Isomorphism classes of bipartite cycle permutation graphs

Jin Ho Kwak*

Department of Mathematics
Pohang University of Science and Technology
Pohang 790-784, Korea
email: jinkwak@postech.ac.kr

Jaeun Leet

Department of Mathematics Yeungnam University Kyongsan 712-749, Korea

ABSTRACT. In this paper, we count the number of isomorphism classes of bipartite n-cyclic permutation graphs up to positive natural isomorphism and show that it is equal to the number of double cosets of the dihedral group D_n in the subgroup B_n of the symmetric group S_n consisting of parity-preserving or parity-reversing permutations.

1 Introduction

Let C_n denote an n-cycle with consecutively labeled vertices $1, 2, \cdots, n$. For a permutation α in the symmetric group S_n of n elements, an α -cycle permutation graph $P_{\alpha}(C_n)$ consists of two copies of C_n , say C_x and C_y , with vertex sets $V(C_x) = \{x_1, x_2, \cdots, x_n\}$ and $V(C_y) = \{y_1, y_2, \cdots, y_n\}$, along with edges $x_i y_{\alpha(i)}$ for $1 \leq i \leq n$. When we wish to specify n, we will call $P_{\alpha}(C_n)$ n-cyclic: with neither α nor n mentioned, it is simply a cycle permutation graph. The copies of C_n labeled x_1, x_2, \cdots, x_n will be called the outer cycle, the copies of C_n labeled y_1, y_2, \cdots, y_n will be called the inner cycle, and the edges of the form $x_i y_{\alpha(i)}$ will be called permutation edges. Given two permutations α and β in S_n , $P_{\alpha}(C_n)$ is isomorphic to $P_{\beta}(C_n)$

^{*}Supported by BSRI-96-1430

[†]Supported by TGRC-KOSEF

by a positive natural isomorphism Θ if $\Theta(C_x) = C_x$ and $\Theta(C_y) = C_y$. The graph $P_{\alpha}(C_n)$ is isomorphic to $P_{\beta}(C_n)$ by a negative natural isomorphism Θ if $\Theta(C_x) = C_y$ and $\Theta(C_y) = C_x$. A natural isomorphism is either of these. Ringeisen [10] counted the number of distinct cycle permutation graphs isomorphic to a k-twisted prism by a natural isomorphism. Also, Stueckle [11] found the number of permutations which yield cycle permutation graphs isomorphic to a given cycle permutation graph by a natural isomorphism. The authors [9] constructed a cycle permutation graph as a covering graph of the dumbbell graph and by using it, counted the isomorphism classes of n-cyclic permutation graphs up to positive natural isomorphism. It was also shown that the number of isomorphism classes of n-cyclic permutation graphs up to positive natural isomorphism is equal to the number of double cosets of the symmetric group S_n by the dihedral group D_n . The authors and some others recently counted the isomorphism classes of several kinds of graph coverings, see [6]-[8].

In this paper, we count the isomorphism classes of bipartite n-cyclic permutation graphs up to positive natural isomorphism, and show that it is equal to the number of double cosets the dihedral group D_n in the subgroup B_n of S_n consisting of parity-preserving or parity-reversing permutations.

2 An algebraic characterization

Let Σ_n denote the conjugacy class of $\rho = (1 \ 2 \cdots n)$ in the symmetric group S_n , i.e., Σ_n is the set of all *n*-cycles in S_n . For each $\sigma \in \Sigma_n$, we construct a graph G_{σ} as follows. The vertex set of the graph G_{σ} is $\{x_1, \dots, x_n, y_1, \dots, y_n\}$, and two vertices u and v are joined in G_{σ} if they satisfy one of the following three conditions:

(1)
$$u = x_i$$
 and $v = x_{\rho(i)}$ for $1 \le i \le n$,

(2)
$$u = x_i$$
 and $v = y_i$ for $1 \le i \le n$,

(3)
$$u = y_i$$
 and $v = y_{\sigma(i)}$ for $1 \le i \le n$.

Then, for each $\alpha \in S_n$, the cycle permutation graph $P_{\alpha}(C_n)$ is isomorphic to $G_{\alpha^{-1}\rho\alpha}$ by a positive natural isomorphism (see [9]), and $\alpha^{-1}\rho\alpha \in \Sigma_n$. Hence, the set Σ_n can be identified with the set of all n-cyclic permutation graphs.

Figure 1. Isomorphic graphs $P_{(13)}(C_6)$ and $G_{(145632)}$

Let $\mathcal{I}: S_n \longrightarrow S_n$ be the map defined by $\mathcal{I}(\sigma) = \sigma^{-1}$ for all $\sigma \in S_n$. Let D_n denote the dihedral group generated by two permutations ρ and τ , where $\tau(i) = n+1-i$ and $\rho(i) = i+1$; that is, the group of automorphisms of the n-cycle C_n . Note that all arithmetic is done modulo n, and the dihedral group D_n is the normalizer of $\{\rho, \rho^{-1}\}$ in S_n . We write $\Gamma = D_n \times \{1, \mathcal{I}\}$ and define an action $\Gamma \times \Sigma_n \longrightarrow \Sigma_n$ by $(d, 1)(\sigma) = d\sigma d^{-1}$ and $(d, \mathcal{I})(\sigma) = d\sigma^{-1} d^{-1}$. The following theorem can be found in [9].

Theorem 1 Let α and β be two permutations in S_n .

- (1) $P_{\alpha}(C_n)$ is isomorphic to $P_{\beta}(C_n)$ by a positivel isomorphism if and only if there exists $\gamma \in \Gamma$ such that $\beta^{-1}\rho\beta = \gamma(\alpha^{-1}\rho\alpha)$.
- (2) $P_{\alpha}(C_n)$ is isomorphic to $P_{\beta}(C_n)$ by a negativel isomorphism if and only if there exists $\gamma \in \Gamma$ such that $\beta^{-1}\rho\beta = \gamma(\alpha\rho\alpha^{-1})$.
- (3) $P_{\alpha}(C_n)$ is isomorphic to $P_{\beta}(C_n)$ by a natural isomorphism if and only if there exists $\gamma \in \Gamma$ such that $\beta^{-1}\rho\beta = \gamma(\alpha^{-1}\rho\alpha)$ or $\beta^{-1}\rho\beta = \gamma(\alpha\rho\alpha^{-1})$.

Now, we give a characterization of a bipartite cycle permutation graph. Since no bipartite graph has an odd cycle, a cycle permutation graph $P_{\alpha}(C_n)$ can be bipartite only for even n. Hence, we consider only even n from now on. For any even n, let B_n denote the set of all α in S_n such that α is either parity-preserving or parity-reversing, i.e., α maps either all odd numbers to odd or all odd to even in $\{1, 2, \dots, n\}$, and Ξ_n the set of parity-reversing cycles of length n in S_n . Then B_n is a subgroup of S_n . For example, it is the cyclic group \mathbb{Z}_2 for n=2, and the dihedral group D_4 for n=4.

Theorem 2 The following statements are equivalent for $\alpha \in S_n$.

- (1) The cycle permutation graph $P_{\alpha}(C_n)$ is bipartite.
- (2) $\alpha^{-1}\rho\alpha\in\Xi_n$.
- (3) $\alpha \in B_n$.

Proof: (1) \Rightarrow (2). Suppose that $P_{\alpha}(C_n)$ is bipartite. Then its isomorphic copy $G_{\alpha^{-1}\rho\alpha}$ is bipartite, and any two vertices y_i and y_j are joined if and only if $j = (\alpha^{-1}\rho\alpha)(i)$. A bipartition of $G_{\alpha^{-1}\rho\alpha}$ gives a 2-colouring of $G_{\alpha^{-1}\rho\alpha}$. But ρ reverses parity in $\{12\cdots n\}$, and the permutation edges are of the form x_iy_i in $G_{\alpha^{-1}\rho\alpha}$. Hence $\alpha^{-1}\rho\alpha$ must reverse parity. That is, $\alpha^{-1}\rho\alpha \in \Xi_n$.

(2) \Rightarrow (3). Note that $\alpha^{-1}\rho\alpha = (\alpha^{-1}(1)\alpha^{-1}(2)\cdots\alpha^{-1}(n))$. Suppose that $\alpha^{-1}\rho\alpha \in \Xi_n$. Then α^{-1} preserves parity in $\{12\cdots n\}$ if $\alpha^{-1}(1)$ is odd, and α^{-1} reverses parity in $\{12\cdots n\}$ if $\alpha^{-1}(1)$ is even. This implies that $\alpha^{-1} \in B_n$. Since B_n is a subgroup of S_n , $\alpha \in B_n$.

(3) \Rightarrow (1). It is easy to construct a 2-colouring of $P_{\alpha}(C_n)$ for $\alpha \in B_n$. Thus, $P_{\alpha}(C_n)$ is bipartite.

By Theorem 2, the set Ξ_n can be identified as the set of all bipartite n-cyclic permutation graphs, which is crucial for the counting of their isomorphism classes. It is known that two cycle permutation graphs $P_{\alpha}(C_n)$ and $P_{\beta}(C_n)$ are isomorphic by a positive natural isomorphism if and only if $\beta \in D_n \alpha D_n$, as can be found in [9] and [11]. The following comes from this fact and Theorem 2.

Theorem 3 The number $Iso_P(BC_n)$ of isomorphism classes of bipartite n-cyclic permutation graphs up to positive natural isomorphism is the number of double cosets of the dihedral group D_n in the permutation group B_n . \square

For convenience, let |X| denote the cardinality of a set X. Note that Ξ_n is an invariant subset of Σ_n under the Γ -action. From Theorem 1 and Burnside's Lemma for the Γ -action on Ξ_n , we can derive

Theorem 4 The number $Iso_P(BC_n)$ of isomorphism classes of bipartite n-cyclic permutation graphs up to positive natural isomorphism is

$$\frac{1}{4n}\sum_{\gamma\in\Gamma}|Fix_{\gamma}|,$$

where $Fix_{\gamma} = \{ \sigma \in \Xi_n : \gamma(\sigma) = \sigma \}$ for any γ in Γ .

Now, we introduce a lemma which can be found in [9].

Lemma 1 Let σ and ς be any two n-cycles in Σ_n . Then

(1)
$$|\{w \in S_n : w\sigma w^{-1} = \varsigma\}| = n$$
, and $\{w \in S_n : w\sigma w^{-1} = \sigma\} = \{\sigma^i : i = 1, 2, ..., n\}$.

(2) If
$$w\sigma w^{-1} = \sigma^{-1}$$
 for some $w \in S_n$, then w^2 is the identity in S_n . \square

Lemma 1 shows that for any $\alpha \in B_n$, there are exactly n permutations ω in S_n such that $\alpha^{-1}\rho\alpha = \omega^{-1}\rho\omega$ in Ξ_n . In fact, such n permutations ω must be in B_n by Theorem 2. It is not difficult to show that

$$|\Xi_n| = \left(\frac{n}{2}\right)! \left(\frac{n}{2} - 1\right)!.$$

Hence, we get

Corollary 1 The number of bipartite n-cyclic permutation graphs is

$$|B_n| = n \left(\frac{n}{2}\right)! \left(\frac{n}{2} - 1\right)! = 2 \left(\frac{n}{2}!\right)^2$$

3 Counting formulas

In this section, we aim to compute the number $\operatorname{Iso}_P(BC_n)$ of isomorphism classes of bipartite *n*-cyclic permutation graphs up to positive natural isomorphism. Clearly, $\operatorname{Iso}_P(BC_2) = 1$. For the Γ -action on Ξ_n and any $\gamma \in \Gamma$, let $\operatorname{Fix}_{\gamma}$ denote the set of fixed points of γ , *i.e.*,

$$Fix_{\gamma} = \{ \sigma \in \Xi_n : \gamma(\sigma) = \sigma \}.$$

To compute $\operatorname{Iso}_P(BC_n)$ for even $n \geq 4$, we first evaluate $|\operatorname{Fix}_{\gamma}|$ for the Γ -action on $\Xi_n, n \geq 4$. Let $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$. For $k \in \mathbb{Z}_n$, let o(k) denote the order of k in the cyclic group \mathbb{Z}_n , i(k) the index of the subgroup generated by k, and $\phi(k)$ the Euler phi-function, giving the number of integers relatively prime to k between 1 and k.

For each $\alpha \in S_n$, let $j(\alpha) = (j_1, j_2, \dots, j_n)$ be the cycle type of α , that is, a cycle representation of α has j_k cycles of length k for all $k = 1, 2, \dots, n$. Now we evaluate $|\operatorname{Fix}_{\gamma}|$ for even $n \geq 4$.

Lemma 2 Let n be an even number greater than 4. Then for each k = 1, 2, ..., n, we have

$$(1) |Fix_{(\rho^{k},1)}| = \begin{cases} \phi(o(k)) \frac{\imath(k)}{2} \left((\frac{\imath(k)}{2} - 1)! \right)^{2} o(k)^{\imath(k)-1} & \text{if } k \text{ is even,} \\ \phi(o(k)) (\imath(k) - 1)! \left(\frac{o(k)}{2} \right)^{\imath(k)-1} & \text{if } k \text{ is odd.} \end{cases}$$

$$(2) |Fix_{(\rho^k\tau,1)}| = \begin{cases} \left(\frac{n}{2} - 1\right)! & \text{if } k \text{ is even and } n \neq 0 \pmod{4}, \\ 0 & \text{otherwise.} \end{cases}$$

$$(3) |Fix_{(\rho^k,\mathcal{I})}| = \begin{cases} \left(\frac{n}{2}\right)! & \text{if } k = \frac{n}{2} \text{ and } n \neq 0 \pmod{4}, \\ 0 & \text{otherwise.} \end{cases}$$

(3)
$$|Fix_{(\rho^k,\mathcal{I})}| = \begin{cases} \left(\frac{n}{2}\right)! & \text{if } k = \frac{n}{2} \text{ and } n \neq 0 \pmod{4}, \\ 0 & \text{otherwise.} \end{cases}$$

$$(4) |Fix_{(\rho^{k}\tau,\mathcal{I})}| = \begin{cases} \left(\frac{n}{2}\right)! & \text{if } k \text{ is even,} \\ \left(\left(\frac{n}{2}-1\right)\left(\frac{n}{2}-3\right)\cdots2\right)^{2} & \text{if } k \text{ is odd, } n \neq 0 \pmod{4}, \\ \frac{n}{2} \left(\left(\frac{n}{2}-2\right)\left(\frac{n}{2}-4\right)\cdots2\right)^{2} & \text{if } k \text{ is odd, } n = 0 \pmod{4}. \end{cases}$$

Proof: (1). For $\rho = (1 \ 2 \cdots n)$, the cycle type of ρ^k is

$$j(\rho^k) = (0, \dots, 0, j_{o(k)} = i(k), 0, \dots, 0),$$

and ρ^k is parity-preserving if k is even, and parity-reversing if k is odd. For any k, let T(k) denote the set of all permutations α in B_n which have the same cycle type and the same parity as those of ρ^k . Then any permutation α in T(k) must be a product of i(k) cycles of length o(k). If k is even, exactly half of these i(k) cycles consist of only odd numbers and the other half consist of only even numbers. If k is odd, each of the i(k) cycles must be parity-reversing. Now it is not difficult to show that

$$|T(k)| = \begin{cases} \frac{\binom{n}{2}!\binom{n}{2}-1}!}{\frac{\imath(k)}{2}\left((\frac{\imath(k)}{2}-1)!\right)^2\sigma(k)^{\imath(k)-1}} & \text{if } k \text{ is even,} \\ \frac{\binom{n}{2}!\binom{n}{2}-1}!}{(\imath(k)-1)!\left(\frac{\sigma(k)}{2}\right)^{\imath(k)-1}} & \text{if } k \text{ is odd.} \end{cases}$$

For any k and $\alpha \in T(k)$, we write $fix_{\alpha} = \{ \sigma \in \Xi_n : \alpha \sigma \alpha^{-1} = \sigma \}$. Then $\rho^k \in T(k)$ and $\operatorname{Fix}_{(\rho^k,1)} = \operatorname{fix}_{\rho^k}$. Since any two elements α and α' in T(k) are conjugate in B_n , we get $|\operatorname{fix}_{\alpha}| = |\operatorname{fix}_{\alpha'}|$. In particular, $|\operatorname{Fix}_{(\rho^k,1)}| = |\operatorname{fix}_{\rho^k}| =$ $|\operatorname{fix}_{\alpha}|$ for any $\alpha \in T(k)$. For $\sigma \in \Xi_n$, we write $C_{\sigma}(k) = \{\alpha \in T(k) : \alpha \sigma \alpha^{-1} = 1\}$ σ . For any n-cycle σ in Ξ_n , there are exactly n elements α satisfying $\alpha\sigma\alpha^{-1} = \sigma$ by Lemma 1. But exactly $\phi(o(k))$ elements among them are contained in T(k). Hence, for any $\sigma \in \Xi_n$, we get $|C_{\sigma}(k)| = \phi(o(k))$. Now, we consider the set of pairs (σ, α) in $\Xi_n \times T(k)$ satisfying the relation $\alpha\sigma\alpha^{-1} = \sigma$. Note that this set can be written in two ways as follows:

$$\bigcup_{\sigma \in \Xi_n} \{ (\sigma, \alpha) : \alpha \in C_{\sigma}(k) \} = \bigcup_{\alpha \in T(k)} \{ (\sigma, \alpha) : \sigma \in fix_{\alpha} \},$$

where both unions are clearly disjoint. Therefore, we get

$$|\Xi_n|\phi(o(k)) = |T(k)| |\operatorname{Fix}_{(\rho^k,1)}|$$

and we know $|\Xi_n| = (\frac{n}{2})!(\frac{n}{2}-1)!$, which gives the proof of (1).

(2). First, let k be odd, and suppose that $\operatorname{Fix}_{(\rho^k\tau,1)}\neq\emptyset$. Take an element σ in $\operatorname{Fix}_{(\rho^k\tau,1)}$. Then $(\rho^k\tau)\sigma(\rho^k\tau)^{-1}=\sigma$ and $\rho^k\tau=\sigma^\ell$ for some $1\leq\ell\leq n$. Since $\rho^k\tau$ is of order 2 in S_n and σ is an n-cycle, ℓ must be even. But if k is odd, then $\rho^k\tau$ has two fixed points $\frac{k+1}{2}$ and $\frac{n+k+1}{2}$, while $\sigma^{\frac{n}{2}}$ has no fixed points. This is a contradiction.

Next, let k be even and $n=0 \pmod{4}$. Suppose that $\operatorname{Fix}_{(\rho^k\tau,1)} \neq \emptyset$ and let $\sigma \in \operatorname{Fix}_{(\rho^k\tau,1)}$. Then $\rho^k\tau = \sigma^{\frac{n}{2}}$ as above, and $\rho^k\tau$ is parity-reversing. But $\sigma^{\frac{n}{2}}$ is parity-preserving, because σ is parity-reversing. This is a contradiction.

Finally, let k be even and $n \neq 0 \pmod{4}$. With the same notation as (1), we can see that $\rho^k \tau \in T(\frac{n}{2})$ and $|\operatorname{Fix}_{(\rho^k \tau, 1)}| = |\operatorname{fix}_{\rho^{\frac{n}{2}}}|$. But $|T(\frac{n}{2})| = (\frac{n}{2})!$ and $|C_{\sigma}(\frac{n}{2})| = \phi(o(k)) = 1$ for any $\sigma \in \Xi_n$. A similar computation to (1) gives $|\operatorname{Fix}_{(\rho^k \tau, 1)}| = (\frac{n}{2} - 1)!$.

(3). Let $\sigma=(a_1\ a_2\ \cdots\ a_n)\in\Xi_n$ be an element of $\mathrm{Fix}_{(\rho^k,\mathcal{I})}$, that is, $\sigma=\rho^k\sigma^{-1}\rho^{-k}$. Then $(a_n\ a_{n-1}\ \cdots\ a_1)=\sigma^{-1}=\rho^k\sigma\rho^{-k}$. By Lemma 1, ρ^{2k} is the identity in S_n . Hence, 2k must be equal to n and

$$(a_n \ a_{n-1} \ \cdots \ a_1) = \rho^{\frac{n}{2}} \sigma \rho^{-\frac{n}{2}} = \left(a_1 + \frac{n}{2} \ a_2 + \frac{n}{2} \ \cdots \ a_n + \frac{n}{2}\right).$$

Now, we consider the following two cases. Case i). Let $n=0\pmod 4$. Without loss of generality, we can assume that a_1 is odd in $\sigma=(a_1a_2\cdots a_n)$. Then a_k is odd if k is odd and a_k is even if k is even, because σ is parity-reversing. Now, let $a_1+\frac{n}{2}=a_\ell$ for some $1\leq \ell\leq n$. Then, $a_1+\frac{n}{2}=a_\ell$ must be odd, because $\frac{n}{2}$ is even. Hence ℓ must be odd and $a_{\ell+1}+\frac{n}{2}=a_{\ell-\ell+1}+1=a_{$

Case ii). Let $n \neq 0 \pmod 4$. With the same notation, we can see that $\rho^{\frac{n}{2}} \in T(\frac{n}{2})$. For convenience, we write $I_{\alpha} = \{\sigma \in \Xi_n : \alpha\sigma\alpha^{-1} = \sigma^{-1}\}$ and $D_{\sigma} = \{\alpha \in T(\frac{n}{2}) : \alpha\sigma\alpha^{-1} = \sigma^{-1}\}$ for all $\alpha \in T(\frac{n}{2})$ and $\sigma \in \Xi_n$. It is clear that $I_{\rho^{\frac{n}{2}}} = \operatorname{Fix}_{(\rho^{\frac{n}{2}}, I)}$. Since any two members of $T(\frac{n}{2})$ are conjugate in B_n , $|I_{\rho^{\frac{n}{2}}}| = |I_{\alpha}|$ for each $\alpha \in T(\frac{n}{2})$. It is not difficult to show that $|D_{\sigma}| = \frac{n}{2}$ for any $\sigma \in \Xi_n$. By a method similar to the proof (1), we have

$$\bigcup_{\sigma \in \Xi_n} \{ (\sigma, \alpha) : \alpha \in D_{\sigma} \} = \bigcup_{\alpha \in T(\frac{n}{\alpha})} \{ (\sigma, \alpha) : \sigma \in I_{\alpha} \}$$

where the both unions are disjoint unions. Therefore, we get

$$\left|\Xi_n\right| \frac{n}{2} = \left|T(\frac{n}{2})\right| \left|\operatorname{Fix}_{(\rho^{\frac{n}{2}},I)}\right|.$$

Recall that $|\Xi_n| = (\frac{n}{2})!(\frac{n}{2}-1)!$ and $|T(\frac{n}{2})| = (\frac{n}{2})!$. This gives (3).

(4). Let $\sigma = (a_1 \ a_2 \cdots a_n) \in \Xi_n$. First, let k be even, then $\rho^k \tau \in T(\frac{n}{2})$. Using the same method as the proof of the second case of (3), we have $|\operatorname{Fix}_{(\rho^k \tau, \mathcal{I})}| = (\frac{n}{2})!$ for even k.

Next, let k be odd and $n=0 \pmod 4$. Then $|\operatorname{Fix}_{(\rho^k\tau,\mathcal{I})}|=|\operatorname{Fix}_{(\rho\tau,\mathcal{I})}|$. Note that $\rho\tau$ fixes two points 1 and $\frac{n}{2}+1$, and $\frac{n}{2}+1$ is odd. We can assume that $a_1=1$. Let $\sigma\in\operatorname{Fix}_{(\rho\tau,\mathcal{I})}$. Then $(1\,\rho\tau(a_2)\,\cdots\,\rho\tau(a_n))=(1\,a_n\,a_{n-1}\,\cdots\,a_2)$ and $a_{\frac{n}{2}+1}=\rho\tau(a_{\frac{n}{2}+1})=\frac{n}{2}+1$. Then there are $\frac{n}{2}$ candidates for a_2 because a_2 is even. If a_2 is given, then $\rho\tau(a_2)=a_n$ is fixed and is even. There are $\frac{n}{2}-2$ candidates for a_3 because a_3 is odd, and if a_3 is given then $\rho\tau(a_3)=a_{n-1}$ is fixed and is odd. There are $\frac{n}{2}-2$ candidates for a_4 , and so on. Hence,

$$\left|\operatorname{Fix}_{(\rho^k\tau,\mathcal{I})}\right| = \frac{n}{2} \left((\frac{n}{2} - 2)(\frac{n}{2} - 4) \cdots 2 \right)^2 \text{ if } k \text{ is odd and } n = 0 \pmod{4}.$$

Finally, let k be odd and $n \neq 0 \pmod{4}$. Note that $1 + \frac{n}{2}$ is even. A similar method gives

$$\left|\operatorname{Fix}_{(\rho^k\tau,\mathcal{I})}\right| = \left(\left(\frac{n}{2}-1\right)\left(\frac{n}{2}-3\right)\cdots 2\right)^2$$
 if k is odd and $n \neq 0 \pmod{4}$.

By Theorem 4 and Lemma 2, we have

Theorem 5 Let $n \geq 4$ be even.

(1) If
$$n \neq 0 \pmod{4}$$
,

$$4n \, Iso_{P}(BC_{n}) = \sum_{1 \leq k = odd \leq n} \phi(o(k)) \, (i(k) - 1)! \, \left(\frac{o(k)}{2}\right)^{i(k) - 1}$$

$$+ \sum_{1 \leq k = even \leq n} \phi(o(k)) \, \frac{i(k)}{2} \, \left(\left(\frac{i(k)}{2} - 1\right)!\right)^{2} \, o(k)^{i(k) - 1}$$

$$+ \left(\frac{n}{2}\right)! \, \left(\frac{n + 4}{2}\right) + \frac{n}{2} \left(\left(\frac{n}{2} - 1\right)\left(\frac{n}{2} - 3\right) \cdots 2\right)^{2} \, .$$

(2) If $n = 0 \pmod{4}$,

$$4n \operatorname{Iso}_{P}(BC_{n}) = \sum_{1 \leq k = odd \leq n} \phi(o(k)) (i(k) - 1)! \left(\frac{o(k)}{2}\right)^{i(k) - 1}$$

$$+ \sum_{1 \leq k = even \leq n} \phi(o(k)) \frac{i(k)}{2} \left(\left(\frac{i(k)}{2} - 1\right)!\right)^{2} o(k)^{i(k) - 1}$$

$$+ \left(\frac{n}{2}\right)! \frac{n}{2} + \left(\frac{n}{2}\left(\frac{n}{2} - 2\right)\left(\frac{n}{2} - 4\right) \cdots 2\right)^{2}.$$

We obtain the following table for $Iso_P(BC_n)$:

$m{n}$	2	4	6	8	10	12	
$\operatorname{Iso}_P(BC_n)$	1	1	3	11	104	1952	

For convenience, we denote by *id* the identity element in S_n . Let n = 6. Then $Iso_P(BC_6) = 3$ and the non-isomorphic bipartite 6-cyclic permutation graphs are given in Figure 2 with their representative permutations α .

Figure 2. Three non-isomorphic bipartite 6-cyclic permutation graphs

In [9], it was shown that a representative $P_{\alpha}(C_n)$ of a positive natural isomorphism class also represents a natural isomorphism class if and only if $\alpha D_n \alpha \cap D_n \neq \emptyset$. In Figure 2, all α are of order 2 and hence $\alpha D_n \alpha \cap D_n \neq \emptyset$. Thus the three graphs in Figure 2 are all representatives of natural isomorphism classes of bipartite 6-cyclic permutation graphs.

References

- [1] G. Chartrand and F. Harary, Planar permutation graphs, Ann. Inst. Henri Poincaré III 4 (1967), 433-438.
- [2] W. Dörfler, Automorphisms and isomorphisms of permutation graphs, Colloques Inter., C.N.R.S., No. 260, Problèmes Combinatoires et Théorie des Graphes (1978),109-110.
- [3] W. Dörfler, On mapping graphs and permutation graphs, *Math. Slovaca* 28(3) (1978), 277-288.
- [4] J.L. Gross and T.W. Tucker, Topological Graph Theory Wiley, New York, 1987.
- [5] S. Hedetniemi, On classes of graphs defined by special cutsets of lines, in: The Many Facets of Graph Theory, LNM 110, Springer, Berlin, (1969), 171-190.

- [6] S. Hong, J.H. Kwak and J. Lee, Regular graph coverings whose covering transformation groups have the isomorphism extension property, Discrete Math. 148 (1996), 85-105.
- [7] J.H. Kwak, J. Chun and J. Lee, Enumeration of regular graph coverings having finite abelian covering transformation groups, SIAM J. of Discrete Math. 11 (1998), 273-285.
- [8] J.H. Kwak and J. Lee, Isomorphism classes of graph bundles, Canad. J. Math. XLII (1990), 747-761.
- [9] J.H. Kwak and J. Lee, Isomorphism classes of cycle permutation graphs, *Discrete Math.* **105** (1992), 131–142.
- [10] R. Ringeisen, On cycle permutation graphs, Discrete Math. 51 (1984), 265-275.
- [11] S. Stueckle, On natural isomorphisms of cycle permutation graphs, Graphs and Combinatorics 4 (1988), 75–85.