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Abstract

Let n > 1 be an integer. The closed n-neighborhood N,[u] of a
vertex u in a graph G = (V, E) is the set of vertices {v|d(u,v) < n}.
The closed n-neighborhood of a set X of vertices, denoted by N.[X],
is the union of the closed n-neighborhoods N,[x] of vertices u in X.
For z € X C V(G), if Nu[z] — Nu[X — {2}] = 0, then z is said
to be n-redundant in X. A set X containing no n-redundant vertex
is called n-irredundant. The n-irredundance number of G, denoted
by ir,(G), is the minimum cardinality taken over all maximal -
irredundant sets of vertices of G. The upper n-irredundance number
of G, denoted by IR, (G), is the maximum cardinality taken over
all maximal n-irredundant sets of vertices of G. In this paper we
show that the decision problem corresponding to the computation of
trn(G) for bipartite graphs G is N P-complete. We then prove that
this also holds for augmented split graphs. These results extend those
of Hedetniemi, Laskar and Pfaff (see [7]) and Laskar and Pfaff (see
[8]) for the case » = 1. Lastly, applying the general method described
by Bern, Lawler and Wong (see [1]), we present linear algorithms to
compute the 2-irredundance and upper 2-irredundance numbers for
trees.
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1 Introduction

Let n > 1 be an integer. The closed n-neighborhood Ny [u] of a vertex u
in a graph G = (V, E) is the set of vertices {v|d(u,v) < n}, i.e., all those
vertices which are at distance at most n from u. The open n-neighborhood
Np(u) of u is defined as Ny[u] — {u}. The open (closed) n-neighborhood of
a set X of vertices, denoted by Nn(X) (Nn[X]) is the union of the open
(closed) n-neighborhoods Np(u) (Nn[u]) of vertices u in X. Forz € X C
V(G), if Np[z] = Na[X — {z}] = 0, then z is said to be n-redundant in X.
Equivalently, z is n-redundant in X if and only if Ny[z] C Nu[X — {z}].
A set X containing no n-redundant vertex is called n-irredundant. If X is
n-irredundant and z € X, the set Np[z] — No[X — {z}] is called the set of
private n-neighbors of = and is denoted by PNy [z, X]. The n-irredundance
number of G, denoted by ir,(G), is the minimum cardinality taken over all
maximal n-irredundant sets of vertices of G, while the upper n-irredundance
number of G, denoted by I R,,(G), is the maximum cardinality taken over

all maximal n-irredundant sets of vertices of G.

A set D of vertices in a graph G is defined to be an n-dominating set of
G if every vertex of V(G) — D is within distance n from some vertex of
D. The minimum cardinality among all n-dominating sets of a graph G is
called the n-domination number of G and is denoted by ¥,(G), while the
maximum cardinality among all minimal n-dominating sets of a graph G
is called the upper n-domination number of G and is denoted by ['n(G).
A set D of vertices in a graph G is called n-independent if d(u,v) > n
for all u,v € D. The independent n-domination number of G, denoted by
in(G), is the minimum cardinality among all maximal n-independent sets
of a graph G, while the n-independence number of G, denoted by B,(G), is

the maximum cardinality among all maximal n-independent sets of a graph



G.

These parameters are related as follows:

Theorem 1 If G is a graph, then

ir4(G) € 7a(G) < in(G) < Ba(G) < T(G).

The following result of [4] will prove to be useful later.

Theorem 2 Let X be a mazimal n-irredundant set of vertices in a graph

G. If u is a vertez of G not n-dominated by X, then for some x € X,

PNyu[z, X] C Np(u).

A graph G is called a split graph if its vertex set can be partitioned into a
non-empty clique and a non-empty independent set. If n > 1 is an integer,
then an (n— 1)-path augmented split graph is a graph obtained from a split
graph by attaching a path of length n— 1 to each vertex in the independent
set. A chordal graph is a graph in which every cycle of length greater than
three has a chord, i.e., an edge joining two non-consecutive vertices of the

cycle.

Chang and Nembhauser [2] proved that the decision problems corresponding
to the computation of ¥,(G) and 8,(G) for bipartite graphs G are N P-
complete. (The latter was proved for n > 2.) In the same paper, these
authors also prove that the decision problems corresponding to the com-

putation of v,(G) and 5, (G) for (n — 1)-path augmented split graphs G



are N P-complete. Fricke, Hedetniemi and Henning [3] showed that the
decision problem corresponding to the computation of i,(G) for arbitrary
graphs G is N P-complete, while Hattingh, Henning and Walters (6] proved
that the decision problem corresponding to the computation of I',(G) for
arbitrary graphs G is N P-complete. Hattingh and Henning [5] showed that
the decision problem corresponding to the computation of IR, (G) for ar-
bitrary graphs is N P-complete. In Section 2, we use a construction of [2]

to prove that the decision problem

DISTANCE IRREDUNDANCE SET (DIS)
INSTANCE: A graph G and positive integers n and k.
QUESTION: Is ir,(G) < k7

is N P-complete for bipartite graphs G. This extends the result of Hedet-
niemi, Laskar and Pfaff (see [7]) that the decision problem corresponding
to the computation of ir(G) for bipartite graphs G is N P-complete. In
Section 3 we show that DIS is N P-complete for (n — 1)-path augmented
split graphs by using another construction of [2]. This result extends that

of Laskar and Pfaff (see [8]) for the case n = 1.

2 NP-completeness of the problem DIS for
bipartite graphs

In this section, we show that the decision problem DIS for bipartite graphs
is N P-complete, by providing a polynomial reduction of the domination

problem on general graphs to the problemn DIS on bipartite graphs.

We start by discussing a construction by Chang and Nemhauser [2] to show
that the decision problems corresponding to the computation of v, (G) and

Bn(G) for an arbitrary bipartite graph G are N P-complete. (The latter



a
all

b —eo —— — @ — — — — o—o
s D Y —— s b”

n — 1 vertices

¢ —— — o—o

c C, ~— 7
n — 1 vertices
G: H

Figure 1: Chang-Nemhauser transformation I

was proved for n > 2.)

For any graph G = (V, E} and s ¢ V, construct the bipartite graph G/ =
(Vi UV, F), where V) = VU {s}, Vo = {V'[v e W1}, and F = {a¢/|z,y €
Vidg(z,y) < 1} U {vs'|v € V;}. If n > 2, we construct the bipartite graph
H from G’ as follows: the edge ss' is subdivided n — 1 times, while a path
P, of length n — 1 is attached to each vertex v’ with v € V. For v € V, let
v"” be the end-vertex of P, and let Y = {v"|v € V}. Furthermore, let S be

the vertex set of the s-s’-path.

An example of this construction is given in Figure 1.
Lemma 1 (Chang and Nemhauser) y(G) + 1 = v,(H). |

Let I be a maximal irredundant set of H such that |I| = ir,(H). We show

that ir,(H) = yo.(H).
Lemma 2 |[V(P,)NI| <1 foreachveE V.

Proof. If z,y € V(P,) N1 with d(z,v") < d(y,v'), then Ny[y] C Ny[z],
which implies that PN, [y, /] = 0, a contradiction. ll

Lemma 3 [SNI|=1.



Proof. Suppose SN/ = 0. Then, since /U{s} is not n-irredudant,, thereis a
y € 1U{s} such that N,[y]— Np[IU{s}—{y}] = 0. Since s € N, [s]— N, [/},
we have that y # s. Further, since N,[y] — No[TU{s} — {y}] = 0, it follows
that @ # PN,[y,I] = Nyply] — Na[l — {y}] C Nu[s] = S. Since y € S, it
follows that § # PN,[y,I] C S — {s}. Before proceeding further, we prove

three claims:

Claim 1 |VNI|< 1.

Proof. If v € VN1 with v # y, then PN,[y,I] C S — {s} C Nyp[v], which
implies that PN,[y, I] = @, a contradiction. We deduce that y is the only

possible vertex of V in I. o
Claim 2 ye V.

Proof. If n = 1, then PN,[y,I] = {5’} so that y € V. We assume that
n > 2 and that y € V. Then y is on P, for some v € V. By Lemma 2,
y is the only vertex on P, in /. Thus, since INV = @ (cf. Claim 1), it
follows that v” € PNy[y,I]. But v” ¢ S — {s}, which is a contradiction.
We deduce that y € V. o

Claim 3 N(y) - {s'} C I.

Proof. Let v € N(y) — {s'} and assume that v' ¢ I. If w € V(P,)N I,
then, since w # v', it follows that N,[w] C N,(y] and so PN,[w,I] =0, a
contradiction. Hence V(P,)N I = 0. Thus, since I NV = {y}, it follows
that v” € PN,[y, /], so that v € S, a contradiction. o

In particular, we have that 3’ € I. This implies that PN,[y', I] # 0. Let
w € PN,[y',I}. Sincey € I—{y’'} and (S—{s})UV(Py) C Ny[y], it follows



that w € SUV(Py). Let P be a shortest y' — w path. Note that y g V(P)
since otherwise w € Ny, [y]. Hence the vertex v immediately succeeding y’
on P must be in V — {y}. Since v € N(y'), it follows that v' € N(y).
By Claim 3, v € I. However, the v — w path obtained from the v — w
section of P by adding v’ and the edge v'v has the same length as that of
P, whence w € Ny,[v']. This contradicts the fact that w € PN,[y’, []. We
conclude that SN 7T #@.

If z,y € SN I with d(z,s’) < d(y,s’), then N,[y] C N,[z], which implies
that PN,(y,I] = @, a contradiction. We conclude that |[SNI| = 1. |

By Lemma 3, {t} = SN I. Let U be the set of vertices of Y which are
not n-dominated by /. If U = @, then [ is an n-dominating set of H. This
implies that v,(H) < |I| = irn(H) < 1a(H), so that y,(H) = ir,(H). So
let " € U. By Theorem 2, there exists y € I such that PN, [y, I] C Na(v").
For each v" € U, let f(v) be any such y.

Lemma 4 f(v) gV forallv" € U.

Proof. Suppose f(v) € V. Then f(v) = y for some y € V — N(2'). Since
PNguly,I] € Nu(v"), it follows that I NV = {y}. Thus, if V(P,)NI =
0, then y’ € PN,[y,I], so that d(y",v") < n, a contradiction. So let
w € V(P)NI If w# ¢, then Ny[w] C N,[y], so PN,u[w,[] = 0, a
contradiction. Thus w = ¢’ and ' € I. Proceeding now as in the paragraph
immediately following the proof of Claim 3, we arrive at a contradiction,

completing the proof. |

For each f(v), let g(f(v)) be any vertex in PN,[f(v),I]. Note that f, g
are chosen to be functions. Then g(f(v)) is within distance n from v”. Let
I'= (- {f(v)v" € UY) U{g(f()|v" € U}. Note that |I'| < |1].



Lemma 5 te ['.

Proof. If not, then t = f(v) for some v € U. Since {{} = SN, it
follows that s € PN,(t,I]. But s & N,[v”] for any v" € U, producing a

contradiction. I
Lemma 6 All vertices of Y are n-dominated by I'.

Proof. If v € U, then, since g(f(v)) € I, it follows that v” is n-dominated
by I’. Assume, then, that v/ € U. If v/ € I, then v is n-dominated by [,
since vertices in I are replaced by vertices within distance n from them. If
v"” ¢ I, then there exists w € I that n-dominates v"’. If w € V, it follows
from Lemma 4, that w € I’ and thus v" is still n-dominated by I’. If, on the
other hand, there is no such w € /, then w € V(P,) and v € PN,[w,I].
This means that w # f(u) for all v’ € U, so that w € I’. Thus v" is again
n-dominated by I’. |

Theorem 3 The problem DIS is N P-complete for bipartite graphs.

Proof. Lemmas 5 and 6 imply that I’ is an n-dominating set of H, so
that y.(H) < |I'| < |I] = ira(H) < 7a(H), so that ya(H) = ira(H).
Thus, by Lemma 1, ir,(H) = 7(G) + 1. Thus, the problem of determining
the domination number of an arbitrary graph G can be transformed to the

problem of determining the n-irredundance number of the bipartite graph

H.1
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3 NP-completeness of the problem DIS for
chordal graphs

In this section we show that the decision problem DIS for (n — 1)-path
augmented split graphs is N P-complete by providing a polynormial reduc-
tion of the domination problem on general graphs to the problem DIS on
(n — 1)-path augmented split graphs. This result extends that of Laskar
and Pfaff (see [8]) for the case n = 1.

We start with the following result:

Lemma 7 Let n > 1 be an inieger. If G is a connected (n — 1)-path
augmented split graph, then v,(G) = ir,(G).

Proof. Let H be the underlying split graph, with the vertex set of H
partitioned into the non-empty clique V' and the non-emnpty independent
set W. If w € W, a path of length n — 1 is attached to w; we denote the
end-vertex of this path by w’. If W = {w}, then, since G is connected, there
exists a v € V such that vw € E(G). Note that {v} is both an n-dominating
set and a maximal n-irredundant set, so that v,(G) = ir,(G) = 1. We may
assume that |W| > 2. Let I be a maximal n-irredundant set of cardinality
irn(G) and let W' = {w'|w € W}. If I is an n-dominating set for W', then
either 7 # W’, in which case I also n-dominates G, or I = W’. In the
latter case, if we choose w' € W' arbitrarily and let v € V be such that
vw € E(G), then (I — {w'}) U {v} is an n-dominating set of G. In both
cases, Yn(G) < |I| = ira(G). If I is not an n-dominating set for W', there
exists w’ € W’ such that w’ ¢ N,[I]. By Theorem 2, there exists an z € |
such that PN,[z, I} C N,(w'). Before proceeding further, we prove three

claims.

11



Claim4 z € V.

Proof. If z ¢ V, then z is on some ¢ — ¢'-path, where t € W and t' € W'.
If ' € PN,[z, 1], then d(t',w') < n, which is a contradiction. Hence, there
exists a y € I — {z} such that ¢ € N,[y]. If y follows z on the t — ¢'-path,
we have that N,[y] C Ny[z], making y redundant in /. Hence y precedes
z on the t — t’-path or y € V. However, in both cases, PNy, [z, I] C N,[y],

which is impossible. This contradiction shows that 2 € V. o

Note that V NI = {z} since any y € V has N,(w’) C Na[y].
Claim 5 z ¢ N[W).

Proof. Since w’ & N,[1], it follows that zw ¢ E(G). Suppose there exists a
t € W such that zt € E(G). Ift' € PNy[z, I], then d(#',w’) < n, which is a
contradiction. Hence, there exists a y € I — {z} such that ¢’ € N,[y]. Since
[V N I| =1, it follows that y is on the ¢ — t’-path, so that Ny[y] C Np[z],

making y redundant in I, which is a contradiction. o
Claim 6 Ift' € W — {w'}, then t' is n-dominated by I — {z}.

Proof. Since z ¢ N[W], it follows that t’ is not n-dominated by z. If ¢/
is not n-dominated by I, then, by Theorem 2, there exists a y € I such
that PN,[y, I] C Nop(t'). Since PN,[y, I} C Nn(t') C Ny[z], it follows that
PN,[y,I] = 0, which is a contradiction. °

It now follows from the above claims that if 2* € PN,[z,I], then I —
{#} U {z*} is an n-dominating set of cardinality |I| and so v,(G) < |I| =
ir(G) < 7n(G), 50 that 7,(G) = ira(G). I

For any graph G = (V, E) consider the split graph H = (V U W, F) with
W = {v'|v e V}and F = {uvlu,v € V,u # v} U{w'|u,v € V,dg(u,v) <

12
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1}. If n > 1is an integer, let G’ be the (n— 1)-path augmented split graph
with H as the underlying split graph. An example of this construction is

given in Figure 2.

Lemma 8 (Chang and Nemhauser) Let n > 1 be an integer. If G and
G’ are the aforementioned graphs, then ¥(G) = v,(G). |

Theorem 4 The decision problem DIS is N P-complete for (n — 1)-path
augmented split graphs.

Proof. The N P-completeness of the problem DIS follows immediately
from Lemmas 7 and 8 and the fact that the domination problem is NP-

complete for general graphs. |

Since the set of (n — 1)-path augmented split graphs is a subset of the set

of chordal graphs, an immediate corollary now follows.

Corollary 1 The decision problem DIS is N P-complete for chordal
graphs.
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4 Linear algorithms to compute the 2-irre-
dundance number and upper 2-irredun-
dance number for trees

In this section we develop linear time algorithms to compute the 2-irredun-
dance number and upper 2-irredundance number for trees, by applying the
general method described in [1]. We will use the terminology of [1]. We

begin with a few definitions.

A composition operation (o) for trees is defined as follows:

Let T} = (W1, E)) and Ty = (V4, E;) be trees with roots v; and v,
respectively. Then Ty o Ty = (V) U Vs, Ey U E2 U {v1v2}) with root
V1.

K\ is a primitive graph for the composition operation in the sense that it

cannot be obtained from a composition of two trees.

Let T be the set of all tree-subset pairs (T, .S), where S C V(T'). We extend
the composition operation for trees to I' as follows:

Let (T],Sl), (TQ,SQ) € I'. Then (Tl,Sl) ] (Tz,Sg) = (T] 0Ty, 51U
Sa).
There are two primitive pairs (T1,51) and (7%, S2) in T, with Th = Ty = K;,

S1 ={v1} and S2 = 0.

Let P be a predicate on T, with P(T,S) true if and only if S is a 2-
irredundant subset of vertices of T. We will define a finite homomorphism
h, on T such that the following holds for all (T1,S5:),(T2, S2) € I':

(H1) hy(T1,81) = hi(T3, S2) = P(Ti, 51) = P(Ts, Sa),

(H2) Ay ((T1,51) ® (T2, S2)) = h1(T1, 51) - hi (T2, 52)-

The range of h; consists of finite number of equivalence classes Cj, i =
0,1,...,n — 1. The composition operation for hi(I') is defined with an

n X n composition table as follows:

14



C; - C; is the class Cy with & the entry in row ¢ and column j of
the composition table.
There are two starting classes in hy(T'). They are the classes h (T, S) such

that (7', S) is a primitive pair in . A class C; is said to be an accepting

class if P(T,S) is true for a (T, S) pair in T with (T, S) = C;.

We will use Nr[v] (PNr[v]) to denote the closed 2-neighborhood (private
2-neighborhood) of v in T'.

The following result will be useful in defining the homomorphism h;.

Let P(T1,S1) be false. Then there exists a (T3, S2) pair such that P(T,S),
with (7, S) = (T, S1) @ (T2, S2), is true if and only if the following holds:

(1) If PN7,[v] =0 (v € S1), then d(v1,v) < 1 (where v, is the root of
1),
(i) PNr, [v] = 0 for exactly one vertex v € ;.

This result follows from the following observations:

ay If PNr,[v] = @ (v € S)), then PNz[v] can only be non-empty if
Nr[]NV(Tz) # 0.

(i) If PNy, [u] = PNy [v] = 0 for u,v € S; (u # v), then either
Nr[u] — Np,[u] C Nr[v] or Np[v] — N7, [v] C Np[u). Thus either
PNr{u] =0 or PNr[v] = 0.

An element (73, S)) of T will be called permanently redundant if P(T}, S)
is false and P((T},S5,) e (T3, S2)) is false for all (T3, S,) €T.

The preceding result and definition also applies to a pair on the right in

the composition.

Let (T,S) € T and let v; be the root of T. We define functions D; and D,
on I' as follows:

Dy(Th, S1) = minges, {d(v1,v)}, and

Dy(Th, 51) = minyes, {maxyepy, (v {d(v1,u)}}.

The following characteristics of a (T}, S)) pair will be used to determine its

15



image hy(T1,S1):

(@)

(i)
(ii)

(iv)

For (T1,S:) pairs with P(71,S;) true, the number Dy(T}, Sy) is
recorded. This will determine whether a v € S is a 2-irredundant
vertex of S C V(T), where (T, S) is the resulting pair after a com-
position involving (71, S;) from the left. This can be seen from
the fact that PNp[v] = @ if and only if a v € PNp,[v] with
d(v1,%') = maxyepny [v] d(v1,u) is 2-dominated in T. (Th, S1)
pairs with D, (T}, S;) > 2 are grouped together since a u € PNy, [v]
with d(vy,u) > 2 will be an element of PNp[v].

(T1,S1) pairs with P(Ty,S;) false are further characterized by
whether (T3, S)) is permanently redundant or not.

For all (T, S1) pairs except those that are permanently redundant,
it is determined whether there are vertices v € V(T') with d(v;,v) <
1 and such that v ¢ Np,[Si]. These are candidates for private
neighbors in a composition.

The number D;(7},S:) is recorded for each (T1,5)) pair. This

will assist in determining the image of a (7},.51) pair based on the
information in (i) to (iii).

The following rules will be used to describe the h; equivalence classes:
(R1) P(T,S) is true;

(R2) P(T,S) is false and (T, S) is not permanently redundant;

(R3) (T, S) is permanently redundant;

(R4) d(v1,v) =1 for at least one v € S;
(R5) v € N[S] for all v € V(T') with d(v;,v) = 1.

The following are the descriptions of the h; equivalence classes:
(Co) D1(T,S) =0 and R2 and R4;

(C1) D1(T,S) = 0 and R2 and not R4;

(C2) Di(T,S) =0 and R3;

(Cs) Di(T,S) = 0 and R1 and Dy(T, S) = 0;

(C4) Dy(T,S)=0and Rl and Do(T,S5) = 1;

(Cs) D1(T,S) = 0 and R1 and Ds(T, S) > 2;

(Cs) D1(T,S)=1 and R2;

(C?) Di(T,S)=1 and R3;

16



(Cs) Di(T,S) = 1 and R1 and Dy(T, S) = 0;
(Co) D1(T,S) =1 and R1 and Dy(T,S) = 1;

(C10) Di(T,S) =1 and Rl and D,(T, S) > 2;

(Ci1) Di(T,S) = 2 and R3;

(Ci2) Di(T,S) = 2 and Rl and R5 and Dy(T,S) = 0;
(C13) Di(T,S) = 2 and Rl and R5 and Do(T,S) = 1;
(C14) Dy(T,S) = 2 and R1 and R5 and Dy(T, S) > 2;
(Ci5) D1(T,S) = 2 and Rl and not R5 and D4(T, S) = 0;
(C16) D1(T,S) = 2 and Rl and not R5 and Do(T, S) = 1;
(Ci7) Di(T,S) = 2 and Rl and not R5 and D5(T, S) > 2;
(Cis) Dy(T,S) > 3 and R3;

(Ci9) Di(T,S) > 3 and R1 and R5 and D,(T, S) = 1;
(C20) D1(T,S) > 3 and Rl and R5 and Do(T, S) > 2;
(C21) D1(T,S) > 3 and R1 and not R5 and Dy(T, S) = 1;
(Ca2) D1(T,S) > 3 and Rl and not R5 and Do(T, S) > 2.

The composition table for the above classes is given in Table 1.

The Myhill-Nerode theorem of complexity theory is applied to Table 1 to

determine which classes are not n-distinguishable (distinguishable hence-

forth), where n = 23 is the number of classes. distinguishability is deter-

mined recursively as follows:

(1) C; and Cj is O-distinguishable if one is an accepting class and the

other not;

(i) Ci and C; are m-distinguishable if they are (m —1)-distinguishable,
if C; - Cy and Cj - Cy are (m — 1)-distinguishable for some &, or if
Cy - C; and Cy - C; are (m — 1)-distinguishable for some k.

Table 2 gives the resulting composition table after the non-distinguishable

classes in Table 1 were coalesced. Class representatives for the classes in

Table 2 are given in Figure 3.
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0123 45 6 7 8 91011121314 151617 18 19 20 2T 22
02222 2 0 2 2 2 2 0 2 2 2 0 2 2572 2025
12222 2 0 2 2 2 212 2 212 25 2 2 4125
212222 2 2 2 2 22 2 2 2 2 2 2222 2222
312222 2 0 2 2 2 2 1 2 2 2 3 2 25 2 2 4235
412222 2 0 2 2 2 2 4 2 2 2 4 2 25 2 2 4 25
52222 2 5 2 2 2 25 2 2 25 2 25 2 25 25
67777 v 77T 776 6 776 6766 79999
ffr777 77777770770 0TTT 17
gj77v7 7T 7T 7T 77T 6 6 7 7 8 87 887 99909
gf777r7 7 77T 7T 79 9 7T 7T 9 979 979 999

1077771010 7 7 71010 7 71010 7 1010 7 10 10 10 10
17777 7 71111111111 11 11 11 11 11 11 11 11 11 11 11 11
1217777 7 7111111111111 1212121212 12 11 1515 15 15
7777 7 7111113131311 13 1313131313 11 16 16 16 16
14(6 6 7 9 10 10 11 11 13 14 14 11 13 14 14 13 14 14 11 17 17 17 17
15|17 777 7 7111111 11 1111 15151515 1515 11 15 15 15 15
16|77 77 7 7111116 16 16 11 16 16 16 16 16 16 11 16 16 16 16
17199 7 91010 11 11 16 17 17 11 16 17 17 16 17 17 11 17 17 17 17
18(7 777 7 7111111111118 1818 18 18 18 18 18 18 18 18 18
7777 7 712111313 131819191919 19 19 18 21 21 21 21
20(6 8 79101012 11 13 14 14 18 19 20 20 19 20 20 18 22 22 22 22
217777 7 7151116 16 16 18 21 21 21 21 21 21 18 21 21 21 21
2219979101015 11 16 17 17 18 21 22 22 21 22 22 18 22 22 22 22

Number of classes: 23.

Starting classes: C3 and Coyp.

Accepting classes: C3, C4, Cs, Cg, Cy, Cro, C12, Ci3, C14, Cis5, Cis, Ci7,
Che, Cao, C21 and Coa.

Table 1 (h1(I') composition table before reduction)
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012345 6 7 8 9 10 I 12 13 14 15 16
of2 22220 22 2 0 2 2 0 5 2 0 5
1j222220 2 2 2 1 2 2 1 5 2 4 5
21222222 2 2 2 2 2 2 2 2 2 2 2
3222220 2 2 2 1 2 2 3 5 2 4 5
42 22220 2 2 2 4 2 2 4 5 2 4 5
5|2 22225 2 2 2 5 2 2 5 5 2 5 5
6(2 22222 2 2 6 6 2 6 6 6 8 8 8
71222222 2 2 6 6 2 7 7T 7 8 8 8
8(2 22222 2 2 8 8 2 8 8 8 8 8 8
9(2 22299 2 2 9 9 2 9 9 9 9 9 9

10(2 22222 2 2 2 210 10 10 10 10 10 10
112 22 222 211 11 11 11 11 11 11 11 11 11
12|16 6 2 8 9 9 2 11 12 12 11 12 12 12 13 13 13
1318 82899 211 13 13 11 13 13 13 13 13 13
1412 2 2 2 2 2 10 11 11 11 14 14 14 14 14 14 14
15(6 7 2 8 9 9 10 11 12 12 14 15 15 15 16 16 16
16/8 8 2 8 9 9 10 11 13 13 14 16 16 16 16 16 16

Number of classes: 17.

Starting classes: Cs and Cjs.

Accepting classes: Cy, Cy, Cs, C7, Cs, Cy, Cio, Ci1, Ci2, Ci3, Cr4, Cis
and CIG-

Table 2 (h,(I") composition table after reduction)

31((“(”/?{ ?
:

(10) (11) (12 (13) (14) (15 (16)

/I !

(The subset S of V(T) for a (T, S) pair is indicated by square vertices.)

Figure 3 (Class representatives for the equivalence classes in Table 2)
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We now define a predicate maz P on I" such that maz P(T, S) is true if and
only if S is a maximal 2-irredundant subset of vertices of T'. For maz P we
define a mapping hy on T’ that satisfies (H1) and (H2) as follows:

ho(T, S) is the pair [C;, A] with C; = hy(T,S) and A = {C;|C; =
hy(T, S U {v}), v € V(T) - 5).
Then h; has a finite range consisting of at most n - 2" equivalence classes,

where n is the number of equivalence classes in A ().

The composition table for ha(T') is calculated from the Ay (I') composition
table as follows:
For [Cl,Al] and [Cg,Ag] in hg(r), [Cl,All'[Cg,Azl = [C] 'Cz, {C,

C2|C; € A1} U {C, - Gj|Cj € Aq}].
The starting classes are [Cy1,0] and [Cy2, {C,1 }], where C;; and C,;, are the

hy starting classes. The accepting classes are those [C;, A] pairs such that

Ci is an accepting class and for all C; € A, Cj is not an accepting class.

The computer program devised to calculate the hy(T') composition table
from Table 2, executes the following steps:

(1) Indices relating to all [C;, A] pairs that can be obtained through
a sequence of left and right compositions from the starting classes
are put in an index set I. (There were 2406 non-empty classes.)

2) An upper triangular matrix U = [u;;] is used to indicate whether
two given classes are distinguishable. Fori,j € I, i < j, u;; = 1if
the classes corresponding to the indices 7 and j are distinguishable
(u;; = 0 otherwise). U is initialized by distinguishing between two
classes if the one is an accepting class and the other not.

(3) Calculation of U is completed by repeatedly determining all 1-
distinguishable classes, using the updated U as input each time.
All distinguishable classes are determined as soon as there are no
more 1-distinguishable classes.

4 All the classes that are not distinguishable are coalesced to give a
composition table for a minimum number of equivalence classes.

The h2(T') composition table (referred to as Table 3) consists of 117 dis-
tinquishable classes of which 27 are accepting classes. The table is not

presented here, because of its printed size.
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The algorithm to calculate the 2-irredundance number of a tree takes a
parsed tree and Table 3 as input. Let n be the number of classes, and s,
and s, the starting classes in Table 3. During the postorder traversal of
the parsed tree a vector B = (bg,b1,...,bn—1) is calculated at each vertex

as the tree is constructed (using the composition operation for trees).

At each leaf vertex, B is initialized as follows: b,y = 1, b,o = 0 and b; = —1
for ¢ # s1,52. Each b; (i =0,1,...,n — 1) is the minimum cardinality of a
subset S C V(T'), where T is a subtree of the input tree with hy(T,S) =
Ci. (Here Cj is an equivalence class in the input table.) A value b; =
—1 indicates that no subtree-subset pair (T,S) with hy(7,S) = C; was
constructed up to that stage (using the composition operation for I'). The
vector B at a vertex v of the parsed tree is calculated as follows:

Let B, and B; be the vectors calculated for the left and right child
of v respectively. B is initialized as b; = —1, ¢ = 0,1,...,n - 1.
For 7,7 = 0,1,...,n — 1 such that bgl) # —1 and b§~2) # —1, let
k be the entry in row ¢ and column j of the input table. Then
be = b7 + 687, if b = —1 or if by > 6" + 62,
The 2-irredundance number is calculated from the vector B at the root of
the parsed tree as the least b; (i = 0,1,...,n — 1) for which b; # —1 and

C; is an accepting class.

The upper 2-irredundance number of a tree is calculated similarly from

Table 2 (or Table 3) by maximizing throughout in the above algorithm.

These two algorithms are linear since parsing for trees is linear in the size
of a tree and the procedure for calculating the vectors B is O(1) since the
size of the 2-irredundance tables are constant with respect to the size of

the input tree.
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