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Abstract
We give a short survey of the best known lower bounds on K(n, 1),
the minimum cardinality of a binary code of length n and covering
radius 1. Then we prove new lower bounds on K(n, 1), e.g.
(5n% — 13n + 66)2™
(5n% — 13n + 46)(n + 1)

which lead to several numerical improvements.

K(n,1) > when n =5 (mod 6),

1 Introduction and survey of known results

A binary code C' C F3 has covering radius R if R is the smallest integer such
that every word in F3 is withing Hamming distance R from at least one
codeword. The problem of determining K(n, R), the smallest cardinality
of a binary code of length n and covering radius R has been widely studied
in recent years. In this paper we study lower bounds for this function. The
most interesting case is R = 1, which is easier than the larger values of R
and has been studied in a number of papers, like [1], [6], [8], [7], [2], [5], [4]
and [3].

Let B,(z) = {y € F§ | d(y,z) < s} and denote its cardinality by
V(n,s). Trivially,

n

K1) 2 2. 1)

Some lower bounds use the function A(n,3), the largest possible car-
dinality of a binary code of length n and minimum distance 3. Cohen,
Lobstein and Sloane [1] showed that for n > 2

2" — 24(n,3)

)
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Most of the bounds are based on the concept of ezcess introduced in [6].
From now on we assume that C is a given code of length n and covering
radius 1.

As in [6], define

Ec(z)=|Bi(z)NC| -1

and more generally for an arbitrary subset V C F3

Ec(V) =Y Ec(=), 3)
zeV
or equivalently
Ec(V)=Y_|Bi(e)nV|-|VI. 4)
ceC
In particular,
Ec(F3) = [Cl(n+1) - 2". (8)

Because C is fixed we usually drop the subscript C. As usual, we denote
Z; = {z € F3|E(z) =i}
and
Z = {z e F3|E(z) > 0}.
Then we can equivalently write
E(WV)=)_ilznV|
i>0

Using the fact that for given z, every sphere Bj(c), ¢ € C intersects Bi(z)
in exactly n + 1, 2 or 0 points, van Wee [6] showed that if n is even, then
(4) implies that for every z ¢ C

E(Bi(z))=1 (mod 2), (6)

and
43

K(n,1) > ?; if n is even. (M
Similarly, by considering the excess on spheres of radius two he showed that

(V(n,2) + 2)2°

K1) 2 5w+ )

ifn=2 (mod3). (8)

Because for even values of n we can use (7) which is always at least as good
as (8), we only need (8) when n =5 (mod 6).
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By considering simultaneously the excesses on spheres of radius one and
two it was proved by van Wee [7] that

(V(n,2) +5)2" — 3(A(n,3) - 1)(n+ 1)
V(n,2)(n+1)
for every n =5 (mod 6). This gives at least as good a lower bound as (8)
for all n. Honkala [4] showed that we further obtain
(V(n,2) +5)2"*! —9A(n,3)(n +1) (10)
2V(n,2)-3)(n+1)

K(n,1) > (9

K(n,1) >

for every n with n =5 (mod 6).

Other lower bounds on K(n, 1) have been calculated by Zhang [8] and
Habsieger [2].

By considering the excess on spheres of radius s, Honkala [5] showed
that if n 4 1 is divisible by an odd prime s + 1, then

E(Bs(z))=-1 (mod s+1) (11)
and
(V(n,s) +s)2"
V(n,s)(n+1)~
Recently, Habsieger [3] showed that one can obtain further improve-

ments by considering the excess on the sets S;(z) = {y € F3|d(y,z) = i}.
We denote

K(n,1) >

0i(z) = E(S;i(z)).
By (5),
bi(z) = E@)={.)ICl(n+1)-2").  (12)
0= ;) 3 m0= ()
Habsieger showed that

(5n% — Tn + 24)27

K(n,1) > (572 = Tn+ 4)(n + 1)

whenn=5 (mod 6), (13)

and

(4V(n, 4) + 5V (n, 3) + 36)2"
4V (n,4)+5V(n,3))(n+1)

K(n,1) > when n =19,39 (mod 60).

(14)
Several other improvements on K(n, 1) for specific values of n were also
proved; likewise other similar general formulas not giving any further im-
provements in the range n < 33.
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In this paper we further improve the results in [3] by using the same
approach and suitable combinatorial counting arguments. In particular, we
show that

(5n% — 13n + 66)2°
(5n2 — 13n + 46)(n + 1)

which gives at least as good a lower bound as (13) for all » > 11. We
obtain the numerical results

K(23,1) > 352448, K (29, 1) > 17988086.

K(n,1) > when n=5 (mod 6),n > 11,

We also improve on (14) slightly and show that

(2V(n,4) + 5V (n, 3) + 28)2"

K(n: 1) 2 (2V(n’ 4) + 5V(n) 3))(" + 1)

when n=19,39 (mod 60)

(15)
which always gives at least as good a lower bound as (14). This bound
implies that K(27,1) > 4793641. We furthermore show that K(19,1) >
26261.

2 The case n=5 (mod 6)

We now show how a combinatorial argument can be used to sharpen (3,
Theorem 7]. Assume that n =5 (mod 6) and that n > 11.
By [6],
So(z) + 61(z) =0 (mod 2) (16)
and ’

So(z) + 61(z) + 62(z) =2 (mod 3) (17)
for all z € F3. Indeed, the proof used to obtain (6) immediately gives
(16), when n is odd. The congruence (17) is obtained in the same way by
considering E(B2(z)).

Therefore as in [3],

560(z) + 561(z) + 262(z) =4 (mod 6).

Consequently, the left-hand side is at least 10, except if = belongs to the
set
T := {z € F}|6o(z) = 1(z) = 0,62(z) = 2}.

Therefore (12) implies that

Y (560(z)+581(2)+262(=)) = (5+4n+n?)(|C|(1+n)~2") 2 10-2"—6|T].
zeF';
(18)
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We need one more fact from [3] (see already [7]), namely that
|B2(z) N Z| = 1 whenever z € T. (19)

Indeed, if z € T, and there are two different points y;,y2 € S2(z) N Z;, we
can choose a word y € Sy(z) such that d(y,y) = 1 and d(y,y2) = 3, but
then 8o(y) + 61(y) = 1, contradicting (16).

We now estimate the size of the set T'.

Lemma 1

m<3("5)aclem+ -2,

Proof. Assume first that z € Z,\ C and that the three codewords covering
z are z+e;, £+ ez, £+ e3, where e; is the word of weight one with its single
1 in the ith coordinate. Then =,z + e + ez, 2+ €1 +e3, z+e3+e3 € Z.
Hence a word = + e; + e; with i < 3, j # i cannot belong to T because
|S2(z) N Z| > 3. Therefore |Sz(z) N T| < (*3°) as shown in (3].

Assume then that z € Z, N C. The word z is covered by exactly two
codewords ¢, ¢z € C other than z itself. Denote by y the other word that
both ¢; and c; cover. (We should actually denote ¢;(z) etc. but we assume
that the word z is fixed to simplify our notations.) If any other point in
B;(z) belongs to Z then by (19), [S2(z)NT| < (*3°). We therefore consider
the words in the set

L:={z € Z:nC||Ba(z)N 2| = 4}.

Assume that z € L. If E(y) = 1theny ¢ C, and also E(cy) = E(c2) = 1
(any other codeword covering cy, for instance, would itself belong to Z,
which is a contradiction since z € L). Denote by L, the set of such points
z and let Ly = L\ L;. Assume now that z € Lo, ie., E(y) > 2. fy is
covered by any codeword ¢ € C such that z + ¢ has weight three, then we
again find a fifth point in By(z) N Z, a contradiction. Hence E(y) < 2.
Hence E(y) = 2 and y € C, and our assumption z € L implies that
E(c1) = E(c2) = 2. Clearly, for any two different points z;,z2 € L the
sets By(z1) N Z and B,(z2) N Z are either the same or disjoint.

We next show that if z € L, then

(S useuseusmi<a("; %) e

Without loss of generality, z is the all zero-word 0", ¢; = €3, c; = e, and
y=e1+ez. Ifa=ajaz...a, and a € (S2(z)U S2(e1) US2(c2)U S2(y))NT,
then wt(asas...a;) = 2, otherwise one of the words z,c;,c2,y € Z has
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distance 1 to a, a contradiction. Hence |(Sz(z) U S2(c1) U Sa(e2) USa2(¥)) N
T| < 4(*3?%). The claim (20) now follows when we show that for every
i, 3 < i < n there are at least eight different words @ = aja;...a, such
that wt(agas...an) = 2, a; = 1 and @ ¢ T. (Then the total number of
such points for all i together is at least 4(n — 2) because each such point is
counted twice, and 4(";%) - 4(n - 2) < 4(";3) .) By symmetry, it suffices
to prove the claim for i = 3. Choose z = e; + e3. The words z,¢;,y € C
belong to By(z). By the congruence §y(z) + 61(z) + 62(2) =2 (mod 3),
there is a word b € Z N By(z) of weight three or four. If b has weight three,
b is of the form 111000... or 101..., and using (19) we see that there are at
least n — 3 > 8 words a of the required type that begin with 011... in the
former case or with 101... in the latter case. If b has weight four and is of
the form 111... then there are again n — 3 words a of the required type that
begin with 111... . Assume therefore that b has weight four and is of the
form 101..., say b = 10111000.... Then we find six words a of the required
type, namely 10110..., 10101..., 11110..., 11101..., 00110..., 00101..., But we
can apply the same argument to the word 2’ = e, +e3. The same argument
separately for z’ proves the claim except in the case when also the word
b’ € Z N By(2') has weight four and begins with 011... . But then the two
arguments together provide us with eight suitable words a.
We now claim that

m<iz\ (" %)+l ("5 ?): (2)

We go through the points of Z; as follows. Take any point z in L; and
consider the four points Ba(z) NZ (which all belong to Z; NC). Then take
any of the remaining points in L, say z’ (now z’ ¢ By(z) N Z), consider
By(z') N Z, and so on, until there are no points of L left (now we have
already gone through a number of other points in Z; NC as well), and then
consider the remaining points of Z; \ L;. Finally, for all z € L, we know
that |S2(z) N T| < (") proving (21).

For each point in L, there are two words of Z; within distance one.
Furthermore, we have seen that the distance between any two points in L
is at least three, and therefore

E(F2) 2 212>\ Ly| + 4|L]- (22)

Substituting (22) in (21) we obtain
n-—3 n-—2
AITAVAT G BY AT ()

1("3 %) EEn + ("3 -2("3%)
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1/n—-3 n
< 3(*7 %) B
when n > 11 and the claim follows from (5).0

Substituting the result of the previous lemma to (18) we immediately
obtain the following theorem.

Theorem 2 Ifn> 11 andn=5 (mod 6), then

(5n2 — 13n + 66)2"

K(n,1) > (5n2 — 13n 4+ 46)(n + 1)

We get the following numerical improvements:

K(23,1) > 352448
K(29,1) > 17988086.

The best previously known lower bounds were 352336 and 17985042 [3].

3 The General Case

The improvements presented in this section are based on the following
lemma.

Lemma 3 Let p > 5 be a prime. Suppose that a binary m x n matriz A
kas the following properties:

e the number of 1’s in every row equals p— 1,
o the number of 1’s in every column is divisible by p — 1,
o the number of 1’s in common in any two columns is divisible by p—2,
o m+ 1 is divisible by p.
Then m > 3p—1 for all n.

Before proving this lemma, we show how it is connected with our original
covering radius problem.

Assume that we have a binary code C of length n and covering radius
1 such that for all y € F§ we have the congruences (cf. [3, Lemma 9])

o) +81(w)+ ... +6p-2(¥) +6p-1(y)=p~1 (modp), (23)
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aobo(y) + a161(y) + ...+ ap_3bp_3(¥) + Ep—2(y) =0 (mod p—1) (24)

and

Pobo(y) + Br61(y) + - .. + Bp—abp-a(y) + Sp-3(y) =0 (mod p—2), (25)
where the coefficients «;, §; are integers.

Lemma 4 If (23), (24) and (25) hold for all y € F3, and there is a word
z such that 6o(z) = 61(z) = ... = 8p—2(z) = 0, then for m = §,_1(z) there
is a binary m x n mairiz A that satisfies the properties of Lemma 3.

Proof. By translating the code C if necessary we can assume that z is
the all-zero word. We now form the matrix A by writing each word in
By_1(z) N Z; as a row of the matrix i times for all i. The number of rows
becomes m = E(B,_,(z)). In particular, p divides m + 1 by (23). Our
assumption §o(z) = 1(z) = ... = 8,—2(z) = 0 guarantees that no point in
By_»(z) belongs to Z and therefore m = 6,_1(z). Furthermore, each row
has p— 1 1’s, and the number of 1’s in the ith column is simply the excess
E(Sp-2(ei)), where e; again denotes the binary word of weight one with its
single 1 in the ith coordinate. By (24), E(Sp—2(ei)) = 8p-2(e;) is divisible
by p — 1. Similarly, the number of 1’s in common in two different columns
i and j equals 6,_3(e; + e;), which is divisible by p — 2 by (25).0

We now discuss how the results presented in [3, Section 4] can be im-
proved. If n =19 or 39 (mod 60), then — using the fact that
6i(z) = (n+ 1 =) Aica(z) + Ai() + (i + 1) Aiga(z) - (’:)

where A;(z) denotes the number of codewords at distance i from z — it
has been shown in [3] that for all z € F3,

{ 2n6o(z) + 61(z) + 62(z) =0 (mod 3),
So(z) + 61(z) + 82(z) + 83(z) =0 (mod 4),
bo(z) + 61(z) + b2(2) + 83(z) + 64(z) =4 (mod 5)

(the third one of course follows from (11)). Therefore o(z)+61(x)+62(z)+
83(z) > 4 or 84(z) > 14 by Lemmas 4 and 3 (for p = 5). Consequently,

7(60(2:) + 61(3) + 62(2) + (53(:!2)) + 264(2) > 28.
Adding over all z we get by (12),

((6)+1()7) 13) o)t

and obtain the following theorem.
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Theorem 5 Ifn =19 or 39 (mod 60), then

(2V(n,4) + 5V (n, 3) + 28)2"
(2V(n,4) +5V(n,3))(n+1)"

Corollary 6 K(19,1) > 26261.

K(n,1) >

A similar obvious modification leads to the following improvement of
[3, Theorem 12):

Theorem 7 K(27,1) > 4793641.

The best previous lower bounds were K(19,1) > 26251 and K(27,1) >
4793611 [3].

It remains to prove Lemma 3.

Proof of Lemma 3. Trivially, m > 2p — 1. otherwise m = p—1
but then the first row must simply be repeated p — 1 times in the matrix,
contradicting the third condition. So assume that there is a matrix A =
(aij) withm =2p — 1.

We first show that any two columns have either 0 or p — 2 1’s in com-
mon. Clearly, any two columns cannot have 3p — 6 or more 1’s in com-
mon: because the number of 1’s in a column is divisible by p — 1, and
3p—6 =3(p—1)—3, either of these columns has at least 3p—3 1’s, a con-
tradiction since 3p—3 > 2p—1. So, assume that two columns, say the first
and the second columns, have 2p — 4 1’s in common. Because the number
of 1’s in a column is divisible by p — 1, there are at least two more 1’s in
the first column and two more 1’s in the second column, and altogether at
least (2p — 4) + 2 + 2 = 2p rows, a contradiction.

Next we show that any two columns where the number of 1’s is positive
have at least one 1 in common. Assume that the first two columns have
no 1 in common and that they both have p — 1 1’s (obviously neither of
them can have more). The first column has 1’s in common with some other
column, say the third; in fact they have exactly p — 2 1’s common. There
are now two possible cases illustrated in the figure.
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1 1 #* (1 0 1
101 10
p—1< ¢ p—14
1 01 # 101
100 « (100
0101 (0 1 1
0101 011
p—14 : p—lﬁ.
0101 011
0100 (010
Case 1 Case 2

Case 1: If the third column has no 1’s in common with the second
column, take any column, say the fourth, which has. Again, the second
and fourth columns have exactly p — 2 1’s in common. The number of 1’s
in common in the first and fourth columns is 0 or p — 2, i.e., exactly 0 or
p — 2 of the stars * in the figure are 1’s. However, since the number of
1’s in the fourth column is divisible by p — 1, and there is one more row
left, all the stars must be 0’s and in the last row the fourth column has
1. Therefore the last row must begin 0011.... But then the number of
1’s in common in the third and fourth columns is not divisible by p — 2, a
contradiction.

Case 2: If the second and third columns have 1’s in common (necessarily
p—2 of them), then in the first 2p — 2 rows there are 2p—4 1’s in the third
column. Since the number of 1’s in the third column is divisible by p — 1
there have to be at least two more rows, a contradiction.

Let now L be the number of columns that are not identically zero. We
have shown that any two such columns have exactly p — 2 1’s in common.
Counting the number of triples (i, j, k) such that a;; = a;; =1 and j <k
in two different ways we get

(5)e-2=e-n("3") (26)

At most one column has 2(p — 1) 1’s, because otherwise the number of
rows is at least 2(p — 1)+ 2(p— 1) — (p — 2) = 3p— 2 > 2p — 1. The total
number of 1’s in the matrix A is therefore L(p — 1) or (L + 1)(p —1). On
the other hand, each of the 2p — 1 rows has p—1 1’s, and thus L = 2p —2
or L = 2p — 1, contradicting (26).0
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