contained in any extension of (vo,(z, K,z),vs). Hence we
may assume that vg is nonadjacent to every vertex of K —z. If no vertex of
Y is adjacent to a vertex in K —z, then z is adjacent to some vertex y € Y,
and any extension of (vg,...,vs,,y) contains no vertex in K — z. Hence
some vertex y € Y has a neighbor z € V(K) \ {z}. Observe that every
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vertex w € V(K)\{z, z} has a neighbor from (v, ..., vs) since ((w, K, 2), y)
is a path extending to a Hamiltonian path of G. Let w € V(K)\{z, z} and
let v; be the first vertex on the path (vy,...,vs) that is a neighbor of w.
Now any extension of the path (w,v;,..., v, (2, K — w,z),y) misses vg, a
contradiction. Therefore, some vertex from (v,...,vs_1) has a neighbor
inY.

Let v be the first vertex from the path P = (vy,...,v;) with a neighbor
Yy €Y (1 £k < h-1). The proof of the theorem now follows from the
following five steps.

Step 1: there are no edges between K —z and Y \ {y}. If ab € E(G) for
some a € V(K —z) and b € Y\ {y}, then the path (y, vk, ..., vs,(z, K,a),b)
would not extend in G to include v, a contradiction.

Step 2: every verlex z € V(K — z) has a neighbor vj, for some 0 < j < k.
Since otherwise, (y,v,...,vs,(z, K, z)) would not extend to include vy.

Step 3: y is adjacent to every verlez of K —z. If 2 € V(K — z) and
yz ¢ E(G), then (vo,...,vn,(z, K, z)) would not extend to include y.

Step 4: Y = {y}. f we Y\{y}, then (vo,..., v, (2, K—2,2'),y,2) would
not extend to include w (where z and 2’ are arbitrary distinct vertices of

K -z).

Step 5: zy € E(G). Suppose that zy ¢ E(G) and let z € V(K - z).
By Step 2, zv; € E(G), for some 0 < j < k. Any extension of the path
((x, K,z),vj,...,vs) can not contain y since all of y’s neighbors appear in
(vk,...,vn—1) or in K — z (which have already been covered by this path).

By steps 3 and 5, V(K)U{y} is a clique. This contradicts the maximality
of K, and the theorem follows. 0

In Section 5. we will consider ways that complete subgraphs can and
cannot be “added” to traceable scenic graphs. Let G be a traceable scenic
graph and let K be a maximal clique of G. By Theorem 4.1, H = G-V(K)
is also scenic and traceable, provided that K has at least three vertices. If
all these properties are satisfied by G, K and H, then we will say that G
is a (scenic) clique eztension of H. We prove a simple property of clique
extensions that will be used frequently later.

Lemma 4.2. Let G be a traceable scenic graph with a mazimum clique K
of order at least 3, and let H = G-V (K). If (z1,...,zi) is a Hamiltonian
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path of H and k > 2, then ‘parallel edges’ ezist al the end vertices, that is
z1a,zb € E(G) for some distinct vertices a,b € V(K).

Proof. Because the path (zi,...,2) extends in G, we may assume that
z1a € E(G), for a € V(K). Observe that some vertex of K — a must have
a neighbor in H, for otherwise, any extension of a spanning path of K with
endvertices different from a would miss 3. Define

m= max {i : 1<i<k, z;b€ E(G), for some be V(K —a)}.

Let z,b € E(G) and ¢ € V(K — {a,b}). Because the path P = (¢c,a,2,
+++yTm, b) extends to a Hamiltonian path, and all neighbors of K — a are
covered by P, m = k must hold. Thus the lemma follows. m]

The following result enables us to recognize many traceable scenic graphs
with no clique extension.

Lemma 4.3. Suppose that H has distinct verlices x,y, zy and z3 with the
following properties:

o z and y are nonadjacent,
e there are Hamillonian paths in H — z from y lo z; and y o z3,

o there is a Hamiltonian path in H from z; 1o 23.

If G is a traceable scenic graph with a mazimum cligue K of order at least
3, then G — V(K) cannot be H.

Proof. Suppose to the contrary that G, K and H are as above with H =
G - V(K). Let z and y be vertices with z and y nonadjacent, and z;, z;
as above. Since K is a maximum clique of G, z is nonadjacent to some
vertex a € K. Also, since z; and z; are endvertices of a Hamiltonian
path of H, by Lemma 4.2, it follows that z; and 2, have parallel edges
to K. Consequently, we may assume that 2, is adjacent to some vertex b
of K different from a. If (21, P,y) is a Hamiltonian path of H — z, then
((a, K,b), (21, P, y)) is a path that cannot be extended to include z. Hence
the lemma follows. 0o
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5. Clique Extensions

In this section we describe traceable scenic graphs with no clique extension,
and we discuss the structure of clique extensions of other traceable scenic
graphs.

Proposition 5.1. The traceable scenic graphs
prism, Kn —tKy (n251<t<n/2),Kppi1+ K14 (p>2,1<¢<p),

and forp >3, Kpp +2K> , Kppy1 + K3, and Kp 541 + 2K

have no cliqgue exlension.

Proof. To prove that none of these graphs can be obtained by clique removal
from any traceable scenic graph, it is enough to verify that each graph in
the proposition satisfies the properties in Lemma 4.3. We omit the details
of this straightforward verification. a

Proposition 5.2. None of the graphs P, (n > 4), C, (n > 5), cube and
Kpp — K2 (p > 2) have clique eztensions.

Proof. Let G be a traceable scenic graph and K be a maximum clique of
order at least 3 such that H = G — V(K) is a graph from the list.

Case 1: H = P, = (z1,...,2zn) (n > 4). By Lemma 4.2, distinct ver-
tices a,b € V(K) exist such that z,a, z,b € E(G). If zjc € E(G),
for some ¢ € V(K) \ {a,b} and 1 < j < n, then since n > 4, either
J—1>1lorj+1 < n By symmetry, assume j — 1 > 1. Then the
path (z2,23,...,z;,(c, K,a),z,) is maximal and misses z,, a contradic-
tion. Consequently, we may assume that every ¢ € V(K — {a, b}) antistars
{z2,...,2n-1}. Because K has at least 3 vertices and H has at least 4 ver-
tices, the path (z3,z4,...,%q,b,a,z1,72) is a maximal non-Hamiltonian
path of G, a contradiction.

Case 2: H = C, = (z1,...,2,) (n > 5). By Lemma 4.2, consecutive
vertices of Cy, send parallel edges to K. Let zya,z20 € E(G), for dis-
tinct a,b € V(K), and let z3d’,z4b' € E(G), for distinct a’,d' € V(K).
Assuming that a # @', the path (z4,z3,(a’, K, a),z,z,,...,zs5) would be
maximal and would miss z3. Therefore a = a’ that is z1a’ € E(G). Thus
we obtain (z3, 24, (¥, K,a’),zy,2,) that is a maximal path missing z5, a
contradiction.
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Case 3: H = cube. For convenience, label the vertices of H as ¢, 29, 3, 24
and ¥y, ¥z, Y3, Y4 for the vertices in the partite sets, and z;y; for 1 < i <4 be
the missing edges. By Lemma 4.2, distinct vertices a and b of K exist such
that z4a and y4b are edges of G. The path (y1,z3, va, (b, K, a), x4, y3, z2)
cannot be extended to include either z, or y», a contradiction.

Case 4: H =K,p, — K2 (p>2). Let X = {zy,...,2p} and Y =
{w1,...,yp} be the partite sets of K, , with z,y, ¢ E(H). By Lemma
4.2, zpa,y,b € E(H), for distinct a,b € V(K). Consider in H the two
disjoint paths (z1, y2, 23, ¥4, - - .) and (y1, z2, ¥3, Z4, - . .). Observing that one
of these paths terminates at x, and the other one at y,. We may com-
bine them to get a path P = (..., yp-1,2p,a,b,yp, Zp_1,...) with endver-
tices z; and y;. Because V(K — {a,b}) # 0, P has an extension, so that
zic € E(H), for some ¢ € V(K — {a,b}). Thus we obtain a maximal path
(zp,(a,K,c),(z1, H — {zp,yp}, 1)) that misses y,, a contradiction. 0

Now we prove a technical lemma that is used to examine possible clique
extensions of Kp, (p > 2) or Kpp + K2 (p > 2).

Lemma 5.3. Let G be a iraceable scenic graph with w(G) > 3, and lel
K be a mazimum cliqgue of G. If G — V(K) is either Ky, (p > 2) or
Kpp + K2 (p 2 2) and the partite sets of Kpp are X and Y, then every
vertez of K stars either X orY.

Proof. Suppose, to the contrary, that a vertex ¢ € V(K) exists that is
nonadjacent toz € X and y € Y. Let H = G — V(K) and assume that
X is independent in H. By Lemma 4.2, distinct vertices a,b € V(K) exist
such that za,yb € E(G), since H has a Hamiltonian path starting at z
and ending at y. It follows that ¢ is star to X \ {z} (and symmetrically
c is star to Y \ {y}), for otherwise, if cz’ were not an edge, then the path
((#', Kpp — y,7),(a, K — c,b), y) could not be extended to include c. Also,
a is antistar to X \ {z} (symmetrically b must antistar Y \ {y}) since
(y,(b, K — ¢,a),(z', Kp p — y, z) would have to extend to contain c. Also, a
must star Y \ {y} (symmetrically, b must star X \ {z}) because the path
(¢, Kpp — =',¥), (b, K — a,c), z') must extend to include a. Now since X
is independent, the path (a,¥,(¢c, K — a,b),(y, Kpp — {/,2'},z)) cannot
be extended to include 2’. This contradiction proves the claim that every
vertex of K stars either X or Y for either graph Kp, or Kpp+ K. D

Proposition 5.4. IfG is a traceable scenic graph withw(G) = 3 orw(G) =
4 obtained by clique extension from I; , (p > 2), then either G = Kpyy pya+
Kig(1<g<p+1) or G= Kpyapsr+2Ka.
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Proof. Suppose that K C G is a maximal clique such that G-V (K) = K, ,,
and let X and Y be the partite sets of Ky .

Case 1: V(K) = {a,b,c}. By Lemma 5.3, each of the vertices a, b, and
c star either X or Y. If all three star the same set say X, then a larger
clique would result contradicting the choice of K. Hence, two vertices, say
a and b, star X and c stars Y. Note that it follows that G is a super
graph of Kp41 p42. If ¢ were adjacent to a vertex in X, say z, then again a
larger complete graph would be in G, contradicting the choice of i(; hence
¢ antistars X .

As for additional edges from @ and b to Y'; if both @ and b have an edge
to a vertex of Y, then it must be to different vertices, for otherwise G would
contain a K4. Suppose that y and y’ are distinct vertices in Y and ay and
by are edges of G. In this case, the path (c,y,a,b,y’) cannot be extended
to contain all the vertices of X. Consequently, only one of a or b can have
edges to Y, and thus G = Kpq1p42 + K1 4.

Case 2: V(K) = {a,b,c,d} . Each vertex of K must star X or Y.
If all four vertices starred the same set, then a larger clique would result
contradicting the choice of K. If three vertices, say a,b, and c star the
same set, say X, and d stars Y, then clearly d antistars X for otherwise a
larger clique results. However the path (a,d,b,z,¢, 2’) cannot be extended
to contain all the vertices of Y, since two vertices of X and no vertices of
Y have been used by the path.

Hence we may assume that two vertices star X, say e and b; and c and d
star Y. Suppose that there are other edges, say ay € E(G) forsome y € Y.
Note that by ¢ E(G), since a K5 would result. Consequently, the extension
of the path (y,a,b,c,y/,d) would force an edge from d to X and that of
(y,¢,b,d,y', ¢) would force an edge from ¢ to X. The vertices in X adjacent
to d and ¢ must be distinct for X to be a maximum clique, so assume that
cz, dz’ € E(G) . Now the path (b,a,z,¢,d,(z', Kp p — {z,y},¥')) missing
y has no extension. Hence a and b antistar Y, and ¢ and d antistar X, so
G = Kpyo,p42 + 2K, follows. m]

Proposition 5.5. IfG is a traceable scenic graph withw(G) = 3 orw(G) =
4 obtained by clique extension from Kp p+ K2 (p > 3), then G = Kpyy py2+
2K,.

Proof. Suppose that K is a maximal clique such that G — V(K) =
Ky,p + Kz. Let X and Y be the partite sets of Kp,, and assume that
e = zz' is the ‘extra’ edge of K, , + K2 with z,2' € X.

91



Case 1: V(K) = {a,b,c}. By Lemma 5.3, each of the three vertices
star either X or Y. If all three star the same set, then a larger clique would
result contradicting the choice of K. In addition, if two were to star X,
then a K4 would result; hence two vertices of K, say a and bstar Y, and ¢
stars X and antistars Y.

Suppose that a or b had an edge to a vertex in X. If one were adjacent
to z or z’, say bz € E(G), then (c, a, b, z,z') could not be extended to cover
all of Y. Similarly, if bz” € E(G), then the path (c,a,b,2",y,z,2’) could
not be extended to cover all of Y. Therefore G = K41 p42 + 2K3.

Case 2: V(K) = {a,b,c,d}. Applying Lemma 5.3 one of the following
occurs:

- three vertices of K star X, in which case a Ky results;

- three vertices star Y, say a,b,c. Now at least one of a,b, or ¢ has a
nonneighbor in z,z’, say cz’ ¢ E(G). The path (¢,y,0,%',a,d,(z, Kpp —
2’,2")) cannot be extended to include z’;

- two vertices, say a and b, star X, and two vertices, say ¢ and d,star Y.
In this case (y, z, (2', (Kpp + K2) —{z,2',2",3,¢,¥'},2%),a,2",b,¢,d, y”)
does not extend to a path that includes ¥'.

Proposition 5.6. IfG is a traceable scenic graph withw(G) = 3 orw(G) =
4 obtained by clique exlension from Kppi1 (p > 1), then either G =
Kp+2,p+2 + Ky or G= Kp+2,p+3 + K3.

Proof. Let K be a maximal clique such that G — V(K) = K, p41 and
denote the partite sets of Kpp41 by X and Y, with |[X| = p. By the
maximality of K, for each vertex of G — K there is at least one vertex of
K not adjacent to it. In particular, let y € Y and suppose y is nonadjacent
toa € K. If zb € E(G) for some z € X and b € V(K — a), then the
path ((v/, Kp p+1 — ¥, 2), (b, K, a)) is not extendible. This implies that each
vertex of K — a antistars X. By Lemma 4.2, for every 3 € Y — y parallel
edges yb and y/c exist for some b,c € V(K). If ¢ € V(K) — a, then the
path (y, (4, K —a,c), (¥, Kp+1,p — ¥, 7)) extends to a for all z € X, hence a
stars X. Furthermore, if some vertex b € V(KX — @) is not adjacent to some
vertex i € Y, then by switching the role of a and b, the above arguments
would imply that a both stars and antistars X, a contradiction. Hence, we
may assume that each vertex of ){ — a stars Y. Because K is maximal, a
antistars Y. Consequently, if |V(K)| = 3, then G = Kpy2p42 + Ko, and if
|[V(K)| = 4, then G = Kpy2p43 + Ka.

Thus it only remains to consider the case in which no parallel edges
yb and y/c exist with ¢ € V(K) — a. That is, every vertex ¥’ € Y \ {y} is
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adjacent to a and also possibly adjacent to b. But then the path (¥, (a, K —
¢,b), (¥, Kp41,p — ¥, z)) misses ¢ and is not extendible. The result follows.
]

6. Traceable Scenic Graphs with Triangles

In Section 3. we determined all traceable scenic graphs with w = 2. Here
we deal with the case w > 3.

Theorem 6.1. If G is a traceable scenic graph with w(G) > 5, then G =
K, —tK,, for some 0 <t <n/2 and n > 5.

Proof. Suppose that G is a traceable scenic graph with w(G) > 5. To show
that G = K,, — tKs, it suffices to show that every vertex has at most one
nonneighbor in G. Assume that G is not a clique and let X be a maximal
clique of G with at least five vertices. By Theorem 4.1, H = G — V(K) is
traceable and scenic. Let P = (z;,23,...,2x) be a Hamiltonian path of H.

If £ = 1 and z; has two nonneighbors @ and b in K, then any path
(a, K,b) of G cannot be extended to include z,, a contradiction. Hence,
G = K, — K». For k > 2, the proof follows from the following steps.

Step 1: Each of z\ end z; has al most one nonneighbor in K. By
symmetry, it suffices to prove this for ;. By Lemma 4.2, distinct vertices
u and v of K exist such that z;u and zxv are edges of G.

First we show that if y,2 € V(K) are distinct nonneighbors of z;,
then one of them must be v (symmetrically, if z; has two nonneighbors
in K, then one of them must be u). Assuming that y # v, the path
(z1,(u, K - y,v),2¢, k-1, ...,22) must extend to include y, hence z, is
adjacent to y. Now z = v, since otherwise (y,z2,...,zk, (v, K —y,2)) is a
path of G that cannot be extended to include z;.

Suppose now that z, has two nonneighbors in K. By the paragraph
above, we may assume that these nonneighbors are y and v, and yz, €
E(G). Because K has at least five vertices, there are at least two vertices a
and bin K—{u,v,y}. Now z is adjacent to at least one of a or b, otherwise
zr has two nonneighbors in K neither of which is u (this contradicts the
previous paragraph). Without loss of generality, a is a neighbor of z.
Now (y, z2,...,zk, (a, K —y,v)) is a path of G that cannot be extended to
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include z, a contradictiion. Hence z, (symmetrically z;) has at most one
nonneighbor in K.

Step 2: No verlez of K is nonadjacenl lo two consecutive vertices of P.
If there were a vertex w of K with two consecutive nonneighbors z;, z;4)
of P, then by Step 1 we could find two distinct vertices a and b from K —w
with z,a and zb edges of G. However, this would then imply that the path
(%i41,- - -2k, (b, K —w,@),z1,...,%i) could not be extended to include w,
a contradiction.

Step 8: Each of za,...,zk—1 has al most one nonneighbor in K. Sup-
pose that z; has two nonneighbors y and z in K, for some 2 <i < k- 1.
By Step 2, z;_1y and z;41z are edges of G. Also, K — {y,z} has at least
three vertices, so by Step 1, two vertices a and b exist in K — {y,z} such
that z,a and zib are edges in G. Now the path (z,zi41,..., %k, (b, K —
{z,9},a),21,...,2i=1,Y) is a path that cannot be extended to include z;,
a contradiction.

Note: Steps 1 and 3 together with the maximality of K implies that
every vertex in H has a unique nonneighbor in K.

Step 4: Every vertez in K has al most one nonneighbor in H. Suppose
that w is a vertex in K with two nonneighbors z; and z; in H. Assume
that i < j. By Step 2, z; and z; are not consecutive vertices of P. If both
z; and z; are endpoints of P, then Steps 1 and 3 guarantee that we can
find distinct vertices a and b of K —w such that z1a and z2b are edges of G.
It follows that the path (zk,...,22,(b, K — w,a),z;) can not be extended
to include w, a contradiction.

Hence at least one of z; and z; is not an endpoint of P. By symme-
try we may assume that z; # z;. Steps 1 and 3 together with |K| > 5
imply that z;_; and zj_; have a common neighbor in K — w, say a.
Also, |K| > 5 and Steps 1 and 3 guarantee that two vertices b and c in
K — {a,w} exist such that bz; and cz; are edges of G. Now the path
(%iy- oy Tjo1,8, Zic1y ..., 21, (b, K — {a,w},c), 2k, ..., ;) is a path of &
that cannot be extended to include w, a contradiction.

Step 5: H is a cligue. Suppose that z; and z; are nonadjacent vertices
of H with 1 < i < j < k. Clearly z; and z; are not consecutive vertices of
P. As noted above, z; has a unique nonneighbor in K. Call it w. By Step
2, w is adjacent to zj41.

Suppose that i > 1. Let z be a common neighbor of z;_1 and z;_; in
K —w. Steps 1 and 3 together with |K| > 5 imply that two distinct vertices
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a and b of K — {w, z} exist such that z1a and z,b are edges of G. Now
the path (w,ziy1,...,25-1,2,2i-1,..., 21, (a, K — {w, 2},b), 2, ..., 2;) is
a path that does not extend to include z;.

Suppose now that i = 1. Let z be a neighbor of zj_; in K —w, and let b
be a vertex in K —{w, z} adjacent to ;. The path (w, zi41,...,zj-1, (2, K-
w,b),zx,zk_1,...,2;) is a path that does not extend to include z;. a

Proposition 6.2. Lel G be a lraceable scenic graph different from K, —
tKy. If G is oblained by clique exiension from K,,, 1 < m < 4, then G is
isomorphic lo one of Ko 3+ K2, K33+ 2K, or the prism.

Proof. Let K C G be a maximal clique such that G — V(K) = K,, and
set V(Km) = {v1,...,9m}. Theorem 6.1 implies that K has 3 or 4 vertices.
If m = 1, then there exist distinct vertices a,b € V(K) nonadjacent to
vy, since otherwise, G = K, — tK,. Observe that (a, K,b) is a maximal
non-Hamiltonian path of G avoiding v;, a contradiction. Therefore, one
may assume that m = 2,3 or 4.

If m = 2 then by Lemma 4.2, there are parallel edges v,z;,v2z2 € E(G),
for some z,,z3 € V(K). For every w € V(K) different from z; and z», the
path (vy,(z1, K — w,z3), v2) has an extension in G. Hence at least one of
wv; and wz; is an edge of G, for every w € V(K). It is now straightforward
to verify that G = Kj3 + Ky, if [V(K)| = 3, and G = K33 + 2K, if
IV(K)| = 4.

Finally assume that m = 3 or 4. One vertex of K,,, say v3 has two
nonneighbors y;,y2 € V(K), and by Lemma 4.2, there are parallel edges
v121,v222 € E(G), for some zy,z2 € V(K). If {z1,z2} # {w1,92}, say
z1 ¢ {y1,y2}. then the path (z1,(v1, Km — v3,v2), z2) has an extension P
from y; to yo that covers every vertex of G —v3, a contradiction. Therefore
{z1,22} = {y1,y2}. By permuting the indices of v;, z; and y; as required,
it is straightforward to verify that m must be 3, and either G = Ks — Cs
or G = K33+ 2K,. a

Define Go to be the class of graphs containing all triangle-free traceable
scenic graphs (determined in Theorem 3.1) and all cliques. If G_; is defined
for some k > 1, then let Gi be the class of all traceable scenic graphs
G ¢ U{G; : i < k} such that for some maximal clique K C G, G - V(K) €
Gi-1. Also define Hy C Gi to be the class of all those graphs that have a
(traceable, scenic) clique extension.
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By Theorem 3.1, Go = {Kn, Cn, Pa,cube, Kpp, Kpp — K2, Kp p41}. By
Proposition 5.2, P, (n > 4), C, (n > 5), cube, and K, , — K2 (p 2 2) are
not in Ho, hence Ho = {Kpp (p 2 2), Kpp+1 (p 2 1), Kn(n > 1)}.

From Propositions 5.4, 5.6, 6.2 and Theorem 6.1, we obtain that G,
consists of the following graphs: prism, K3 24 Ko(= K4—K3), Kn—tKa(n >
5,1 <t <n/2), K23+ K2, K33+ 2K, — that is the clique extensions of
cliques — Kpp41 + K1,0(p 23,1 < q<p), Kpp+2K2 (p24), Kpp+
Ka, (p > 3), Kpp+1+K3s(p 2 3) — that is the clique extensions of Kp , (p >
2) and Kppy1 (p21).

By Proposition 5.1, the prism, K, —tK2(n > 5,1 <t < n/2), K23+ K>,
K3z +2Ks, Kppi1+ K14(p>3,1<g<p)and Kpp + 2K, (p > 4), are
not in H;; that is, H; = {Kp, + K2 (p > 2)}.

By Propositions 5.5 and 5.1, G2 = {K, p41 + 2K2(p > 3)} and H; = 0.
This implies that G, = @, for every & > 3. So Theorem 4.1 implies that the
union of Gy, G1, and G, contains all traceable scenic graphs. It is easy to
check that U2 G; = ®[K,] U ®[K, p] U ®[Kp p41] U . This concludes the
proof of Theorem 1.2.
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