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ABSTRACT. New class GBGy of generalized de Bruijn multi-
graphs of rank £k € N™ is introduced and briefly character-
ized. It is shown, among the others, that every multigraph
of GBGy is connected, Eulerian and Hamiltonian. Moreover,
it consists of the subgraphs which are isomorphic with the de
Bruijn graphs of rank r = 1" (d; - k;), for arbitrary nonzero
vector d = (di,...,dm) € {0.1}™. Then, the subgraphs of every
multigraph of GBG, called the K-factors, are distinguished.

An algorithm, with small time and space complexities, for
the construction of the E-factors, in particular the Hamiltonian
circuits, is given. At the very end a few open problems are put
forward.

1 Imntroduction

A class GBG;, of the generalized de Bruijn multigraphs of rank &, briefly k-
multigraphs, covers over the class BG, of de Bruijn graphs of rank k [4]. It
is shown, that every k-multigraph G of GBG;, is connected, Eulerian and
Hamiltonian (the same properties are true for graphs of BG,) The lower
bounds of the cardinalities of the classes of Euler lines and of Hamiltonian
circuits of G are given. Moreover G consists of the subgraphs which are
isomorphic with the de Bruijn graphs of rank r = Y ;" | (d;-k;), for arbitrary
nonzero vector d = (dy,...,dm) € {0,1}™.

One can distinguish the subgraphs of the I-c'-multigraphs, called the k-
factors, by analogy with the subgraphs of the de Bruijn graphs, called the
k-factors.
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Every k-factor (resp. k-factor) is a subgraph of Gy, (resp. of Gi) con-
sisting of all nodes of G}; (resp. of Gi) and additionaly all its connected
components form the cycles.

The K-factors of Gy (resp. k-factors) can be realized by the technical
devices which are called cascade parallel E-nets of shift registers [6] (resp.
k shift registers).

The problem of construction of Hamiltonian circuits being the factors of
de Bruijn graphs is of the great importance with respect to their wide use
in technics (3,7,8,9, 11,13].

An algorithm, with small time and space complexities, for the construc-
tion of the k-factors, among the others the Hamiltonian circuits, is pre-
sented.

In the opinion of the authors’ the class GBG; of K-multigraphs will be
interesting, both for theoretical studies as well as for practical use, especially
during the transmission of information. But the theory of the class GBG;
is in the beginning stage of developments. A few open problems will be put
forwards in Section 6.

The majority of notions related to graphs are the same as in book of Deo
[2] and will be not recalled here.

2 Basic definitions

For a finite alphabet A and the positive integers k;, ..., kyn (not necessarily
different) let V = A%t x ... x A*=_ Let k= (ky,..., kn).

Let us define id; C A% x A% and L-shift? C A% x A%, 1 <i<m
and a € A, called the identity relation and a left-hand side shift relation
respectively, as follows.

For arbitrary ¢t = (tl ..r,t™) and u = (ul,...,u™) of V, where t! =
...t and o' =ui...uj fori=1,2,...,m, we have:

(v eiq; iff =4
(¢',v') e L-shift? iff u'=t},...t.a.

Note that the relations id; and L-shift? are the functions of A% into
Ak,

Now let us define L-trans; C V x V, called a transition relation, as
follows:
For every t,u € V, (t,u) € L-trans; iff (%, v') € id; or (#*, ') € L-shift?,
for all 1 < ¢ < m, but there exists at least one 1 < 5 < m such that

(¢,47) € L-shift} for some a € A. If (,u) € L-trans; then u is said to
be an immediate successor of t with respect to L-trans;, relation.
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Example 2.1. For A= {0,1}, k= (3,2,3,4) and V = A3 x A2 x A3 x A?
the following pairs:!

((011, 60, 660, 1011), (011, 00, 000, 1011)),
((011, 00, 000, 1011), (011, 01, 600, 1011)),
((011, 00, 000, 1011), (011, 01,001, 1011)),
(011,00, 600, 1011), (110, 01,001, 0110))

are elements of the relation L-trans;.

Let E=V x B, where B = ({AU®}™\ {(®,...,0}). Let us define a
mapping ¥£: E — V x V such that

WL(¢,b) = (t,u), where u' = {ldi(t.) bi gy if b = @
L-shift*(t') otherwise.

for every (t,b) € E, b= (bl,...,bm) € B, t=(t,...,t"™), u=(u},...,u™)

of Vandi=1,2,.

Obviously ¥Z: E - L-trans,—; Then a multigraph G; = (V, E, ¥L)
describes a L-trans; relation. Observe that ¥lisa mappmg assigning to
each edge (¢,b) € E a pair (¢, u) of nodes. In such a case an edge is directed
from ¢ to u. A multigraph G; = (V,E, UL) is called a generalized de Bruijn
multigraph of rank k over an alphabet A (briefly I-c'-multigraph).

If UL is one-to-one mapping of E into V x V then G} is defined as a
pair (V, E). In this case the edges are identified with the pairs of nodes.
Additionally, if k = (k) (i.e K has a unique component k) then Gy, is called
de Bruijn graph of rank k and denoted by Gi. The set of nodes of this
graph Gy is equal to A* and the'set of edges E consists of all pairs (¢, u),
t=t... g, u=uy...upsuchthat t5... 8k =uy ... up_1.

For details related to the de Bruijn graphs the reader is referred to [4].

Example 2.2. The de Bruijn graphs of ranks 2 and 3 over the alphabet
A = {0,1} are shown in Figure 2.1.
Example 2.3. For lack of space let us only signalize an idea of the con-
struction of a generalized de Bruijn k-multlgraph Gi- Let k= (2,3) and
A = {0,1}. Let us consider, for example, the node v = 01,001. Then all
edges which are incident out of v and incident into v are shown in Figure
2.2.

1For clarity all components of the nodes of GBGy, are separated with commas.
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Figure 2.1. De Bruijn graphs of ranks 2 and 3
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Figure 2.2. Segment of multigraph G(2,3)

3 Basic properties of l-o‘-multigraphs

It is shown, among the others, that every I?-multigraph G}, is connected,
Eulerian and Hamiltonian. The 'lower bounds of the cardinalities of the
classes £ and Hj; of Euler lines and of Hamiltonian circuits are stated.

It is also shown that some subgraphs of G are isomorphic with de Bruijn
graphs.

Lemma 3.1. For the set V of nodes and the set E of edges of generalized
de Bruijn multigraph Gy the following conditions hold:

IVI= AP

and
|E| = |APP - [(|Al + D)™ - 1),

where p=ky + -+ + k.
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Proof: Let G; = (V, E, ¥¥) be a generalized multigragh of rank k. Then
we have:

V] = |AF x A% x ... x Abn| = |A%1|.|AR2|. . |A%=| = AP

and
|E| = |V x B| =|V|-|B| = |AIP - [(|A| + 1)™ - 1].

O
Corollary 8.2. For every node v of G we have:
dt(v) = (A +1)™ -1, (3.1)
and
d"(v) =(JA|+1)™ -1, (3.2)

where d(v) and d~(v) denote the out-degree and in-degree of & node v,
respectively.

Proof: To prove (3.1) let us observe that for a fixed v € V we have:
{(v,b) € E: ¥L(v,b) = (v,y),y € V}
= {be B: ¥X(v,b) = (v,y),y€V} =B (3.3)
and then
d*(v) = [{(»,b) € E: ¥¥(v,b) = (v,9),y € V}| = |B| = (|A|+ )™ - 1.

To prove (3.2) we have to introduce some auxiliary notions. Let us define
the relation R-shift? C A% x A%, 1 < i < m and a € A, called a right-
hand side shift relation, as follows:

For arbitrary ¢ = (¢t!,...,t™) and u = (ul,...,u™) of V, where ¢! =
ti...tf and v =i .. .uf fori=1,2,...,m, we have:

(¢, u') € R-shift? iff t'=aul...ul _,.

Note that a R-shift? relation is a total function of A* into A%.
Let us define a mapping ¥2: E -V x V as follows:

idi(v?) ifby=0

q’R 1b = H ’ h : = : i
(v,5) = (v,y), wherey {R-shiftf'(u‘) otherwise

forevery (v,b) € E, b= (by,...,bm) € B,v = (v1,...,v™),y = (¥,...,¥™)
of Vandi=1,2,...,m.
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Thus ¥R assigns to each edge (v,b) € E a unique pair (v,y) of nodes.
Then there exists ¥’ € B such that

‘I’L(vrb) = (va y) = \I’R(v’ b,)'

This implies the equality:
{(v,b) € E: ¥R(v,b) = (v,y),y € V}
= {(v,¥) € E: ¥£(v,¥') = (v,9),y € V}. (34)

Since ¥R is a total function then we have:
{b€ B: ¥%(v,b) = (v,y),y € V} = B.
From (3.3) and (3.4) immediately it follows that
d~(v) = |{b€ B: ¥*(v,b) = (v,y),y € V}| = |B| = (1A + )™ -
what finishes the proof. 0

Remark 3.3. One can able introduce the relation R-transg, called R-
transition relation, by analogy with L-trans; relation which has been in-
troduced in Section 2. It is sufficient to replace in the L-trans; relation
L-shift:: relation by R—shift:-; one.

Theorem 3.4. Every E—mu]tigraph GBG; over an alphabet A consists
of the subgraphs which are isomorphic with the de Bruijn graphs of rank
r= Z‘_l(dg k;) over A, for arbitrary nonzero vector d = (dy,...,dn) €
{0,1,}™.

Proof: Let G; = (V,E, ¥L) be a E-multigraph and d = (d1y...,dm) &
nonzero vector of {0,1}™. The proof consists of three parts:

o The construction of a subgraph G’ of G;

e The construction of the de Bruijn graph G,, r = 2;";1 d; - ki, by
means of G';

e The proof that G’ and G, are isomorphic.

Let i;,...,1, be an increasing subsequenoe of 1,...,m of all indexes
whxch corrwpond to nonzero components of d. Let us construct a subgraph
= (V', B, ¥'L) of G as follows:
For afixedbe Alet V' be a subset of V of all nodes v = (v!,...,v™) such
that v7 = (b...b) € A% forevery:j € {1,...,m}\ {i1,...,in} Let us define
L*-transz. C V' x V' for some a € A, as follows:

ulr ... u,“ ult! forj=id, 1<s<n—1;
(u,v) € Le-transg iff v={u.. uk a for j = in;
u{...u{’ for j € {1,...,m}\ {f1,...,in}.

166



Note that L*-transz. is a function.

Let E' = {(u,v) € V' x V': v = L*-trans%(u),a € A} and vl = LIE

Let us define a mapping ¢ of V' into V” = A% x ... x A%~ and an
inverse mapping ¢~1: V” — V"’ as follows:
For arbitrary ¢ = (¢!,...t™) € V', ¢* = #{...tf for 1 < i < m, and
u=(ul,...,u") € V" we have p(t) = u and ¢~ !(u) =t iff

o= v forl=z,-,Je.{1,....,n} (3.5)
(b...b) for the remaining indexes.

Let G” = (V", E"), where E" = {((t), p(u)): (t,u) € E'}.

In other words the digraph G” = (V”, E”) is obtained from G’ = (V', E’)
in such a way that the set of nodes V" is obtained from V'’ by omitting all
its components corresponding to zeros components of d. Then L*-tra.nsz

shifts leftwards all elements of V” and adds at the end by an element
a € A. It follows from the construction that G” is de Bruijn graph of rank
T =3 (di - k).

It is obvious that ¢ is isomorphism transforming a subgraph G’ of G
into de Bruijn graph G”. a

For an illustration of Theorem 3.4 let us see the following example
Example 3.5. Let us consider'the generalized de Bruijn k-multlgraph
G~ = (V,E, %) with kK = (3,2,4) over the alphabet A = {0,1}. Let

= (1: 0! 1)

Let us construct a subgraph G’ = (V', E', ¥'L) of Gj; as follows:
Vi={t=(t},t%,3) e A3x A?x At: 12 = 00}, _{(u,v) EV'xV':iv=
L#-transf(u), for some a = 0 or 1} and 'L \III e

Let us consider a mapping ¢ of V’ into V” = A3 x A* and an inverse
mapping ¢! of V” into V' as has been defined by means of (3.5).

Then G” = (V", E"), where E” = {(¢(t), p(u)), (t,u) € E'}, is the de
Bruijn graph of rank d = 3-1+2-0+4 .1 which is isomorphic with G’.
For an illustration of the above considerations let us consider, for exam-
ple, the node u = (101,00, 1010). Then the nodes u; = L#-trans)(u) =
(011,00,0100) and uy = L*-trans}‘.(u) = (011,00,0101) are incident out
of u in the digraph G’. But the nodes w; = ¢(u;) = (0110100) and
w2 = p(u2) = (0110101) are incident out of the node w = ¢(u) = (1011010)
in the de Bruijn graph G”.

Theorem 3.4 implies the following corollaries.

Corollary 3.6. For arbxtra.ry generalized de Bruijn graph G, k = (ky, ..
k) and a nonzero vector d = (d1y...,dm) € {0,1}™ we are abIe to
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construct (effectively) at least q subgraphs of Gy with q = |AP| and
p= Z.—1((1 - dJ k;) which are isomorphic thh the de Bruijn graph

Gﬂ rT= 2;:1( )

Proof: One can able modify the proof of Theorem 3.4 in such a way that
V'’ consists of all nodes of V' whose all components corresponding to zeros
components of d are the arbitrary sequences over A instead of constant
ones. ]

Corollary 3.7. Every de Bruijn graph Gp, p = ky + - - - + km, over an al-
phabet A is a subgraph of a generalized de Bruijn multigraph Gj; consisting
of all nodes as Gj,.

Proof: It is sufficient to put (in Theorem 3.4) d; =1foralli,1 <i<m.O

It follows from the previous considerations that every generalized multi-
graph G} over an alphabet A can be obtained by means of the de Bruijn
graph Gp, p = ki1 + -+ + km, by attaching some additional edges. In
particular, every Hamiltonian circuit of G, is a Hamiltonian circuit of
the generalized de Bruijn multigraph of rank k= (k1,-- ., km) such that
p=k+--+kn.

Corollary 3.8. Every generalized de Bruijn multigraph Gy, ke N™ and
m > 1, is connected.

Corollary 3.9. Every generalized de Bruijn multigraph Gy, is Hamiltonian.

Proof of Corollaries 3.8 and 3.9 immediately follows from Corollary 3.7
and the fact that de Bruijn graph G, is connected and Hamiltonian.

Corollary 3.10. Every generalized de Bruijn l-c'-multigraph G}, is Eulerian.

Lemma 8.11. Let £ and Hj; denote the classes of all Eulerian lines and
Hamiltonian circuits of a E-mu]tigraph Gj. Then we have:

[Hgl > (JA] = DIAPT . (4[4 ~r) (36)
and

€zl 2 (J4] = DIA=1 (APATPLL (4] 4 1) - g047) - (3)

Proof: Let us set ¢; = (JA] — I)14"" . (JA|IAP7"~P) and ¢; = (J4] -
DIAP-L (|A|\AP=P=1. [(|A] +1)™ — 2]"4!”) From Corollary 3.7 it follows
that every Hamiltonian circuit of Gy, p = kj + - - + ks, is a Hamiltonian
circuit of G;. As there exists exactly c; Hamiltonian circuits of G, then
the inequality (3.6) holds.

To prove (3.7) let us observe that every Euler line of Gp, p = k1 +- - - +km,
determines unique spanning tree of G;. It follows from the known theorem

168



(Theorem 9.13 pp. 226 of [2,) that every spanning tree determines an
existence of [(JA| +1)™ — 2]!41° Euler lines of Gy, different to each other.
Finally, G;; consists of at least c; of Euler lines. m}

We leave as an open problem to determine the cardinalities of the sets
& i and HI—E

4 The factors of E-multigraphs

The factors of I-c'-multigraphs can be analogously introduced as the factors
of de Bruijn graphs of rank k.

By a factor of a E-multigraph Gj; (briefly E—factor) we mean a subgraph
of G;; consisting of all nodes of Gy and additionally all its connected com-
ponents form the cycles.

Every k-factor F;— = (V, £) of Gf, analogously as a factor F; = (A%, E)
of Gy, determines uniquely a mapping ®: V — V (resp. ¢: Ak o AF),
called a transition function of of F}; (resp. of Fi), such that &(z) = y iff
(z,y) € € (resp. @(t) =uiff (t,u) € E) for every z,y € V (resp. t,u € AF).
Example 4.1. The (2,3)-factor F{53) which is constructed by means of
the factors F» and F3 (Figure 4.1) is shown in Figure 4.2,

O /000

00
100 001
11 Ol(j
101
Ole____10
110 011
111
Figure 4.1.

Factors F; and F3 of the de Bruijn graphs G» and Gg
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00, 000 —= 00, 001—» 00, 010

00, 100 00,

00,110«—00,111<—00,011

/11,000 —10, 000 —» 01,000 —11, 001

01,100

10,111

11,111«—01,011«—10,011e— 11,011
Figure 4.2. A (2,3)-factor Fy3)

170

101



Some comments relating to the construction of the k-factors are neces-
sary. Every cycle of Fj; is constructed according the following rule. We
prefer an activity of a umque transition function ¢; of a k;-factor Fj, with
the least number i so long as it is possible, otherwise if it is a need to in-
clude the transition function ¢, of Fi,, ¢ > 1, (to omit the repetition of
the nodes) then all the functions P15--1Pg—1 aTe included only once.

Now let us define an algorithm allowmg to construct the k-factors of Gy
by means of the k;-factors of Gi; for all i =1,.

Algorithm.

Input data: Vector k = (ky, ..., km) and the factors Fy,, ..., Fi,., (Fk
is a factor of Gy, for i =1,2,...m).

Let ¢; be a transition function of Fy,.

Result: Factor Fj; of Gj.

1. Let v = (v},...,v™), v} € A% for 1 < i < m, be an initial node of
successively constructed circuit of a factor Fi; which does not occur
in the previously constructed circuits; If such a node does not exist
then go to 7,

2. Put j:=1and u:=1v;

3. We compute a temporary node u by using the function ¢; to the jth
component of the last computed state u;

4. If the value of (p; which has been computable in the point 3 is equal
to vJ then we go to 5, else to 6;

5. If j < m then we put j :=j+ 1 and go to 3, else to 1;

6. If 5 > 1 then we put j := 1;'we assume u as the succesive node of the
constructed circuit and go to 3;

7. STOP.

The correctness of Algorithm is obvious. Time and space complexities
of Algorithm are equal to c- |AJ?, p = k1 + -+ + km, for some constant
ce(1,2).

A brief characterization of the resulting k-factors, which have been con-
structed by using Algorithm, in the following theorem is given.

Theorem 4.2. Let us suppose that the input data of Algorithm are the
factors Fy,,. .., Fy, and Fj is the resulting K-factor. Then we have:

(1) The cardinality of the set of all connected components of Fy is equal
to p1-... Pm, Where p;, 1 < i < m, is the cardinality of the set of all
connected components of Fi;,,1 <i<m;
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(2) If v = (v!,...,v™), v* € A%, is node of any cycle C of Fy then the
length of C is equal to q, - ... g, Where g; is the length of the cycle
C; of Fy, containing v¢, for every 1 <i < m.

Proof is obvious.

Corollary 4.3. The method used in Algorithm guarantees obtaining a
Hamiltonian circuit of Gy iff the input data F,, 1 < i < m, are the
maximal factors of the de Bruijn graphs Gk,.

5 The maximal k-factors
The construction of the maximal k-factors of G;; will be given.

A k-factor Fp of a I-:'-multigraph G (resp. k-factor of Gi) is called
mazimal if it forms a Hamiltonian circuit.
Example 5.1. Let us recall the Fredricksen’s method [3), called “the pref-
erence of 1’s”, of the construction of the maximal k-factors of the de Bruijn
graphs of rank k. Assuming z; = 0% we construct the successive nodes
of Fi,: o = 0"“11,:1:3 = Ok—212,. vy Tl = lk,.’b’k,,.z = 1"‘10,. ey Tox =
10%=1 (each z;4, is incident out of z;, 1 < i < 2% in F}).

The graphical representation of the maximal factors F5, F3 and F; which
are constructed by means of Fredricksen’s method in Figure 5.1 is shown.

0000
1000 \0601
0100 0011
1010 0111
000\ 0101 1111
100 001 0010 1110
00 0{0 0{1 10f01 11‘01
10 01 I(I]I 1{1 1100 1011

\11/ \1 10/ \01 10/

Figure 5.1. Maximal factors F3, F3, and F; of the de Bruijn graphs
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Remark 5.2. The Fredricsen’s method “preference of 1’s” can be extended
on arbitrary finite alphabet A. For an alphabet A = {ay,...,aa}, 7 > 2,
we introduce an order <. Let be for example a; < a2 <X --- X an. We
construct a Hamiltonian circuit Hj of rank k as follows:

Starting with a node (a;)* we construct the successive nodes of the form
(1)52n, - -, (an)¥, (an)*"1an-1, (an)*"'an-10n,..., (@2)" 1.

The successive nodes are obtained from their immediate predecessors by
cutting the first elements and adding at the end the greatest element of A
with respect to the relation <. But we construct only such successive nodes
which have been not previously occurred.

Example 5.2. Let A = {0,1,2,3} and 0 <1 X2 < 3. The maximal
factors F, and F3 are shown in Figure 5.2 and Figure 5.3.

N\

10 30

/

Figure 5.2. A maximal factor F; over A= {0,1,2,3}

/00 —» (03 —>33—>32—>23—>31 —>13

\11‘-—- 01+—20 ¢—12«—21—22<— (2

— —
000 | 313 | 351 [ 231 | o023 | 202 | 112 | 200

'

003 133 213 311 230 221 121 001

033 330 132 113 301 212 210 011

! Vol i bolod / i

333 303 320 131 013 122 102 111

S T I T O O I R

332 032 203 310 130 220 020 110

b b ]

323 322 031 103 300 202 201 101

R T L N O T O T O .

233 223 312 030 002 021 012 010

Flob b bbb

331 21:,2 123 3?_2_J 0%2 2}1 120 1(')2-‘

Figure 5.3. A maximal factor F3 over A= {0,1,2,3}
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00, 000, 0000 00,000, 0001 " 00, 000, 1000
01,000, 0000 01,000, 0001 01,000, 1000
11,000, 0000 11,000, 0001 11,000, 1000
10,000, 0000 10,000, 0001 10,000, 1000
00, 001, 0000 00,001, 0001 00, 001, 1000
01,001, 0000 01,001, 0001 01, 001,1000
11,001, 0000 11,001, 0001 11,001, 1000
10,001, 0000 10,001, 0001 10,001, 1000
00, 100, 0000 00, 100, 0001 00, 100, 1000
01,100, 0000 01,100, 0001 01, 100, 1000
11,100, 0000 11,100, 0001 11,100, 1000
10, 100, 0000 10,100, 0001 ;- 10, 100, 1000

Figure 5.4. A maximal (2,3,4)-factor F{234)

Example 5.3. The maximal (2,3,4)-factor constructed by Algorithm which
in Section 4 has been given by means of the factors F5, F3 and Fy of
Example 5.1 in Figure 5.4 is given.

Remark 5.5. The proposed order of switching of the feedback functions
in Algorithm can be changed. It is sufficient to guarantee the possibility of
generating of all nodes of V..
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6 Open problems

A theory of the class GBG; of E-multigraphs is in the initial stage of de-
velopments. Only basic properties of this class are given. Many problems
remain open. Let us point out a few of them:

(6.1) We have to determine the cardinalities of the classes £ and H; of
Euler lines and Hamiltonian circuits of Gj;

(6.1) We have to solve the analogical problems for GBGj; as have been solved
in [1,9] for the de Bruijn graphs.

(6.3) We have to define an algorithm which allows to construct a class of k-
factors which are similar to & given k-factor. Two K-factors F;; and F; é
are said to be similar iff there exists a one-to-one mapping ¢: Fy — Fi
such that corresponding to each other cycles consist of the same nodes
(possibly with different ordering). One can understand similarity of
the k-factors in another way, for example the corresponding to each
other cycles have the same lengths;

(6.4) We have to study the complexity problem of the E-factors;

(6.5) We have to decide, if an arbitrary graph G is a K-multigraph for same
vector k € N'™;

(6.6) Given graph G over an alphabet A we have to determine a vector E
such that G is a k-factor, if such k there exists.

Final remarks. One can able introduce a class RGBG;, of right-hand side
generalized de Bruijn graphs of rank K by analogy with the class GBG;
introduced here (this class can be also called the class of left-hand side
generalized de Bruijn K-multigraphs). It is sufficient to replace L-trans;
relation by R-trans;; one (this relation in Remark 3.3 has been introduced).
The class RGBG; has the same properties as GBG;. Both the classes GBG;
and RGBG;, can be exchangeable considered with respect to technical real-
ization of their k-factors.

Acknowledgements. The authors are very grateful to the anonymous
referee for providing valuable comments and constructive remarks on the
first version of this paper.
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