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ABSTRACT. In this paper, we count the number of isomorphism
classes of bipartite n-cyclic permutation graphs up to positive
natural isomorphism and show that it is equal to the number
of double cosets of the dihedral group D, in the subgroup B
of the symmetric group S, consisting of parity-preserving or
parity-reversing permutations.

1 Introduction

Let C, denote an n-cycle with consecutively labeled vertices 1,2,---,n.
For a permutation « in the symmetric group S, of n elements, an a-cycle
permutation graph Po(Cy) consists of two copies of C,, say C and Cy, with
vertex sets V(C:D) = {xly Z2,° " 1$ﬂ} and V(Cll) = {yl’yzy tec :yn}, a'long
with edges Ziya(;) for 1 < ¢ < n. When we wish to specify n, we will call
P.(C,,) n-cyclic: with neither o nor n mentioned, it is simply a cycle per-
mutation graph. The copies of Cp, labeled z1, 2, -+« ,zn Will be called the
outer cycle, the copies of C,, labeled y1,%2,° - ,¥n will be called the inner
cycle, and the edges of the form ziyq(:) Will be called permutation edges.
Given two permutations « and 8 in S, Pa(Cy) is isomorphic to Pg(Cn)
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by a positive natural isomorphism O if ©(C;) = C: and ©(Cy) = C,,. The
graph P, (C,,) is isomorphic to Pg(C,) by a negative natural isomorphism ©
if ©(C.) = Cy and 6(Cy) = C.. A natural isomorphism is either of these.
Ringeisen {10] counted the number of distinct cycle permutation graphs iso-
morphic to a k-twisted prism by a natural isomorphism. Also, Stueckle [11]
found the number of permutations which yield cycle permutation graphs
isomorphic to a given cycle permutation graph by a natural isomorphism.
The authors [9] constructed a cycle permutation graph as a covering graph
of the dumbbell graph and by using it, counted the isomorphism classes
of n-cyclic permutation graphs up to positive natural isomorphism. It was
also shown that the number of isomorphism classes of n-cyclic permutation
graphs up to positive natural isomorphism is equal to the number of double
cosets of the symmetric group S, by the dihedral group D,,. The authors
and some others recently counted the isomorphism classes of several kinds
of graph coverings, see [6]—[8].

In this paper, we count the isomorphism classes of bipartite n-cyclic per-
mutation graphs up to positive natural isomorphism, and show that it is
equal to the number of double cosets the dihedral group D,, in the subgroup
B, of S,, consisting of parity-preserving or parity-reversing permutations.

2 An algebraic characterization

Let X, denote the conjugacy class of p = (12 --- n) in the symmetric
group Sy, ie., X, is the set of all n-cycles in S,. For each o0 € I,
we construct a’ graph G, as follows. The vertex set of the graph G, is
{z1, "+ Zn, ¥1, '+, Yn}, and two vertices u and v are joined in G, if
they satisfy one of the following three conditions:

(1) u=z;andv==z,(;) for 1 <i<m,
(2) u=z;andv=y; for1 <i<n,
(3) u=y; and v =yu(;y for 1 <i < n.

Then, for each o € Sy, the cycle permutation graph P,(C,) is isomorphic
to G4-1,4 by a positive natural isomorphism (see [9]), and a~!pa € Z,.
Hence, the set £, can be identified with the set of all n-cyclic permutation
graphs.
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P13y(Ce) G(145632)
Figure 1. Isomorphic graphs F(13)(Cs) and G(145632)

Let Z : S, — S,, be the map defined by Z(c) = o~ ! for all 0 € S, .
Let D,, denote the dihedral group generated by two permutations p and T,
where 7(2) = n+1—1i and p(z) = i+1; that is, the group of automorphisms of
the n-cycle C,,. Note that all arithmetic is done modulo n, and the dihedral
group D, is the normalizer of {p, p~'} in S,,. We write I' = D, x {1,7}
and define an action I x £, — Z,, by (d,1)(0) = dod~! and (d,Z)(c) =
do—1d~!. The following theorem can be found in [9].

Theorem 1 Let o and 8 be two permutations in Sy, .

(1) Pa(Cy) is isomorphic to Pg(Cyn) by a positivel isomorphism if and
only if there exists v € T such that 87 1pf = y(a~pa).

(2) Pa(Cr) is isomorphic to Pg(Cyn) by a negativel isomorphism if and
only if there exists v € T' such that B~1p8 = y(apa~?).

(3) Pa(Cn) is isomorphic to Ps(Cn) by a natural isomorphism if and
only if there exists v € T such that B~ 1pB = y(a~'pa) or f~1pB =
v(apat). O

Now, we give a characterization of a bipartite cycle permutation graph.
Since no bipartite graph has an odd cycle, a cycle permutation graph
P,(C,) can be bipartite only for even n. Hence, we consider only even
n from now on. For any even n, let B, denote the set of all « in Sy, such
that « is either parity-preserving or parity-reversing, i.e., @ maps either all
odd numbers to odd or all odd to even in {1,2,--- ,n}, and Z, the set of
parity-reversing cycles of length n in S,,. Then B,, is a subgroup of S,,. For
example, it is the cyclic group Z; for n = 2, and the dihedral group D4 for
n=4.
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Theorem 2 The following statements are equivalent for a € Sy,.
(1) The cycle permutation graph Po(Cy) is bipartite.
(2) e lpa€E,.
(3) a € Bx.

Proof: (1)=(2). Suppose that P,(C,) is bipartite. Then its isomorphic
copy Ga-1,q is bipartite, and any two vertices y; and y; are joined if and
only if § = (e~ 'pa)(i). A bipartition of Go-1,, gives a 2-colouring of
Ga-1pa- But p reverses parity in {12---n }, and the permutation edges
are of the form z;y; in G4-1,,. Hence a1 pa must reverse parity. That is,
alpa€s,.

(2)=>(3). Note that a~!pa = (a~!(1)a~1(2) --- a~!(n)). Suppose that
a~lpa € E,. Then a~! preserves parity in {12 --- n} if a~1(1) is odd,
and o~ reverses parity in {12 --- n} if @~!(1) is even. This implies that
a~! € B,. Since B,, is a subgroup of S,, a € B,.

(3)=>(1). It is easy to construct a 2-colouring of Po(Cy) for a € B,
Thus, P,(C,) is bipartite. a

By Theorem 2, the set Z,, can be identified as the set of all bipartite
n-cyclic permutation graphs, which is crucial for the counting of their iso-
morphism classes. It is known that two cycle permutation graphs P,(Cy,)
and Pg(C,) are isomorphic by a positive natural isomorphism if and only
if 8 € DpaD,, as can be found in [9] and [11]. The following comes from
this fact and Theorem 2.

Theorem 3 The number Isop(BC,,) of isomorphism classes of bipartite n-
cyclic permutation graphs up to positive natural isomorphism is the number
of double cosets of the dihedral group Dy, in the permutation group B,. O

For convenience, let |X| denote the cardinality of a set X. Note that
=, is an invariant subset of X,, under the I'-action. From Theorem 1 and

Burnside’s Lemma for the I-action on Z,,, we can derive

Theorem 4 The number Isop(BCy,) of isomorphism classes of bipartite
n-cyclic permutation graphs up to positive natural isomorphism is

1 .
v€er

where Fiz, = {0 € Z,, : v(0) =0} for any v inT. O

Now, we introduce a lemma which can be found in [9].
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Lemma 1 Let o and ¢ be any two n-cycles in X,,. Then

(1) {w € Sn : wow™! =¢}| =n, and .
{we S, :wowl=0}={0*:i=1,2,... ,n}.
(2) Ifwow™ =o' for some w € Sy, then w? is the identity in S,. O

Lemma 1 shows that for any a € By, there are exactly n permutations
w in S, such that o~ !pa = w™lpw in E,. In fact, such n permutations w
must be in B,, by Theorem 2. It is not difficult to show that

== (3 (G-
Hence, we get

Corollary 1 The number of bipartite n-cyclic permutation graphs is

B =n (3)1 (3-1)1=2(2)

3 Counting formulas

In this section, we aim to compute the number Isop(BCy) of isomorphism
classes of bipartite n-cyclic permutation graphs up to positive natural iso-
morphism. Clearly, Isop(BC32) = 1. For the I'-action on E,, and any v € T,
let Fix, denote the set of fixed points of v, i.e.,

Fix,={c € E, : y(o)=0}.

To compute Isop(BCy) for even n > 4, we first evaluate |Fix,| for the
I-action on E,,n > 4. Let Z, = {0,1,--- ,n — 1}. For k € Z,, let o(k)
denote the order of k in the cyclic group Z,, (k) the index of the subgroup
generated by k, and ¢(k) the Euler phi-function, giving the number of
integers relatively prime to k between 1 and k.

For each a € Sy, let j(a) = (j1, J2, - » Jn) be the cycle type of «, that
is, a cycle representation of « has j, cyclesof length & forallk = 1,2,--. ,n.
Now we evaluate |Fix,| for even n > 4.

Lemma 2 Let n be an even number greater than 4. Then for each k =
1,2,...,n, we have

Ho(k) L (422 — 1)1) o(ky ¥~ ifk is even,

1 F. k, | - Y —_
(1) |Pizgpe B(o(k)) (x(k) - 1)!(1(;2) = if k is odd.
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(3-1)! ifkiseven andn #0 (mod 4),

(2) an(pk T’l)' - {0 otherwise.

(3) |Fizr 1) = {(()%) ! ifk=% and n# 0 (mod 4),

otherwise.
(%) ! if k is even,
(4) |Pizerz)l =4 (B -1)(% —3)---2)°  ifkis odd, n# 0 (mod 4),
2 ((3-2)(3 —4)---2)" ifkis odd, n=0 (mod 4).

Proof: (1). For p= (12 --- n), the cycle type of p* is
J(Pk) = (0! R} O:jo(k) = 1(,0)1 0: coc ,0)$

and p* is parity-preserving if k is even, and parity-reversing if k is odd. For
any k, let T'(k) denote the set of all permutations a in B, which have the
same cycle type and the same parity as those of p¥. Then any permutation
a in T(k) must be a product of 1(k) cycles of length o(k). If k is even,
exactly half of these 2(k) cycles consist of only odd numbers and the other
half consist of only even numbers. If k is odd, each of the (k) cycles must
be parity-reversing. Now it is not difficult to show that

(3)(E-1) o
ﬂ;ﬁl ((ﬂi’;"l;)zo(k)-(k)_g if k is even,

= ()51 I
E if k is odd.

-1 (22) 07

For any k and a € T(k), we write fixqa = {0 € E, : aca™! = o}. Then
p* € T(k) and Fix,x 1y = fix,x. Since any two elements a and o’ in T'(k) are
conjugate in By, we get |fix,| = |fixy|. In particular, |Fixx 1)| = |fix,e| =
|fixo| for any @ € T'(k). For o € E,,, we write C,(k) = {a € T(k) : aga™! =
a}. For any n-cycle o in E,, there are exactly n elements a satisfying
aca~! = o by Lemma 1. But exactly ¢(o(k)) elements among them are
contained in T'(k). Hence, for any o € Z,, we get |C,(k)| = ¢(o(k)).
Now, we consider the set of pairs (o, @) in E, x T(k) satisfying the relation
aca~! = 0. Note that this set can be written in two ways as follows:

U {e.e):aeCoi)} = |J {(0,0):0€fixa},

o€, Q€T (k)

where both unions are clearly disjoint. Therefore, we get

|Zn| $(o(k)) = T (k)| [Fixpr 1y
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and we know |Z,| = (3)!(3 — 1)!, which gives the proof of (1).

(2). First, let k be odd, and suppose that Fix(,x, ;) # 0. Take an element
o in Fix(yxr,1). Then (p*1)0(p*7)~! = o and p*r = o¢ for some 1 < £ < n.
Since p*r is of order 2 in S,, and o is an n-cycle, £ must be even. But if
k is odd, then p*r has two fixed points £ and 25+l while 0% has no
fixed points. This is a contradiction.

Next, let k be even and n = 0 (mod 4). Suppose that Fix(per,1y #
® and let 0 € Fix(pe,,1). Then pF7 = % as above, and p*r is parity-
reversing. But 0% is parity-preserving, because o is parity-reversing. This
is a contradiction.

Finally, let k be even and n # 0 (mod 4). With the same notation as (1),
we can see that p*r € T(3) and |Fix(,x, )| = Ifix g |. But [T(3)| = (3)!
and [Cy(%)| = ¢(o(k)) = 1 for any o € E,. A similar computation to (1)
gives [Fix(er] = (3 — ).

(3). Let 0 = (a1 a2 -+ as) € E, be an element of Fix(,x 7y, that is,
o =p*c~1p~*. Then (an an-1 +-- a1) =0~! = p*sp~* . By Lemma 1, p?*
is the identity in Sy, . Hence, 2k must be equal to n and

(an @n-1 -+ 1) = plop™ % = (al"’g 02+g an+g) .

Now, we consider the following two cases. Case i). Let n = 0 (mod 4).
Without loss of generality, we can assume that a; is odd in o = (ajas - - - ay).
Then ay, is odd if k is odd and a is even if k is even, because ¢ is parity-
reversing. Now, let a1+5 = ag for some 1 < £ < n. Then, a; + Z=a
must be odd, because % is even. Hence £ must be odd and aga + 3=
Gp_t1,) =ae, which is impossible.

Case ii). Let n # 0 (mod 4). With the same notation, we can see that
p% € T(%). For convenience, we write I, = {0 € 5, : aga~! = o~ 1} and
Dy ={a€T(3):asa! =0~ for all @ € T(%) and o € Z,.. It is clear
that Ig= Fix(pg, n Since any two members of T'(%) are conjugate in B,
|Ip9| = |Ia| for each o € T(%). It is not difficult to show that |D,| = 2 for
any o € E,. By a method similar to the proof (1), we have

Ule@:aed}= |J {(0a):oels}

OEE, a€T(%)

where the both unions are disjoint unions. Therefore, we get
=12 ey s
Bl 5 = [T [Fixe, ]

Recall that |E,| = (3)!(3 —1)! and [T(})| = (3)!. This gives (3).
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(4). Let o = (a; @z -+~ an) € En. First, let k be even, then p*7 € T(3).
Using the same method as the proof of the second case of (3), we have
|Fix(pxr7y| = (§)! for even k.

Next, let k be odd and n = 0 (mod 4). Then |Fix(,x, 1)| = |Fix(pr,1)|-
Note that pr fixes two points 1 and % + 1, and % + 1 is odd. We can
assume that a; = 1. Let o € Fix(,r 7). Then (1 pr(az) --- pr(an)) =
(1an an_y --- a2) and ag41 = pr(ag+1) = § + 1. Then there are § can-
didates for as because aq lS even. If as is glven, then p7(az) = a, is fixed
and is even. There are % —2 candidates for a3 because a3 is odd, and if a3
is given then pr(a3) = an_ is fixed and is odd. There are § —2 candidates
for a4, and so on. Hence,

2
|Fix(rrz)| = g ((% - 2)(-’23 —4)... 2) if k is odd and n = 0 (mod 4).

Finally, let k be odd and n # 0 (mod 4). Note that 1 + % is even. A
similar method gives

2
|Fix(per. )| = ((g - 1)(% _3).. -2) if k is odd and n # 0 (mod 4).

(W]
By Theorem 4 and Lemma 2, we have
Theorem 5 Let n > 4 be even.
(1) Ifn#0 (mod 4) ,
o i(k)-1
4n Isop(BC,) = 2 d(o(k)) (+(k) — ! ( (k))
1<k=0dd<n
1(k) "'(k) (k)—1
+ o(o(k)) — -1 k
L s’ (2 )) ok)
n n+4 n/n n 2

+(3)! (—2—) +3(G-0G-9-2)

(2) If n =0 (mod 4),
o0 t(k)—1
tnlsop(BC) = Y lo(k)) (1(k) - 1) (_("_))
1<k=0dd<n
R COEN (G 1)') ok 41
1<k=cven<n
n,n 2
)3+ (GG-2G-0-2)"
a
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We obtain the following table for Isop(BC,,) :

6 8 10 12
3 11 104 1952

n |2 4
Iso p(BCn) I 1 1
For convenience, we denote by id the identity element in S,,. Let n = 6.

Then Isop(BCs) = 3 and the non-isomorphic¢ bipartite 6-cyclic permutation
graphs are given in Figure 2 with their representative permutations a.

P;4(Cs) P13)(Ce) P(24) (35)(Cé)
Figure 2. Three non-isomorphic bipartite 6-cyclic permutation graphs

In [9], it was shown that a representative P,(C,) of a positive natural
isomorphism class also represents a natural isomorphism class if and only if
aDnan D, # 0. In Figure 2, all o are of order 2 and hence aD,aN D,, #
0. Thus the three graphs in Figure 2 are all representatives of natural
isomorphism classes of bipartite 6-cyclic permutation graphs.
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