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Abstract

A (A, D', s)-digraph is a digraph with maximum out-degree A
such that after the deletion of any s of its vertices the resulting
digraph has diameter at most D’. Our concern is to find large, i.e.
with order as large as possible, (A, D', s)-digraphs. To this end, new
families of digraphs satisfying a Menger-type condition are given.
Namely, between any pair of non-adjacent vertices they have s + 1
internally disjoint paths of length at most D’. Then, new families of
asymptotically optimal (A, D', s)-digraphs are obtained.

Key words: fault tolerance, diameter vulnerability, dense di-
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1 Introduction

Interconnection networks are usually modeled by graphs, directed or not,
in which the vertices represent the switching elements or processors. Com-
munication links are represented by edges if they are bidirectional and by
arcs if they are unidirectional. We are concerned here with directed graphs
only, called digraphs for short. A digraph G = (V, A) consists of a set V
of vertices and a set A of directed edges between vertices called arcs. The
cardinality of V is called the order of the digraph. The set of vertices which
are adjacent from (to) a given vertex v is denoted by I'*(v) (I'~(v)) and its
cardinality is the out-degree d+(v) = |I'+(v) | (in-degree d~(v) = [T~ (v)|).
The length of a shortest path from u to v is the distance from u to v and is
denoted by d(u,v). Its maximum value over all pairs of vertices is the di-
ameter of the digraph. The reader is referred to Chartrand and Lesniak [4]
for additional graph concepts.
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In the design of large interconnection networks several factors have to
be taken into account: each processor can be connected just to a few oth-
ers and communication delays between processors must be short. These
requirements lead to the following optimization problems: find digraphs of
given maximum out-degree A and diameter D which have large order (the
(A, D)-digraph problem) and find digraphs with given order and maximum
out-degree which have small diameter. These problems have been widely
studied for graphs (see [1]) as well as for digraphs (see [7]). The case of
bipartite graphs (see [2]) and digraphs (see [6]) have been also considered.

An interconnection network must be fault-tolerant. If some processors
or communication links cease to function, it is important that the remaining
processors can still intercommunicate with reasonable efficiency. One can
demand, for example, that the message delay does not increase too much.
This means that the (di)graph obtained after deletion of some vertices or
edges (arcs) still has a small diameter.

The problem we study in this paper is the (A, D, D', s)-digraph prob-
lem, that is, to find large digraphs with maximum out-degree A and di-
ameter D such that the resulting digraph after the deletion of s vertices
has diameter at most D’. This problem has been studied in [12] in the
case D' = D, giving an optimal family of (A, 2, 2, s)-digraphs whenever A
is a multiple of s + 1. In [9] this problem is studied for the bipartite case
and a dense family of (A, D, D', s)-bipartite digraphs is presented when A
is a multiple of s + 1 and the diameter is 3,4,5 or 6. Such digraphs are
denoted as FD Digraphs in Table 2 of the Annex. The analogous problem
for graphs has been considered in (3, 8, 14].

2 Some notations and previous results

A digraph with maximum out-degree A and diameter D is called a (A, D)-
digraph. A (A, D, D', s)-digraph is a (A, D)-digraph such that the subdi-
graphs obtained by deleting any set of s vertices have diameter less or equal
than D'.

If a (A, D)-digraph, D > 2, verifies that between any pair of non-
adjacent vertices there are s + 1 internally disjoint paths of length at most
D', then it is a (A, D, DY, s)-digraph.

A Moore-like bound for the number of vertices of a (A, D, D', s)-digraph
is given in [12]:

s+1

In this paper we use two families of dense digraphs: De Bruijn and
Kautz digraphs. Let B(A, D) be a De Bruijn digraph. The elements of

2 34 ... D'
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V(G) are all strings of D symbols z; from an alphabet Zs and vertex
2129 ...zp is adjacent to vertices z2...2pzp41. B(A, D) has diameter D
and degree A [5]. The Kautz digraph K(A, D) is defined analogously: the
elements of V(G) are the strings of D symbols z; from an alphabet Za 41
such that two consecutive symbols cannot be equal. Vertex z1z2...zp
is adjacent to vertices z3...zpzp41 whenever zp # zpy1. K(A, D) has
diameter D and degree A [11].

A walk of length s from vertex v to vertex w will be denoted as a
sequence of length D + s in which the first D symbols correspond to v and
the last D ones to w. For instance the walk abcd ~ beda ~ cdaff ~ dafy
is represented as the sequence abcdafy.

Another concept used in this paper is the conjunction. Given two graphs
G and H, the conjunction G ® H is defined as follows: its vertex set is the
cartesian product of G and H, i.e.

V(G® H) = {(u,v) | v € V(G),v € V(H))

and vertex (u,v) is adjacent to vertex (u’,v') if and only if (u, u') is an arc
in G and (v,?') is an arc in H.

If G is a digraph with n; vertices and degree A;, and H is a digraph
with ng vertices and degree A,, then the conjunction G ® H has nin,
vertices and degree AjA;.

3 Some results on Kautz and De Bruijn di-
graphs

3.1 Disjoint paths in Kautz digraphs with D <3

Proposition 1 Let K(A,3), A > 1, be a Kautz digraph with diameter
D = 3. Between any pair of vertices in K(A,3) there erist at least A — 1
disjoint walks of length exactly 4.

Proof: . Let £ = zoz1z2 and y = yoy1y2 be the initial and final vertices.
We distinguish two cases.

a) z2 # Yo.

Without loss of generality, let us suppose z2 = da and yo = da-1:
(zi) Yj € {dO: dly sy dA})



ToT1%2

v l N\
z1z2dp Tizady --- ZT1Z2dA-2
d { d
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N l v
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It is obvious that any two labels in the same row cannot be equal because
of their construction. Neither can be labels in consecutive rows because of
the condition of Kautz labels (two consecutive symbols in a label cannot be
equal). Finally, a label in the first row cannot be equal to any label in the
last one because of the condition imposed (z2 # o). Therefore all walks
in the scheme are vertex disjoint.

b) Z2 = Yo.

In this case, there might be at most one coincidence between a label
in the first row and a label in the last one (notice that the first symbol of
vertices in the first row is always z,, while such digit is different in each
vertex in the third row). But in this case there is an additional walk of
length D, using symbol da_;. o

Similar results can be easily obtained for D = 1,2, that is, in both
cases between any pair of vertices there always exist A — 1 disjoint walks
of length 2 and 3 respectively.

3.2 Disjoint paths in Kautz and De Bruijn digraphs

In [10] it is proved that the number of disjoint paths of length less than or
equal to D +1 in a Kautz digraph is A —2 and it is A — 1 in the De Bruijn
one. Nevertheless in order to prove our main results in the next section we
need a stronger result.

Let B(A, D) be a De Bruijn digraph. Let us consider A walks of length
D+lfromz=z_p...2_1toy=2...2p,ie. Wy=2z2_p...z_12021...2D
where zg = d;.
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4 + N
Z-D+1...Z_1d0 Z_D+1...Z_1d1 Z—D+1---z—ldA-l
{ 4 i
...2-1d021 ...z_ldlzl ...z_ldA...lzl
\ ! {
i { i
dozl v ZD—1 d1z1 ceeZD=1 **- dA_lzl cesZD=1
N\ { e
21...2D

In this context we will say two walks (or subwalks) are similar if they
differ at most in symbol zq. It is clear that in this particular case it is an
equivalence relationship.

Let v;5, 1 < i < D, stand for the i-th vertex in walk j. The gap between
to vertices v;; and vy is defined as k — 4.

Theorem 1 If there exists a coincidence between two vertices v;j and vy
with gap s = k~ i > 0, then any other coincidence within two vertices vy,
and vpq having gap t = p—m > 0 must fulfill one of the following sentences:
i) j =n,l = q whenevert = s.
ti) n = q whenevert <s.

Proof:
A coincidence within different vertices means a coincidence within their
symbols, and thus:

Vki = ... d[ 21 cee  Zg o aas
ll | || I (1)

v(k_,)j = .. Zosy ... 2 a'j

Ymttyy = --. dg 21 ... z ...
O | I ()

Umn = ... Zog ... 21 dn ...
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Notice that since d; belongs to all vertices for some i, it always will
appear in Equations (1) and (2).

In order to prove this proposition we will distinguish two cases:

i) ¢ = s: Because of this condition we have z_; = z_; and 2, = z,.
Due to Equations (1) and (2), di = z_,, dg = z_¢, dj = 2, and d = z.
Therefore the four vertices are indeed in two paths: d, = d; and dg = d
(and thus n = j and I = g).

i) ¢ < s: Let us consider walk P; (which is a subwalk of W;) from
vertex vj; to vertex vks. Since vi; = viy we will have by (1) 2z, = z;_, for
all ¢ # 5,0, such that z; and 2;_,, s = k — ¢, belong to this subwalk.

Analogously let us consider walk P, from v, to Ypn. Again, since
Ymn = Upq we will have by (2) zz = zz4. for all z # 0, —t such that z; and
Zz+t, L = p — m, belong to this subwalk.

In order to go on with this proof we need the following result:

Lemma 1 There ezists a subsequence CS in P, with length
at least s +1 + 1 which is similar to a subsequence in P, and
moreover z;,z2_ € CS.

Proof: Let us recall the following facts:

a) the sequence corresponding to a whole walk W from z =
Z_p...2-1 toy = 21...2p has length 2D + 1;

b) none of the vertices we are considering can be z nor y,
and

c) P, and P; will be similar to subsequences of W of length
D+t and D + s respectively.

Therefore the intersection has length at least s +1+1 as it
is shown in figure 1.

Let us prove z;,z_; € CS: Since symbols in P, are those in
Equation 2, both symbols, 2; and z_; belong to P,. Analogously
Zs,2-5 € P; and thus z; belongs to P; whenever —s < ¢ < s,
i # 0. Since ¢t < s, the lemma is proved. (]

Because of the first part of this lemma, (i.e. the length of CS is greater
than or equal to ¢t +s+1), it is clear that if 2; € CS, then either 2;_, € CS
or z;y; € CS. As we showed at the beginning of this proof, if z;_, € CS,
then z; = z;_, whenever i # 5,0 and if z;4; € CS, then z; = z;4+; whenever
i#0,—t.

Another lemma is required to finish this proof:
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2D +1

I;—D 1| zp| W
D+s
| [ | | Py
D4+t——
|4 | | | Py
>s+t+1

Figure 1: Proof of Lemma 1.

Lemma 2 If zge—ps € CS and 244—p0s € CS with a <
a',b < b then zg—ps = zg't—t's whenever there do not exist
integers a,B ,a < a < a',b < B <¥b such that at — fs = 0.

Proof: As it was shown, Zat—bs = Z(at1)t—bs OF Zat—bs =
Zat—(b+1)s- Let us suppose the first equality holds n times. So
we will have zg;_ps = Za, t—bs Witha < a+n=a, < a’. Ifanew
iteration is not possible, then we will have z,,¢—bs = Za,t-(b+1)s-
We will be able to repeat this process until za;—bs = 2a7¢—-b,s OF
Zat—bs = Za,t-b's- Let us suppose that the first equality holds.
Since zg13—p,s € CS and z41¢_p1s € CS, then Zgit—(bx+i)s € CS
for all i < b’ — by, and therefore z4t—ps = zart—ps. In the other
cases the proof is analogous. a

Since 2, z; € CS (see Lemma 1), the result is now proved as a corollary
of Lemma 2:

In case ged(t,s) = 1, because of Lemma 2, 2z, = 2(;_1)t—ts (= 2z—¢). In
other case if at — #s = 0 then (@ — 1)t — f5 = —t and we can apply the
same procedure as in the proof of Lemma 2 to prove z; = z_¢.

Finally, as it was shown in Equation (2) dg = # and z_; = d,, and thus
dn = dg (and hence n = q). a

The same result holds for the Kautz digraph, just considering there
exist A — 1 walks of length D + 1.
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As a corollary of this theorem we obtain a similar result to the one
in [10]:

Corollary 1 a) Let B(A, D) be a De Bruijn digraph. Between any two
vertices there ezist A paths of length D + 1, all of them being internally
disjoint except at most one.

b) Let K(A, D) be a Kautz digraph. Between any two vertices there exist
at least A — 1 paths of length D + 1, all of them being internally disjoint
except at most one.

4 New families of fault tolerant digraphs

Definition 1 a) Let KK(A;,As, D) be the resulting digraph of the con-
junction of two Kautz digraphs of diameter D — 1, i.e. K(A,D—-1)Q®
K(A2,D-1).

b) Let BK(Ay,As,D) be the resulting digraph of the conjunction of
a Kautz digraph and a De Bruijn digraph, both of diameter D — 1, i.e.
B(A1, D - 1) ® .K(Az, D - 1).

The diameter of both digraphs is shown in the next proposition.

Proposition 2 Both KK(A,Aq, D) and BK(Ay, Az, D) have diameter
D.

Proof: Since both K(A, D —1) and B(A, D —1) are D-reachable i.e. there
always exists a walk of length D from any vertex v to any other w (see for
instance Corollary 1), and because of construction of the direct product,
the diameter of K K(Ay, Az, D) and BK(A,, A3, D) cannot be larger than
D.

On the other hand let us recall that in K(A, D — 1) there exist vertices
which are not (D—1)-reachable from some others (see [11]). Let us consider
two vertices (vy, w;) and (vz, w2) in which v, is at distance D — 1 from v,
in its original digraph (i.e. either Kautz or De Bruijn digraph) and where
wy is not (D — 1)-reachable from w; in the Kautz digraph. The distance
from (vy,w;) to (v2, wz) must be larger than D — 1. The proposition is
then proved. m]

As it is shown in Section 2, K K(A;, Az, D) is regular of degree A;A,
and has order (A;A3)P~2(A; + 1)(A2 + 1). Analogously BK(A;, Az, D)
is regular of degree A;A; and has order (A24,)P-1(1+ A_)

2

Theorem 2 KK(A1,As,D) isa(A1A2,D, (A1 —1)(Ag—1)—2)-digraph.
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Proof:

Since between any pair of vertices in a Kautz digraph K (A, D—1) there
always exist (A — 1) walks of length D, then there exist (A; — 1)(Az — 1)
walks of length D in KK (A, A2, D).

Let us assume there exists a coincidence within two vertices in different
walks, i.e. (via,wis) = (vjc, wjq). We will prove there cannot be any other
coincidence within vertices in different walks, and therefore, all walks are
disjoint except one of them.

Suppose (Vkz,wky) = (viz,wiy) Or equivalently in a Kautz digraph,
Uk; = ¥z and Wiy = wy. Because of Theorem 1, if I —k = j — i we
will have @ = z,b = y,¢ = z,d = v. That is, both coincidences are in the
same pair of walks.

Ifl—k < j—1i we will have z = 2,v = y, that is, the second coincidence
is in the same walk.

In both cases there only can exist a walk which is not disjoint from the
others. m]

The next proposition considers digraph BK(A;, Az, D).We omit its
proof since it is identical to the previous one.

Proposition 3 BK(A;,A2,D) is a (A 1Az, D, Ay(A2 — 1) — 2)-digraph.

The next proposition is a consequence of previous results:

Proposition 4 a) BK(A,Aq, D) isa (AyAg, D, Ay(Ay—1) —1)-digraph
whenever D < 4

b)KK(A1,Az,D) is a (A1Ag, D, (Ay — 1)(Ag — 1))-digraph whenever
D<4.

Proof (sketched): Since the number of disjoint paths of length & between
any pair of vertices in a conjunction of digraphs is at least the product
of of disjoint paths of the same length in both digraphs, this result is a
consequence of Proposition 1 and Theorem 2. (m]

Let us define a new family of digraphs which is a better solution for
the (A, DY, s) problem than any other known families of digraphs for some
values of A and s.

Definition 2 The digraph B*G is defined as B(A, D) ® G where G is any
digraph.

In the next result some parameters of this digraph are presented.
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Proposition 5 Let G be a regular D-reachable digraph with degree A;.
The digraph B*G = B(A, D) ® G has nAP vertices, diameter D, degree
AA,. Moreover B*G has k disjoint walks of length D whenever G has k
disjoint walks of length D.

Proof (sketched): The values for the degree and the diameter are triv-
ially obtained from the definition of the conjunction of digraphs, and from
the fact that both digraphs are D-reachable. Moreover, since there al-
ways exists one path of length D between any two vertices in B(A, D), the
number of disjoint paths of length D in G will be preserved in B*G. O

5 Conclusions

In Table 1 the properties of Kautz and De Bruijn digraphs are shown as
well as the properties of the new families of (A, D, s)-digraphs studied in
this paper.

digraph degree Order (s5 +1)
G) (d;) (n})

K(a,D) a aD 4 aD-1 a-12

B(a, D) a ab a-1

K(81,D-1)®K(a3,D~1) | 8145 | (8;82)P~3 (a1 +1)(a241) | (81— 1)(83-1)-1

1
B(&,,D-1)® K(az,D~1) | 8,4, (41827711 + =) a1(83-1)-1
2

B(A,D)® G; ad; aDn; 41

Table 1: Families of dense (A, D', s)-digraphs.

It is easy to check that all these families are asymptotically optimal
when the degree increases, that is,

number of vertices
m - =
(A1,A;)—00 Moore-like bound

Furthermore these new families give most of values in the tables shown
in the Annex, which contains the largest known families of dense (A, DV, s)-
digraphs up to date (october 1995).
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Annex: Tables

Symbols and notations used in the tables:

FD FD bipartite digraph, see [9).

1 Imase-Itoh digraph, see [13].
K Kautz digraph K(A, D — 1), see [10].
B De Bruijn digraph B(A, D — 1), see [10].

BK B(A,D-1)® K(A', D - 1), see Section 4.

KK K(A,D—-1)® K(A', D — 1), see Section 4.

B*B B(A,D) ® B(A', D — 1), see Section 4.

B*K B(A,D)® K(A', D — 1), see Section 4.

B*BK B(A,D)® B(A',D-1)® K(A",D — 1), see Section 4.
B*KK B(A,D)® K(A',D-1)® K(A", D - 1), see Section 4.

n

The number below each graph stands for the equation ADGEL) where
n is the order of the graph. The larger this number, the closer to the
Moore-like bound (notice that this number may be greater than 1).
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TABLE 1. LARGEST KNOWN (A, D', s) DIGRAPHS WITH

D=3
1 2 3 4 5 6 7 8 9| 10
A
11
2 1,50
K Jii
3 0,89 1,33
17 K 17
4 1,25| 0,94 1,25
K J71
5 0,96 1,20
1] 1] BK K| I
6 1,08| 1,06/ 0,89 o097 1,i6
K 17
7 0,98 1,14
Il B*K Il BK K 1T
8 1,12| 0,94 1,12 0,94| 0,98 1,12
B*K I KK BK K Jii
9 0,89 1,1 0,79 0,89 0,99 1,i1
11 B*K 11 BK K Jii
10 1,10 0,96| 1,10 0,96 o0,99| 1,10
K 1]
11 0,99 1,10
I 1T i1 K 1T BK| BK| BK K
12 1,08 1,08 1,08 0,97 1,08 0,89] 0,94| 0,97| 0,99
13
1] * I
14 1,07 098] 1,07
B*K 1] B*K 11 KK BK
15 0,89 1,07 ‘096 1,07 0,85 0,89
IIl B*K J I B*BK *K Il KK
16 1,06] 0,94 1,06 0,94] ‘0,98 1,06] 0,88
17
1] IIl B*KK ¥ 1T B*K Il KK
18 1,06 1,06 = 0,79| 0,97 106 0,99| 1,06 0,36
19
1T * 1T II B*BK| B*K II
2 1,05| ‘0,94 1,05 1,05 0.96| “o9| 1,05
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TABLE 2. LARGEST KNOWN (A, D',s) DIGRAPHS WITH D' = 4

s 1 2 3 4 5 6 8 9@ 10
A
FD|
2 1,5
K FD
3 0,89 0,88
BK] K FD
4 0,75 094 0,62
K] FD
5 0,96 0,48
B*K] BK] BK] J FD
6 08| o075 0,8 097 0,40
K| FD
7 0,98 0,33
B*BK| B*K| BK] BK] K] FD
8 0,75| 0,94 0,75 0,94 o098 0,29
B*K| KK BK] K| FD
9 0,89 0,79 0,89 0,99 0,24
B*K BK] BK K| FD
10 0,9 0,75 0,96] 0,99] 0,22
K| FD
11 0,99 0,20
*K| B*K| B*BK| B*K| K, BK| BK| BK] K
12 0,89 0,94 " o8| ‘o097 0,83 0.89| 0,94| 0,97 0,99
13
B*K| BK|
14 0,98 0,75
B*K] B*K] KK BK]
15 0,89 0,96 0,85 0,89
B*BK| B*K| B*BK] B*BK| B* BK| KK
16 0,75 ‘0,94 " 0,75 0,94 0,98 0,75 0,88
17
B*K| B*BK| B*KK *K] B*BK] *K| BK| KK]
18 08 ~ o075 ~ 0,79 097 ~ 0,89 0,99| 0,75| 0,86
19
B*BK| B*K| B*K| B*BK B*BK| B*K| BK|
20 o075 ‘0,94 ‘0,96 ~ 0,75 0,96 09| 0,75
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TABLE 3. LARGEST KNOWN (A, D’',s) DIGRAPHS WITH D' > 4

s 1 2 3 4 5 6 7| 8 9 10
A
2
B
3 0,67
K B
4 063 0,75
K B
5 0,72| 0,80
B*B BK K B
6 067 067 0,78 083
K B
7 0,82| 0,86
B*K B*B BK K B
8 0,63 0,75 078 084 o088
B*B KK BK K B
9 067 0,59 0,74 0,86 0,89
B*K| B*B BK B
10 0,72| 0,80 0,84| 0,88 0,90
K B
11 0,89| 0,91
B*B B*B| B*K B*B BK| BK| BK K B
12 0,67 '0,75| ‘0,78 0,83 o,78| 0,83 087] 0,90 0,92
K
13 0,91
K *B BK
14 0,82| 0,86 0,90
B*B B*K| B*B KK BK BK
15 0,67 0,72 0,80 0,75 0,80 0,38
B*K B*B B*BK| B*K B*B| KK BK
16 0,63 0,75 080 084 ‘o,88| 0,78 0,86
17
B*B|l B*BK| B*K B*B B*K| B*B| KK BK
18 0,67 ~ 0,67 0,78] 0,83 0,86| 0,89| 0,77 0,81
19
* *B| B*B B*BK| B* * KK
20 0,63| 0,75 0,80 0,84| 0,88 0,90 0,83
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